TECHNICAL MANUAL

ENGINEERING MANUAL SERIES

AIRCRAFT AND MISSILE REPAIR

STRUCTURAL HARDWARE

(ATOS)

<u>DISCLOSURE NOTICE</u>: This information is furnished upon the condition that it will not be released to another nation without the specific authority of the Department of the Air Force of the United States, that it will be used for military purposes only, that individual or corporate rights originating in the information, whether patented or not, will be respected, that the recipient will report promptly to the United States, any known or suspected compromise, and that the information will be provided substantially the same degree of security afforded it by the Department of Defense of the United States. Also, regardless of any other markings on the document, it will not be downgraded or declassified without written approval of the originating United States agency.

<u>DISTRIBUTION STATEMENT C</u>: Distribution authorized to U.S. Government agencies and their contractors, Administrative or Operational Use, 1 October 2004. Refer other requests for this document to 848 CBSG/OMR, Tinker AFB, Oklahoma 73145-3029.

<u>WARNING</u>: This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C. 2751 et seq.) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401, et seq. Violation of these export-control laws is subject to severe criminal penalties. Dissemination of this document is controlled under DoD Directive 5230.25.

HANDLING AND DESTRUCTION NOTICE: Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

LIST OF EFFECTIVE PAGES

NOTE: The portion of the text affected by the changes is indicated by a vertical line in the outer margins of the page. Changes to illustrations are indicated by shaded or screened areas, or by miniature pointing hands.

Dates of issue for original and changed pages are:

Original) 15 February 2006	Change	215 May 2007
Change 1	30 September 2006	Change	3 1 February 2008

TOTAL NUMBER OF PAGES IN THIS MANUAL IS 866, CONSISTING OF THE FOLLOWING:

Page	*Change	Page	*Cha		*Change
No.	No.	No.	No		No.
Title	3	19-12 Blank 20-1 20-2 A-1 - A-22 .	ex 4	. 0 . 1 . 0 . 0	

*Zero in this column indicates an original page

TABLE OF CONTENTS

Chap	pter		Page	Chapter		Page
	FOREV	VORD	xix	1.2.10	Driving Common, Solid Shank	1 24
				1 0 11	Rivets Using Rivet Squeezers	1-34
	SAFET	Y SUMMARY	xxi	1.2.11	Driving Common, Solid Shank Rivets Using Pneumatic Rivet	1 25
				1.2	Gun	
1	RIVET	S	1-1	1.3 1.3.1	Rivet Sets	
					Rivet Draw Sets	
	1.1	Rivets	1-1	1.3.2 1.3.3	Rivet Bucking Bars	1-33
	1.1.1	Rivet Part Numbers		1.3.3	Rivet Driving Practice and Precautions	1 25
	1.1.2	Rivet Code		124	Pin Rivets	
	1.1.3	Rivet Materials		1.3.4 1.3.5		1-33
	1.1.4	Rivet Identification Markings		1.3.3	Substitution of Bolts for Pin Riv-	1 25
	1.1.5	Rivet General Uses		126	ets	
	1.1.6	Rivet Corrosion Resistance		1.3.6 1.3.7	Selection of Pin Rivets	1-3/
	1.1.7	Rivet Pattern Layout		1.5.7	Spotfacing for Installation of Pin	1 27
	1.1.8	Drilling for Installation of Rivets		1.2.0	Rivets	1-3/
	1.1.9	Rivet Drill Sizes	1-18	1.3.8	Tools for Installation of Pin Riv-	1.20
	1.1.10	Rivet Hole Drilling Procedure		1 2 0	ets	
	1.1.11	Countersinking for Installation of		1.3.9	Installation of Pin Rivets	1-39
		Rivets	1-22	1.3.10	Driving Pin Rivet from Collar	1.20
	1.1.12	Dimpling for Installation of Riv-		1.3.11	End Driving Pin Rivet from Head	1-39
		ets	1-22	1.3.11	End	1.40
	1.1.13	Subcountersinking for Installation		1.3.12	Precautions in Using Pin Rivets	
		of Rivets	1-22	1.3.12	Removal of Pin Rivets	
	1.1.14	Rivet Failure	1-22	1.3.14	Self-Plugging Rivets (Friction	1- - 7/
	1.1.15	Rivet Shear Failure	1-23	1.3.14	Lock)	1-50
	1.1.16	Rivet Bearing Failure	1-23	1.3.15	Substitution of Self-Plugging	1-30
	1.1.17	Rivet Head Failure		1.5.15	Rivets (Friction Lock) for	
	1.1.18	Detecting Rivet Failures			Common, Solid Shank Rivets	1 51
	1.1.19	Removal of Rivets		1.3.16	Selection of Self-Plugging Rivets	1-31
	1.2	Common, Solid Shank Rivets	1-24	1.5.10	(Friction Lock)	1 51
	1.2.1	Types of Common, Solid Shank		1.3.17	Installation Tools for Self-Plug-	1-31
		Rivets	1-24	1.5.17	ging Rivets (FrictionLock)	1_51
	1.2.2	Common, Solid Shank Rivet		1.3.18	Installation of Self-Plugging Riv-	1-31
		Strength	1-31	1.5.10	ets (Friction Lock)	1_52
	1.2.3	Common, Solid Shank Rivet		1.3.19	Self-Plugging Rivet (Friction	1-32
		Heat Treatment	1-31	1.5.17	Lock) Cutoff Tools	1_52
	1.2.4	Selection of Common, Solid		1.3.20	Inspection of Self-Plugging Riv-	1-32
		Shank Rivets	1-31	1.5.20	ets (Friction Lock)	1_52
	1.2.5	Common, Solid Shank Rivet		1.3.22	Removal of Self-Plugging Rivets	1-32
		Substitution		1.3.22	(Friction Lock)	1 52
		andInterchangeability	1-31	1.3.23	Self-Plugging Rivets (Mechanical	1-32
	1.2.6	Replacement of Common, Solid		1.5.25	Lock)	1 50
		Shank Rivets with		1.3.24	Substitution of Self-Plugging	1-36
		SpecialRivets	1-32	1.3.24	Rivets (Mechanical Lock) for	
	1.2.7	Replacement of Common, Solid				1 50
		Shank Rivets with Bolts and		1.3.25	Common, Solid Shank Rivets	1-38
		Screws	1-34	1.3.43	Selection of Self-Plugging Rivets	1 50
	1.2.8	Installation of Common, Solid		1.3.26	(Mechanical Lock)	1-38
		Shank Rivets	1-34	1.3.20	Installation Tools for Self-Plug-	
	1.2.9	Driving Common, Solid Shank			ging Rivets (Mechanical Lock)	1 50
		Rivets by Hand	1-34		LUCK)	1-36

1.3.27	Driving Self-Plugging Rivets	1.6.4	Substitution Charts for Blind Fas-	
	(Mechanical Lock)1-59		teners	
1.3.28	Driving Sequence for Self-Plug-	1.7	Huckrimp Fasteners	1-117
	ging Rivets (MechanicalLock)1-59	1.7.1	Installation of Huckrimp Fasten-	
1.3.30	Self-Plugging Rivet (Mechanical		ers	
	Lock) Removal1-61	1.7.2	Inspection of Huckrimp Fasteners	1-124
1.3.31	Inspection of Self-Plugging Rivet	1.7.3	Removal of Huckrimp Fasteners	
	(Mechanical Lock)1-61	1.7.4	Blind Fasteners	1-124
1.3.32	Explosive Rivets1-62	1.8	Blind Fastener Substitution Re-	
1.3.33	Substitution of Explosive Rivets		quirements for Conventional	
	for Common, Solid Shank		Rivets	1-132
	Rivets1-62	1.8.1	Requirements	1-133
1.3.34	Selection of Explosive Rivets1-62	1.9	Cherrylock and Olympic-Lok	
1.3.35	Special Tools for Explosive Riv-		Rivets	1-134
	ets1-65	1.9.1	Types of Rivets	1-134
1.3.36	Operation of Riveting Irons1-65	1.9.2	Identification	1-134
1.3.37	Maintenance of Riveting Irons	1.9.3	Rivet Pattern Layout	1-134
	and Tips1-66	1.9.4	Edge Distance	
1.3.38	Installation of Explosive Rivets1-66	1.9.5	Rivet Spacing	
1.3.39	Precautions in Using Explosive	1.9.6	Hole Preparation	
	Rivets1-67	1.9.7	Equipment	
1.3.40	Internally Threaded Rivets (Two	1.9.8	Installation	
	Piece)1-68	1.9.9	Inspection	
1.3.41	Selection of Internally Threaded	1.9.10	Removal	
	Rivets (Two Piece)1-68	1.9.11	Micro Stop Countersink Units	
1.3.42	Installation Tools for Internally	1.9.12	Interchangeability of Cherry and	
	Threaded Rivets (Two Piece)1-68		Olympic Rivets	1-142
1.3.43	Installation of Internally	1.9.13	Cherrylock Tooling	
	Threaded Rivets (Two Piece)1-68	1.9.14	Cherrylock Mechanical Tooling	
1.3.44	Rivnuts1-68	1.9.15	Cherrylock Hydroshift Tooling	
1.3.45	Selection of Rivnuts1-71	1.9.16	Cherrymax Tooling	
1.3.46	Installation Tools for Rivnuts1-71	1.9.17	Existing Tooling Systems	
1.3.47	Installation of Rivnuts1-84	1.9.18	Cherrymax Tools	
1.3.48	MS20450 Tubular Rivet1-84	1.10	Hi-Lok and Hi-Lok/Tigue Fasten-	
1.4	Nonstandard Rivets1-84		ers	1-155
1.4.1	Jo-Bolts1-84	1.10.1	Selecting the Fastener Assembly	
1.4.2	Identification1-84	1.10.2	Hole Preparation	
1.4.3	Fastener Layout1-84	1.10.3	Tooling	
1.4.4	Edge Distance1-84	1.10.4	Fastener Installation	
1.4.5	Spacing1-84	1.10.5	Inspection After Installation	
1.4.6	Hole Preparation1-87	1.10.6	Removal of Installed Fastener	
1.4.7	Tools and Equipment1-87	1.11	ASP® Fastening System	
1.4.8	Installation1-91	1.11.1	Recommendations for Hole Prep-	
1.4.9	Inspection1-94		aration	1-165
1.4.10	Removal1-94	1.11.2	Suggestions for Hole Preparation	
1.4.11	Special Handling of Jo-Bolts1-94		and InstallationPractice	1-166
1.4.12	Internally Threaded Rivets (Three	1.11.3	Basic Part Numbers	
	Piece)1-94	1.11.4	Anatomy of ASP® Component	
1.5	Swage Locked Pin and Collar	1.11.5	Part Number Logic (Full Shank	
	Fasteners1-94		Pins)	1-168
1.5.1	Installation of Pull Type Fasten-	1.11.6	Part Number Logic (Reduced	
1.0.1	ers1-94	111110	Shank Pins)	1-168
1.5.2	Installation of Stump Type Fas-	1.11.7	Part Number Logic (Sleeves)	
2	teners1-98	1.11.8	Part Number Logic (Lock Collar)	
1.5.3	Inspection1-98	1.11.9	Configuration Options	
1.5.4	Removal1-98		Installation Sequence	
1.6	Military Standard Blind Bolts1-98		Installation Tooling	
1.6.1	Installation1-98		Prior to Shave	
1.6.2	Inspection1-98		Clean Up Shave	
1.6.2	Removal 1-98		Fastener Removal	

2	SCREW	VS	2-1	3.1.10	Corrosion-Resistant Steel, Hex Head Bolts
	2.1	Screws	2-1		(AN104601Through
	2.1.2	Screw and Bolt Markings			AN105500); Corrosion-Resis-
	2.1.3	Structural Screws			tant Steel, Drilled Shank, Hex
	2.1.4	Machine Screws			Head Bolts (AN105501
	2.1.5	Flathead, Machine Screws			Through AN106400); Corro-
	2.1.6	Roundhead, Machine Screws			sion-Resistant Steel, Drilled
	2.1.7	Fillister Head, Machine Screws			Hex Head (One Hole) Bolts
	2.1.8	Socket Head, Machine Screws			(AN106401 Through
	2.1.9	Pan Head and Truss Head, Ma-	2-13		AN107300); and, Corrosion-
	2.1.)	chine Screws	2-13		Resistant Steel, Drilled Hex
	2.1.10	Self-Tapping Screws			Head (Six Holes) Bolts
	2.1.10	Self-Tapping Screws			(AN107301 Through
	2.1.11		2-13		AN108200)3-2
	2.1.12	Self-Tapping, Sheet Metal	2 12	2 1 11	
	2 1 12	Screws		3.1.11	Close-Tolerance, Hex Head, Ma-
	2.1.13	Drive Screws			chine Bolts (AN173 Through
	2.1.14	Wood Screws			AN186); 100-Degree Counter-
	2.1.15	Setscrews	2-45		sunk Head, Close-Tolerance,
	2.1.16	Hexagon and Fluted Socket,	2.45		High Strength Bolts(NAS333
		Headless Setscrews			Through NAS340); Hex Head,
	2.1.17	Self-Locking Setscrews			Close-Tolerance, Short
	2.1.18	Extracting Broken Screws	2-45		Thread, 4Al-4Mn Titanium
2	DOI TO		2.1		Alloy Bolts (NAS653 Through
3	BOLIS	· · · · · · · · · · · · · · · · · · ·	3-1		NAS658); 100-Degree Coun-
	2.1	D. 1.	2.1		tersunk Flathead, Close-Toler-
	3.1	Bolts			ance, 4AL-4MN Titanium
	3.1.1	Grip Length	3-1		Alloy Bolts (NAS663 Through
	3.1.2	Shank			NAS668); and,Drilled Hex
	3.1.3	Fitting Bolts			Head, Close-Tolerance, 4AL-
	3.1.4	Standard Bolts	3-2		4MN Titanium Alloy Bolts
	3.1.5	Standard Aircraft Machine Bolts			(NAS673 Through NAS678)3-2
		(AN3 Through AN20)	3-2	3.1.12	Hex Head, Close-Tolerance,
	3.1.6	Drilled Head Bolts (AN73			160,000 PSI Tensile
		Through AN81)	3-2		Bolts(NAS1303 Through
	3.1.7	Stabilized, Nonmagnetic, Corro-			NAS1320); Hex Head, Close-
		sion-Resistant Steel Bolts			Tolerance, 160,000 PSI Ten-
		(NAS501)	3-2		sile, Short Thread Bolts
	3.1.8	Hex Head, Nonmagnetic, Heat-			(NAS1103 Through
		Resistant, Machine			NAS1120); 100-Degree,
		Bolts(NAS1003 Through			Close-Tolerance Head and
		NAS1020)	3-2		Shank, 160,000 PSI Tensile,
	3.1.9	Hex Head Bolts (AN101001			Short Thread Bolts (NAS1202
		Through AN101900); Drilled			Through NAS1207); and, 100-
		Shank Hex Head Bolts			Degree, Close-Tolerance Head
		(AN101901 Through			and Shank, 160,000 PSI Ten-
		AN102800); Drilled Hex Head			sile, ShortThread Bolts
		(One Hole) Bolts (AN102801			(NAS1503 Through
		Through AN103700); and,			NAS1510)3-12
		Drilled Hex Head (Six Holes)			1.12.10.10.10.10.10.10.10.10.10.10.10.10.10.
		Bolts (AN103701 Through			
		AN104600)	3-2		

	3.1.13	Steel, Internal Wrenching Bolts			5.4	Definitions	
		(NAS144 Through NAS158			5.4.1	Torque	5-1
		and NAS172 Through			5.4.2	Tension	
		NAS176)	3-12		5.4.3	Fatigue	
	3.1.14	Internal Wrenching, 160,000 PSI			5.4.4	Pre-Loading	5-3
	5.1.11	Tensile Bolts (MS20004			5.4.5	Tensile Strength	
						Chan Cannadh	
		Through MS20024), and Six			5.4.6	Shear Strength	3-3
		Hole, Drilled Socket Head			5.5	General	
		Bolts (AN148551			5.6	Nut Identification	5-3
		ThroughAN149350)	3-13		5.7	Military Standards (MS) Nuts	5-4
	3.1.15	Twelve Point, External Wrench-			5.8	Wrenching Problems	5-8
		ing, 180,000 to 200,000 PSI			5.9	Self-Locking Nuts	
		Tensile Bolts (NAS624			5.9.1	Application of Self-Locking Nuts	
		Through NAS644)	2 12		5.9.2	Thread Protrusion	
	2 1 17	,	3-13			Tilread Protrusion	::
	3.1.17	Close-Tolerance Shear Bolts			5.9.3	Types	
		(NAS464)	3-22		5.9.4	Prevailing Torque Nuts	5-9
	3.1.18	Full Threaded, Fully Identified			5.9.5	Free-Spinning Nuts	5-9
		Head Bolts (NAS563Through			5.10	Finishes	5-13
		NAS572)	3-22		5.11	Styles	5-14
	3.1.19	Clevis Bolts (AN21 Through			5.11.1	Plain Nuts	
	0.11.17	AN36)	3-23		5.11.2	Castle Nuts	
	2 1 20	Eyebolts (AN42 Through AN49)			5.11.3	Checknuts	
	3.1.20						
	3.1.21	Nonstandard Bolts	3-23		5.11.4	Plate Nuts	
	3.1.22	External Wrenching Bolts,			5.11.5	Channel Nuts	
		EWB22 (220,000 PSI Mini-			5.11.6	Barrel Nuts	
		mum)	3-23		5.11.7	Internal Wrenching Nuts	5-19
	3.1.23	Hi-Torque Bolts	3-23		5.11.8	Point Wrenching Nuts	
	3.1.24	Self-Locking Bolts			5.11.9	Shear Nuts	
	3.1.25	Impedance Self-Retaining Bolt				Sheet Spring Nuts	
	3.1.26	Torq-Set Wrenching Recess				Wingnuts	
					5.11.11	William I and and a simulation	5-20
	3.1.27	Hardness-Testing Aircraft Bolts				Klincher Locknuts	3-20
	3.1.28	Bolt Identification Markings			5.12	Self-Locking Nuts for Aircraft	
	3.1.29	Internal Wrenching Fasteners				Engines and Accessories	
	3.1.33	Installation	3-36		5.13	Tightening Nuts and Bolts	5-20
	3.1.34	Removal	3-36		5.13.3	MS, NAS, and AN Drawings	5-21
	3.1.36	Fastener Removal Tool	3-37		5.14	Torque Wrenches	
	3.1.37	Fastener Extractor (Drill and Re-			5.15	Identification Markings on Nuts	
	3.1.37	move)	3 37		3.13	rachtification warkings on reads	22
	2.2			6	WASHI	ERS	6-1
	3.2	Maintenance		O	** / 10111		
	3.3	Tooling	3-38		<i>C</i> 1	W71	
					6.1	Washers	
4	STUDS		4-1		6.1.1	Plain Washers	
					6.1.4	Lockwashers	
	4.1	Studs	4-1		6.2	Special Washers	6-1
	4.1.1	Installing New Stud	4-1		6.2.1	Ball Socket and Ball Seat Wash-	
	4.1.2	Removing Bent or Damaged Stud				ers	6-
	4.1.3	Drilling Pilot Hole in Broken			6.2.2	Taper Pin Washers	
	4.1.3		4.1		6.2.3		
	4 1 4	Stud			0.2.3	Preload-Indicating Washers	0-
	4.1.4	Removing Broken Stud		7	DINC		7 1
	4.1.5	Retapping for New Stud		7	PINS	•••••	/
	4.1.6	Lockring Studs	4-2				
	4.1.7	Installation of Lockring Stud	4-3		7.1	Pins	
	4.1.8	Removal of Lockring Stud			7.1.1	Taper Pins	7-1
	4.2	Stud Tools			7.1.2	Flathead Pins	
		5.65 10015			7.1.3	Cotter Pins	
5	NUTS		5-1		7.1.4	Lockpins	
J	1,010.		1		7.1.5	Spring Pins	
	5 1	Nuto	5 1			Machine Dine	
	5.1	Nuts			7.1.6	Machine Pins	
	5.2	Fastener Fatigue Failure	3-1		7.1.7	Quick-Release Pins	/-/2
	4 2	Longue	4 1				

8	BUSHI	NGS	8-1		10.3	Structure Disassembly Using Panel and Quick-ReleaseFas-	
	8.1	Bushings	8-1			teners	10-1
	8.1.1	Removing Bushings			10.4	Quick-Release Fasteners	
	8.1.2	Reaming Holes for Bushings	8-1		10.4.1	Style I Quick-Release Fastener	
	8.1.3	Pressing in New Bushings			10.4.2	Style II Quick-Release Fastener	
	8.1.4	Arbor Press Method			10.4.3	Style II Quick-Release Fastener	
	8.1.5	Draw-In Method			10.7.3	Stud Assembly	10.3
	8.1.6				10.4.4	Stud Assembly	10-3
		Vise Method			10.4.4	Style III Quick-Release Fastener	10-4
	8.1.7	Mallet Method			10.4.5	Removal and Replacement of	
	8.2	Reaming New Bushings				Style III Quick-ReleaseFas- tener	10-4
9	THREA	ADED INSERTS	9-1		10.5	Style III Quick-Release Fastener Receptacle	10-5
	9.1	Threaded Inserts	9-1		10.6	Style III Quick-Release Fastener	
	9.1.1	Lockring Threaded Inserts	9-1		10.0	Stud	10-5
	9.1.2	Installation of Lockring Threaded Inserts			10.7	Style III Quick-Release Fastener	
	0.1.2		9-2			Cross Pins	10-6
	9.1.3	Removal of Lockring Threaded	0.2		10.8	Style III Quick-Release Fastener	
	0.0	Inserts				Stud Selection	10-6
	9.2	Clinch Nuts			10.8.1	Style III Quick-Release Fastener	
	9.2.1	Selection of Clinch Nuts				Maintenance	10-7
	9.2.2	Installation of Clinch Nuts			10.9	Other Quick-Release Fasteners	10-8
	9.3	Helical Coil Inserts			10.9.1	Dzus Panel Line Fasteners	
	9.3.1	Military Standards	9-4		10.9.2	Camloc Fasteners	
	9.3.2	Description	9-5		10.9.3	Paneloc Quarter-Turn Fasteners	
	9.3.3	Insert Types			10.9.4	Threaded Panel Fasteners	
	9.4	Screw Thread and Screw-Lock-			10.9.5	Threaded Panel Fastener Remov-	
		ing Inserts - Unified Coarse			10.7.5	al	10-17
		and Fine Thread Sizes	9-5		10.9.6	Threaded Panel Fasteners - Main-	10-17
	9.4.1	General Instructions			10.5.0	tenance	10.17
	9.5	Repair Procedure			10.9.7	Milson Panel Fasteners	
	9.5.1	Inserting Tool Instructions					10-18
	9.6	Tang Removal Instructions			10.9.8	Mil-Loc and Zip-Loc Panel Fas-	10.10
	9.7				1000	teners	
	9.7	Gaging of Assembled Insert	0.12		10.9.9	Calfax Live-Lock Panel Fastener	
		Insert Removal Instructions			10.9.10	Calfax Mark IV Panel Fastener	10-18
	9.8.1	Oversize Inserts			CADIF		
	9.8.2	Twinserts		11		ES, TURNBUCKLES, AND	11.1
	9.9	Spark Plug Thread Sizes			CAB	BLE TERMINALS	11-1
	9.9.1	Instructions					
	9.10	Tapered Pipe Thread Sizes			11.1	Cables, Turnbuckles, and Cable	
	9.10.1	Instructions				Terminals	
	9.11	Thread Repair Packs			11.1.1	Cables	11-1
	9.11.1	Available Packs and Kits	9-32		11.1.2	Cable Definitions	11-1
	9.11.2	Oversize Insert Packs	9-32		11.1.3	Flexible Cables	11-1
	9.11.3	Twinsert Packs	9-32		11.1.4	Nylon Coated Cable	11-2
	9.11.4	Taper Pipe Thread Packs	9-37		11.1.5	Nonflexible Cables	
	9.12	Automotive and Aircraft Spark			11.2	Cable Damage	
		Plug Packs	9-37		11.2.1	Broken Wires	
	9.13	Stud-Locking Inserts - Unified			11.2.2	Kinked Cable	
	7.13	Coarse and Unified Fine	0_30		11.2.3	Cracks In Nylon Jacket	
	9.13.1				11.2.4	Severed Cables	
	7.13.1	General Description				Control Cable External Wear Pat-	11-3
10	PANEI	AND QUICK-RELEASE FAS-			11.2.5		11 ~
10		ERS	10 1		11.2	terns	
	1 EIN	LINJ	10-1		11.3	Cable Tension	
	10.1	Daniel and Ordala Delega Free			11.3.1	Checking Cable Tension	11-5
	10.1	Panel and Quick-Release Fasteners	10-1		11.3.2	Aircraft Cable Temperature Considerations	11-6
	10.2	Structure Assembly Using Panel			11.4	Cable Hardware	
			10-1		11.7	Cuoto 11414 wate	1-0

	11.4.1	Turnbuckles		15.7	Flushing Back Side When Neces-	15.0
	11.4.2	Turnbuckle Installation11-6		450	sary	15-3
	11.4.3	Fork, Eye, and Threaded End		15.8	Sleeves, Fasteners, Design and	
		Cable Terminals, Bushings,			Usage Limitations	
		Shackles, and Thimbles11-10		15.9	Restricted Applications	
	11.4.4	Swaged Ball Terminals11-20		15.10	Application	15-7
	11.5	Pulleys11-22				
	11.5.1	Cable Stops11-22	16	SAFET	Y METHODS	16-1
	11.5.2	Cable Fabrication11-23				
	11.5.3	Cable Replacement11-23		16.1	Safety Methods	16-1
	11.5.4	Cutting Cables11-23		16.1.1	Securing Aircraft Hardware with	
	11.5.5	Cable Lubrication and Corrosion			Lockwire	16-1
		Preventative Treatment11-25		16.1.2	Securing Aircraft Hardware with	
	11.5.6	Swaging Cable Terminals11-26			Safety Cable	16-1
	11.5.7	Sweat-Soldering Cable Terminals11-26		16.1.3	Lockwiring and Safety Cabling	
	11.5.8	Wrap-Soldering Cable Terminals11-26			Procedures	16-3
	11.5.9	Woven-Spliced Cable Terminals11-30		16.1.4	Lockwiring Procedures	
	11.5.9	woven-spiced Cable Terminals11-30		16.1.5	Twisting with Special Tools	
12	TIF RC	DDS AND CONTROL RODS12-1		16.1.6	Safety Cable Procedures	
12	IIL KC	DDS AND CONTROL RODS12-1		16.1.0	Securing Oil Caps, Drain Cocks,	10-4
	12.1	Tie Dede and Central Dede 12.1		10.2		16 /
		Tie Rods and Control Rods12-1		1601	and Valves	
	12.1.1	Tie Rods		16.2.1	Securing Snap Rings	
	12.1.2	Tie Rod Assemblies		16.3	Securing Turnbuckles	16-3
	12.1.3	Types of Tie Rods12-1		16.3.1	Securing Turnbuckles with Safety	4 6 7
	12.1.4	Types of Tie Rod Terminal Fit-			Wire	16-5
		tings12-1		16.3.2	Securing Turnbuckles with Safety	
	12.1.5	Control Rods12-1			Cable	
	12.1.6	Control Rod Assembly12-1		16.3.3	Addition to Safety Wire	16-11
	12.1.7	Control Tube Assemblies12-2		16.3.4	Safetywire Sizes	16-15
	12.1.8	Types of Rod Ends12-2		16.4	Assembling and Securing Clip	
	12.1.9	Types of Control Tubes12-2			Locking Turnbuckles	16-15
	12.1.10	Torque Rod Assemblies12-2		16.5	Safety Cable	
		Repair of Control Tubes12-6		16.6	Safety Cable Application Tools	
		· · · · · · · · · · · · · · · · · · ·		16.6.1	Types of Safety Cable Tools	
13	TUBIN	G SYSTEMS AND TUBING RE-		16.6.2	Safety Cable Application Tool	
	PAII	RS13-1		10.0.2	Maintenance and Calibration	16-23
				16.7	Securing with Cotter Pins	
	13.1	Tubing Systems and Tubing Re-		16.8	Safetying Hinge Pins	
		pairs13-1		10.0	Safetying Thinge Tims	10-20
		F	17	OUICK	CONNECT/DISCONNECT	
14	FLEXI	BLE HOSE AND FITTINGS14-1	- /		JPLINGS, SELF-SEALING,	
					NUALOPERATING TYPE	17-1
	14.1	Flexible Hose and Fittings14-1		1717 1	TO LEGILLATING TILL	1 / 1
				17.1	History and Advantages	17 1
15	SELEC	TION AND INSTALLATION OF		17.1		1/-1
		RES FASTENER SLEEVESMIL-S-		17.2	Types of Quick Disconnect Cou-	17 1
		5915-1		17.0.1	plings	
	0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		17.2.1	Screw Type	1/-1
	15.1	Acres Fastener Sleeves15-1		17.2.2	Quick Threading - Indicating	
	15.1.1	Introduction			Туре	
	15.1.2	Purpose		17.2.3	Inst-o-Matic Push-Pull Type	
	15.1.2			17.2.4	Full Grip - Push-Pull Type	
		Description		17.2.5	Straight-Flow Ball Valve Type	
	15.2	Oversize Fastener Sleeves, Type		17.2.6	Ball-Lock Type	17-3
	15.2	I		17.2.7	End Fitting Styles (Common	
	15.3	Adjusting to Length			Types)	17-4
	15.4	Alternate Method of Adjusting		17.3	Care and Handling Practices	
	15.5	Sleeve to Length in Structure15-3		17.4	Technical Manual Coverage	
	15.5	Procedure for Grinding Sleeve to		17.5	Troubleshooting Hints	
		Proper Length15-3		17.6	Seal Replacement	
	15.6	Installation 15.3			1	

	17.6.1	Quick Thread-Indicating Type17-6	19	CLAM	P LOOP GENERAL DATA	19-1
	17.6.2	Inst-o-Matic, "Push PullType"17-6				
	17.6.3	Full Grip "Push-Pull Type"17-6				
	17.6.4	Straight-Flow "Ball ValveType"17-6	20	PULLE	YS	20-1
	17.6.5	Ball-Lock Type17-6				
	17.7	Inspection of Aeroquip Corp Se-		20.1	Pulleys	20-1
		ries 3700 and 3750 Quick-		20.2	Pulley Definition	20-1
		Thread Couplings17-6		20.3	Pulley Material	
				20.4	Pulley Inspection	20-1
18	INSPEC	CTION AND INSTALLATION		20.4.1	Flange Area	
	OF V	V-BAND COUPLINGS18-1		20.4.2	Sheave Area	20-1
				20.4.4	Pulley Bearings	20-1
	18.1	V-Band Couplings18-1		20.4.5	Cables	20-1
	18.2	Pre-Installation Checks18-1				
	18.3	Installation18-1	Α	PERM A	ASWAGE FITTINGS	A-1
	18.3.1	Gaskets18-1				
	18.3.2	Torque18-1		DIDEN	-	T 1 1
	18.3.3	Nuts18-1		INDEX		Index I

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title Page
1-1	Types of Blind Rivets		1-27	Inserting Self-Plugging Rivet (Mechani-
1-2	Rivet Code		1.20	cal Lock)
1-3	Rivet Edge Distance	1-18	1-28	Removing Self-Plugging Rivet
1-4	Sheet Surface Angle Limitations for	1 10	1.20	(Mechanical Lock)
1 5	Riveting	1-18	1-29	Inspection Criteria for Self-Plugging
1-5	Spotfacing for Rivets	1-19	1.20	Rivets (MechanicalLock)1-64
1-6	Drilling for Rivets	1-22	1-30	Forming of Self-Plugging Rivet
1-7	Countersinking for Rivet		1 21	(Mechanical Lock) Head1-64
1-8	Dimpling for Installation of Rivets		1-31	Types of Explosive Rivets
1-9	Removal of Rivets		1-32	Explosive Rivet Grip Lengths
1-10	Fasteners for Riveting		1-33	Explosive Rivet Riveting Irons 1-67
1-11	Rivet Squeezers		1-34	Explosive Rivet Installation1-67
1-12	Pneumatic Rivet Gun and Rivet Sets		1-35	Internally Threaded Rivet (Two Piece) 1-68
1-13	Types of Bucking Bars		1-36	Hand Driving Tool for Internally
1-14	Draw Sets			Threaded Rivets (Two Piece)1-70
1-15	Correctly and Incorrectly Driven Rivets		1-37	Installation of Internally Threaded Riv-
1-16	Using Pin Rivet Set			ets (Two Piece) 1-71
1-17	Inserting Pin Rivet		1-38	Types of Rivnuts1-71
1-18	Driving Pin Rivet from Collar End		1-39	Rivnut Grip Length1-84
1-19	Driving Pin Rivet from Head End		1-40	Installation of Rivnuts 1-86
1-20	Removing Pin Rivet	1-53	1-41	Jo-Bolt Identification 1-88
1-21	Pin Rivet Inspection	1-54	1-42	Jo-Bolt Installation and Inspection 1-92
1-22	Self-Plugging Rivet (Friction Lock) In-		1-43	Jo-Bolt Installation Tools 1-95
	stallation Tools	1-56	1-44	Jo-Bolt Removal1-96
1-23	Self-Plugging Rivet (Friction Lock) In-		1-45	Internally Threaded Rivet (Three Piece) 1-97
	stallation	1-57	1-46	Installation of Internally Threaded Rivet
1-24	Self-Plugglng Rivet (Friction Lock)			(Three Piece)1-97
	Cutoff Tools	1-57	1-47	Installation Sequence of Pull and Stump
1-25	Inspection of Self-Plugging Rivets			Type Fastener
	(Friction Lock)	1-57	1-48	Hand and Air Powered Tools1-100
1-26	Removal of Self-Plugging Rivets (Fric-		1-49	Hydraulic Powered Tools1-101
. = -	tion Lock)	1-58	1-50	Hydraulic Powerigs1-103
	,			,

1-51	Driving Cycle1-104	2-3	Removing Broken Screw	2-45
1-52	Inspecting Installed Blind Bolt Fastener 1-108	2-4	Parts of a Screw	
1-53	Huckrimp Fastener Installation Se-	3-1	Bolted Joint with Oversize Hole	
	quence1-123	3-2	Drawing MS33648(ASG)	3-33
1-54	Removal of Huckrimp Fasteners1-124	3-3	Torq-Set Wrenching Recess	
1-55	Cherry and Olympic-Lok Rivet Identifi-	3-4	Screw Head and Driver Size	
	cation andInstallation 1-136	3-5	Driver Selection	
1-56	Cherrylock, CherryMAX and Olympic-	4-1	Installing New Stud	
	Lok Rivet Inspection1-140	4-2	Removing Bent or Damaged Stud	
1-57	Micro Stop Countersink Units1-145	4-3	Drilling Pilot Hole in Broken Stud	
1-58	Cherrylock and Olympic-Lok Rivet	4-4	Removing Broken Stud	
	Conversion Chart1-147	4-5	Retapping for New Stud	
1-59	Gap Acceptance Criteria1-158	4-6	Lockring Threaded Stud	
1-60	HI-LOK/HI-TIGUE Tools1-162	4-7	Installation of Lockring Stud	
1-61	Installation Steps (HI - LOK Pin in	4-8	Removal of Lockring Stud	
	Non-interference Fit Hole)1-164	4-9	Military Material Identification Mark-	
1-62	Double Flush AspFF-EU06-161-167		ings on Studs	4-12
1-63	Hex Recess (Pin)1-167	4-10	Torque Values For Studs	
1-64	Driving Recesses (Sleeve)1-167	5-1	Non-Metallic and All-Metal Self-Lock-	10
1-65	Part Number Logic (Full Shank Pins) 1-168	<i>J</i> 1	ing Types	5-11
1-66	Part Number Logic (Reduced Shank	5-2	Typical Head Types	
1 00	Pins)	5-3	Interrupted Thread Type	
1-67	Part Number Logic (Sleeves) 1-169	5-4	Free-Spinning On-Off Type	5 13 5-13
1-68	Part Number Logic (Lock Collar)1-169	5-5	Free-Spinning On Residual Torque Off	5 15
1-69	Double Flush AN509 Tension Heads;	3 3	Type	5-14
1 0)	Full Shank; P/N Family AspFF1-170	5-6	Stressed Nuts	
1-70	Double Flush NAS1097/AN509 Heads;	5-7	MS21045 Head Styles	
1 /0	Full Shank; P/N Family Asp100F 1-170	5-8	MS21046 Head Styles	
1-71	Flush AN509 Tension Head and Pro-	5-9	Castellated Self-locking and	5-10
1 /1	truding Head; Full Shank; P/N Fami-	3)	Counterbored Nuts	5-17
	ly AspFP1-171	5-10	MS20500 Head Styles	
1-72	Flush NAS1097 Shear Head and Pro-	5-10	Internal and External Wrenching Types	
1-72	truding Head; Full Shank; P/N Fami-	5-11	Using Sheet Spring Nut	
	ly Asp100P1-171	5-13	Typical Installation of the Klincher	5 20
1-73	Flush AN509 Tension Heads; Reduced	3 13	Locknut	5-20
1 73	Shank; P/N Family2Asp509F1-172	5-14	Special Wrenches Required for Some	5 20
1-74	Flush NAS1097 Shear Head and 509	3 14	Kaynar Locknuts	5-23
1-/-	Tension Head; ReducedShank; P/N	5-15	Using Torque Wrench Adapters	
	Family 2AspFF1-172	5-16	Typical Torque Wrench with Typical	5-24
1-75	Flush AN509 Tension Head and Pro-	3 10	Extension Attached at an Angle	5-28
1 73	truding Head; ReducedShank; P/N	5-17	Drawing MS17825(ASG)	
	Family 2Asp509P1-173	5-17	Drawing MS17826(ASG)	
1-76	Flush NAS1097 Shear Head and Pro-	5-19	Drawing MS17828(SHIPS)	
1-70	truding Head; ReducedShank; P/N	5-20	Drawing MS17829(SHIPS)	
	family 2AspFP1-173	5-21	Drawing MS17830	
1-77	Protruding Head and 509 Flush Tension	5-22	Drawing MS20341(ASG)	
1-//	Head; Reduced Shank; P/N family	5-23	Drawing MS20364(ASG)	5-30 5-37
	2AspPF1-174	5-24	Drawing MS20365(ASG)	
1-78	Protruding Head and Protruding Head;	5-25	Drawing MS20500(ASG)	
1-70	Reduced Shank; P/Nfamily 2AspPP 1-174	5-26	Drawing MS20500(ASG)	
1-79	Installation Sequence	5-20 5-27	Drawing MS20501(ASG)	
1-80	Installation of the Sleeve Component 1-176	5-28	Drawing MS21040(ASG)	5 45
1-80	Model 244 - Pneudraulic Tool 1-177	5-28 5-29	Drawing MS21040(ASG)	5 47
1-81	Model 244 OS Pneudraulic Tool	5-29 5-30	Drawing MS21042(ASG)	
1-82	Model 206-375 Hydraulic Tool1-178	5-30 5-31	Drawing MS21043(ASG)	
1-84	Fastener Prior to Shaving1-179	5-31 5-32	Drawing MS21044	
1-85	Asp® Installed and Shaved Flush1-180	5-32 5-33	Drawing MS21045	
1-86	Fastener Removal1-181	5-34	Drawing MS21040	
1-80 2-1	Using Sheet Metal Screws	5-3 4 5-35	Drawing MS21047(ASG)	
2-1 2-2	Drilling Pilot Hole in Broken Screw	5-36	Drawing MS21046(ASG)	
	Diming I not flote in Dioxen Selew 2-43	5-50	DIGMING 1010/2107/(ADO)	5-05

5-37	Drawing MS21050(ASG)	5-65	5-97	Drawing NAS-680 5-159
5-38	Drawing MS21052(ASG)		5-98	Drawing NAS-681 5-160
5-39	Drawing MS21053(ASG)		5-99	Drawing NAS-682 5-161
5-40	Drawing MS21054(ASG)		5-100	Drawing NAS-683 5-162
5-41	Drawing MS21055(ASG)	5-73	5-101	Drawing NAS-449 5-163
5-42	Drawing MS21056(ASG)		5-102	Drawing NAS-577 5-164
5-43	Drawing MS21057(ASG)		5-103	Drawing NAS-684 5-165
5-44	Drawing MS21058(ASG)		5-104	Drawing NAS-685
5-45	Drawing MS21059(ASG)		5-105	Drawing NAS-686
5-46	Drawing MS21060(ASG)		5-106	Drawing NAS-687
5-47	Drawing MS21060(ASG)		5-107	Drawing NAS-688 thru 692
5-48	Drawing MS21003(ASG)		5-107	Drawing NAS-693 thru 695
5-49			5-108	
	Drawing MS21062(ASG)			Drawing NAS-696
5-50	Drawing MS21064(ASG)		5-110	Drawing NAS-697
5-51	Drawing MS21065(ASG)		5-111	Drawing NAS-698
5-52	Drawing MS21066(ASG)		5-112	Drawing NAS-1021
5-53	Drawing MS21067(ASG)		5-113	Drawing NAS-1022 5-175
5-54	Drawing MS21068(ASG)		5-114	Drawing NAS-1023 5-176
5-55	Drawing MS21069(ASG)		5-115	Drawing NAS-1024 5-177
5-56	Drawing MS21070(ASG)		5-116	Drawing NAS-1025 5-178
5-57	Drawing MS21072(ASG)	5-101	5-117	Drawing NAS-1026 5-179
5-58	Drawing MS21073(ASG)	5-103	5-118	Drawing NAS-1027 5-180
5-59	Drawing MS21074(ASG)	5-105	5-119	Drawing NAS-1028 5-181
5-60	Drawing MS21075(ASG)	5-107	5-120	Drawing NAS-1029 5-182
5-61	Drawing MS21076(ASG)	5-109	5-121	Drawing NAS-1030 5-183
5-62	Drawing MS21077(ASG)		5-122	Drawing NAS-1031 5-184
5-63	Drawing MS21078(ASG)		5-123	Drawing NAS-1032 5-185
5-64	Drawing MS21079(ASG)		5-124	Drawing NAS-1067 5-186
5-65	Drawing MS21081(ASG)		5-125	Drawing NAS-1068 5-187
5-66	Drawing MS21082(ASG)		5-126	Drawing NAS-1291 5-188
5-67	Drawing MS21083(ASG)		5-127	Drawing NAS-1473 5-190
5-68	Drawing MS21088(ASG)		5-128	Drawing NAS-1474
5-69	Drawing MS21089(ASG)		6-1	Preload-Indicating Washer6-2
5-70	Drawing MS24017		7-1	Removing and Replacing Spring Pin7-2
5-71	Drawing MS35425		7-2	Quick-Release Pins
5-72	Drawing MS35691		8-1	Bushing Extraction Detail
5-73	Drawing MS35692		8-2	Bushing Extraction - Arbor Press Meth-
5-74	Drawing AN310		0-2	od8-2
5-7 5	Drawing AN315		8-3	Reaming Bushing With Spiral Reamer8-2
5-76	Drawing AN340		8-4	Inserting Bushing - Arbor Press Method 8-3
5-70 5-77			8- 4 8-5	Inserting Bushing - Vise
	Drawing AN345			
5-78	Drawing AN362		8-6	Inserting Bushing - Mallet Method
5-79	Drawing AN363		9-1	Lockring Threaded Inserts9-1
5-80	Drawing AN364		9-2	Lockring Installed
5-81	Drawing AN366		9-3	Installation of Lockring Threaded In-
5-82	Drawing AN367		0.4	serts9-2
5-83	Drawing AN121501 thru AN121525		9-4	Removal of Lockring Threaded Inserts 9-3
5-84	Drawing 121526 thru 121550		9-5	Clinch Nuts9-4
5-85	Drawing AN121551 thru AN121575		9-6	Installing Clinch Nut9-4
5-86	Drawing AN121576 thru AN121600		9-7	Helical Coil Insert Repair Process 9-5
5-87	Drawing AN150401 thru AN150425	5-148	9-8	Types of Helical Coil Screw Thread In-
5-88	Drawing AN150426 thru AN150450	5-149		serts9-6
5-89	Drawing NAS-443	5-150	9-9	Type III, Class 1, Style A Threaded
5-90	Drawing NAS-444	5-151		Mandrel Prewinder Type9-8
5-91	Drawing NAS-445		9-10	Type III, Class 1, Style B Threaded
5-92	Drawing NAS-446			Non-Captive MandrelPrewinder
5-93	Drawing NAS-447			Type9-8
5-94	Drawing NAS-509		9-11	Type III, Class 2, Style B Threaded
5-95	Drawing NAS-671	5-157		Mandrel Type9-12
5-96	Drawing NAS-679			V
	5			

9-12	Type III, Class 2, Style A Mandrel	10-28	Barrel Removal and Assembly	. 10-23
	Type9-12	2 10-29	MIL-LOC Panel Fastener	. 10-24
9-13	Helical Coil Tang Break-Off Tools and	10-30	ZIP-LOC Panel Fastener	. 10-25
	Extracting Tod9-12	2 10-31	Miniature ZIP-LOC Panel Fastener	. 10-26
9-14	Tang Break-Off9-19		Calfax Live-Lock Panel Fastener	
9-15	Positioning Extractor Blade9-19	10-33	Calfax Mark IV Receptacle	
9-16	Extracting Insert9-19		Calfax Mark IV Stud	
9-17	Helical Coil Screw Thread or Screw-	10-35	Calfax Mark IV Hole Preparation	10-30
, .,	Locking Twinset Assembly		Flexible Cable Cross Section	
9-18	Cross-Sectional Views of Helical Coil	11-2	Nonflexible Cable Cross Section	
7 10	Insert and Twinsert Assemblies9-21		Repair of Severed Cable	
9-19	Top View of Outer and Inner Inserts	11-4	Control Cable Wear Limit	
J-17	<u>*</u>		Cable Tensiometer	
0.20	(ends must be adjacent as shown)9-21			
9-20	Spark Plug Tools and Gages		Turnbuckle Thread Tolerance	
9-21	Using Offsetter 9-25		Pulley Wear Patterns	
9-22	Mounting Staking Sleeve		Trim Tab Cable Stop	
9-23	Spot-Facer	5 11-9	Cutting Small Diameter Cable	
9-24	Taper Pipe Thread Tools and Gages9-32		Cutting Cable With Cold Chisel	
9-25	Picture from CAGE 015569-33		Cable Cutting Machine	
9-26	Assembled Stud-Locking Insert and	11-12	General Cable Measurements	
	Stud9-40) 11-13	Inserting Cable in Swaging Terminal	. 11-29
10-1	Style I Quick-Release Fastener 10-2	2 11-14	Standard Hand Swaging Machine Set	
10-2	Removal and Replacement of Style I		With Dies	. 11-29
	Quick-Release Fastener10-2	2 11-15	Portable Aircraft Cable Swaging Ma-	
10-3	Removal of Flush-Type, Heavy-Duty,		chine	. 11-30
	Style I Quick-ReleaseFastener	2 11-16	Locating the Terminal in the Swaging	
10-4	Replacement of Flush-Type, Heavy-Du-	11 10	Jaws	11-30
10 1	ty, Style I Quick-Release Fastener 10-3	3 11-17	Sweat Soldering Cable Terminal	
10-5	Style II Quick-Release Fastener		Wrap-Soldered Splice	
10-5	Style II Quick-Release Fastener, Un-	11-18	Turnbuckle and Splices	
10-0				
10.7	locked Position		Annealing Cable End	
10-7	Style II Quick-Release Fastener,	11-21	Cable Clamp for Woven Splice	
10.0	Locked Position		Woven Cable Splice	
10-9	Style III Quick-Release Fastener 10-5		Typical Tie Rod Assembly	
10-10	Style III Quick-Release Fastener Recep-	12-2	Typical Control Rod Assembly	12-3
	tacles 10-5	5 15-1	MS Numbers for Acres Fastener	
10-11	Style III Quick-Release Fastener Studs		Sleeves	
	and Cross Pins10-6	5 15-2	Acres Fastener Sleeves Styles	15-2
10-12	Hand Pliers for Removing Cross Pins 10-6	5 15-3	Adjusting Sleeve to Length	15-4
10-13	Inserting Cross Pin Using Hand Tool 10-6	5 15-4	Grinding Sleeve to Proper Length	15-6
10-14	Machine Dimpling10-7		Installing Fasteners and Sleeves	
10-15	Hand Dimpling10-7		Bonding Sleeve	
10-16	Typical Installation for Dzus PF 3 1/2-	16-1	Securing Screws, Nuts, Bolts, and Snap	
	38 Stud, PC 3 1/2 Cup, and PS 3 1/2		Rings	16-2
	Spring	16-2	Securing Oil Caps, Drain Cocks, and	10 2
10-17	Installation and Removal Instructions	102	Valves	16-2
10 17	for Dzus PF 3 1/2-38 Stud, PC 3 1/2	16-3	Use of Wire Twister	
	Cup, and PS 3 1/2 Spring 10-9		Self Looping Safety Cable used on Oil	10-4
10 10			Cons and Drain Coales	16.5
10-18	Receptacles		Caps and Drain Cocks	10-3
10-19	Camloc 4F Series Stressed Panel Fast-	16-5	External Snap Ring Installation with	16.5
	ener		Safety Cable	
10-20	Camloc 4002 Series Fastener 10-12		Safetywiring Procedures	
10-21	Paneloc Quarter-Turn Fasteners 10-13		Hollow Headed Bolts	
10-22	Features of Threaded Panel Fastener 10-16		Examples of Installed Safety Cable	. 16-12
10-23	Hole Preparation and Receptacle At-	16-9	Securing Turnbuckles	. 16-13
	tachment 10-17	7 16-10	Routing of Safety Cable on Turnbuck-	
10-24	Stud and Panel Installation10-18		les	. 16-13
10-25	Panel Fastener Retainer Ring Problems 10-19		Example of Final Safety Cable Turn-	
10-26	Milson Panel Fastener Selection 10-21		buckle Installation	. 16-14
10-27	Milson Panel Fastener Hole Preparation 10-23		Securing Turnbuckle with Safety Clips	

16-13	Assembling and Securing Clip Locking		17-6	Ball Lock Type	
	Turnbuckles		17-7	End Fitting Style	17-4
16-14	Flat Washer Safety Cable Installation		18-1	V-Band Coupling Safety Wiring Tech-	
16-15	Self-Looping Safety Cable	16-17		niques	
16-16	Self-Looping Safety Cable Anchored to		19-1	Drawing MS21919 (ASG)	
	a Pin Assembly	16-18	19-2	Drawing MS21104	
16-17	Self-Looping Safety Cable in High		19-3	Drawing MS21105	19-6
	Bend Exit Application	16-19	19-4	Drawing MS21122	19-8
16-18	Safety Cable Flex Limits	16-19	19-5	Drawing AN742	
16-19	Low Profile Application for 0.032 and		20-1	Pulley Inspection	20-2
	0.040 Inch Safety Cable	16-20	A-1	Permaswage Cross	A-2
16-20	Safety Cable Identification Stamp		A-2	Permaswage Tee	A-3
16-21	Safety Cable Jacketing for Protection		A-3	Permaswage Elbow	A-4
16-22	Safety Cable on Tube Couplings	16-21	A-4	Nut Permaswage Flared and Flareless	
16-23	Pre-Set Tension Safety Cable Tool		A-5	Sleeve Permaswage Flareless	
16-24	Safety Cable Tools		A-6	Permaswage Separable Flareless Sleeve	
16-25	Position of Safety Cable Tool			Assembly	A-7
16-26	Adjustable Tension Safety Cable Tool		A-7	Union Permaswage Flareless	
16-27	Pneumatic Safety Cable Application		A-8	Sleeve Permaswage Flared - Female	
10 2,	Tool	16-23	A-9	Permaswage Separable Flared Sleeve	
16-28	Calibration Test Fixture and Torque	10 25	11 /	Assembly	A-10
10 20	Wrench	16-24	A-10	Union Permaswage Flared - Male	
16-29	Electronic Safety Cable Pull Tester		A-11	Union Permaswage to Flareless Bulk-	/ 1 1 1
16-30	Removal of Safety Cable Tool Nose	10 24	71 11	head	Δ-12
10-30	Assembly	16.25	A-12	Adapter 90° Permaswage Flareless	
16-31	Adjustment of Safety Cable Indenter	10-23	A-12 A-13	D10023 Tee Permaswage Reducer	
10-31	(Same for Hand orPneumatic Tool		A-13 A-14	Adapter 90° Permaswage Flared	
		16 25	A-14 A-15	D10035 Elbow 90° Permaswage Reduc-	A-13
16-32	Models)		A-13	er	۸ 16
16-32	Securing with Cotter Pins		A-16		
				Permaswage Union	
16-34	Castellated Nut Installation		A-17	Permaswage Reducer Union	
16-35	Safetying Hinge Pins		A-18	Union Permaswage to Flared Bulkhead	A-19
17-1	Screw Type Couplings		A-19	Female Adapter Permaswage Lipseal	. 20
17-2	Quick Thread-Indicating Type		4 20	Assembly	A-20
17-3	Inst-o-Matic Push-Pull Type		A-20	Reducer, Female Adapter Permaswage	. 01
17-4	Push-Pull Type			Lipseal Assembly	
17-5	Straight-Flow Ball Valve Type	17-3	A-21	Male Adapter Permaswage Lipseal	A-22
		T 0F	TADLE	6	
	LIS	I OF	TABLE	5	
Number	Title	Page	Number	Title	Page
1-1	Rivet Identification Markings	1-15	1-10	Minimum Sheet Gage for 100-Degree	
1-2	Drill Sizes for Common, Solid Shank			Machine Countersink	1-23
	Rivets	1-19	1-11	Minimum Gage for Subcountersinking	1-24
1-3	Drill Sizes for Pin Rivets	1-19	1-12	NAS508 Universal Head, Monel,	
1-4	Drill Sizes and Hole Size Limits for			Common, Solid Shank Rivet	1-24
	Self-Plugging Rivets(Friction Lock)	. 1-19	1-13	AN425 78-Degree Countersunk Head,	
1-5	Drill Sizes for Self-Plugging Rivets		1 10	Common, Solid Shank Rivet	1-25
1 3	(Mechanical Lock)	1-19	1-14	MS20426 100-Degree Countersunk	1 23
1-6	Drill Sizes for Explosive Rivets			Head, Common, Solid ShankRivet	1-25
1-7	Drill Sizes for Internally Threaded	1 20	1-15	MS20427 100-Degree Countersunk	1 23
- /	Rivets (Two Piece)	1-20	1 13	Head, Common, Shank Rivet	1-26
1-8	Drill Sizes for Rivnut Rivets		1-16	AN435 Roundhead, Common, Solid	1-20
1-0	Sizes of Twist Drills from 1/2 Inch to	1 20	1.10	Shank Rivet	1 27
1-7	Number 80 with Decimal		1-17	MS20470 Universal Head, Common,	1-4/
	Equivalents	1_20	1-1/	Solid Shank Rivet	1 28
	Equivalents	1-20		JUHU SHAHK KIVUL	1-40

1-18	AN123151 through AN123300, Uni-	1-28	NAS2406 through NAS2412 Pin, Riv-	
	versal Head, High Temperature,		et, Swage Locking, Titanium Al-	
	Common, Solid Shank Rivets;		loy, Protruding Head, Shear, Pull	
	AN123301 through AN123450,		Type; NAS2506 through NAS2512	
	Universal Head, HighTemperature,		Pin, Rivet, Swage Locking, Titani-	
	Common, Solid Shank Rivets;		um Alloy, 100 Degree Shear Head,	
	AN125401 through AN125550,		Pull Type; NAS2606through	
	Universal Head, Common, Solid		NAS2612 Pin, Rivet, Swage Lock-	
	Shank Rivets; and AN125551		ing, Titanium Alloy, Protruding	
	through AN125700, Univer-		Head, Shear, Stump Type;	
	salHead, Common, Solid Shank		NAS2706 through NAS2712 Pin,	
	Rivets		Rivet, Swage Locking, Titanium	
1-19	AN123451 through AN123600, Coun-		Alloy, 100 Degree Shear Head,	
	tersunk Head, HighTemperature,		Stump Type	1-45
	Common, Solid Shank Rivets;	1-29	MS21000 Flathead, Oversize, Pin Riv-	
	AN123601 through AN123750		et and MS21001 100-Degree Coun-	
	Countersunk Head, High Tempera-		tersunk Head, Oversize, Pin Rivet	1-46
	ture, Common, Solid Shank Rivets;	1-30	NAS179 Pin Rivet Collar	1-47
	and, AN124951 throughAN125100,	1-31	NAS528 Pin Rivet Collar	1-48
	100-Degree Countersunk Head,	1-32	NAS1080 Pin Rivet Collar	1-49
	Common, Solid Shank Rivets 1-30	1-33	NAS454-162C Blind, Countersunk	
1-20	Shear Strength of Aluminum Alloy		Head, Self-Plugging Rivet(Friction	
	Rivets (Pounds per Rivet)1-32		Lock) and NAS455-163C Blind,	
1-21	Calculating Correct Rivet Length		Brazier Head, Self-Plugging Rivet	
1-22	Correctly and Incorrectly Driven Riv-		(Friction Lock)	1-50
1 22	ets1-37	1-34	460 Blind, 100-Degree Countersunk	1 50
1-23	NAS177 100-Degree Countersunk	1-34	Head, Self-Plugging Rivet (Friction	
1-23	<u> </u>			
	Head, Pin Rivet ANS		Lock) and 461 Blind, Brazier	
1 24	NAS178Flathead Pin Rivet		Head, Self-Plugging Rivet (Friction	1 52
1-24	NAS525 100-Degree Countersunk	1.25	Lock)	1-33
	Head, Close-Tolerance Head and	1-35	MS20600 Blind, Mechanically Ex-	
	Shank, Pin Rivet and NAS529		panding, Protruding Head, Self-	
	Flathead, Close-Tolerance Shank,		Plugging Rivet (Friction Lock) and	
	Pin Rivet		MS20601 100-Degree Countersunk	
1-25	NAS1054 Protruding Head, Pin Rivet		Head, Self-Plugging Rivet (Friction	
	and NAS1055 100-Degree, Flush,		Lock)	1-55
	Close-Tolerance Head, Pin Rivet1-41	1-36	Self-Plugging Rivet (Friction Lock)	
1-26	NAS1806 through NAS1816, Titani-		Part Numbers	1-57
	um Alloy, Flathead, Interference Fit,	1-37	Single Shear Strength for Self-Plug-	
	Pin Rivets and NAS1906 through		ging Rivets (FrictionLock)	1-58
	NAS1916, Titanium Alloy 100-De-	1-38	Testing Self-Plugging Rivets (Friction	
	gree Head, Interference Fit, Pin		Lock)	1-58
	Rivets1-42	1-39	Single Shear Strength for Self-Plug-	
1-27	NAS2005 through NAS2012 Pin, Riv-		ging Rivets (Mechanical Lock)	1-59
	et, Swage Locking, Titanium Al-	1-40	Self-Plugging Mechanical Locked	
	loy, Protruding Head, Tension, Pull		Spindle Blind Rivet - Rivet B	1-60
	Type; NAS2105 through NAS2112	1-41	Self-Plugging Blind Rivet Mechanical	
	Pin, Rivet, Swage Locking, Titani-		Lock Installation Tool and Nose	
	um Alloy, 100 Degree Head, Ten-		Assembly Selection	1_61
	sion, Pull Type; NAS2206through	1-42	MS20602 Blind, Brazier Head, Explo-	1-01
	NAS2210 Pin, Rivet, Swage Lock-	1-42	sive Rivet and MS20603100-De-	
	ing, Titanium Alloy, Protruding		gree Countersunk Head, Explosive	1 65
	Head, Tension, Stump Type;	1 42	Rivet	1-03
	NAS2306 through NAS2310 Pin,	1-43	Single Shear Strength for Explosive	1.65
	Rivet, Swage Locking, Titanium Al-	1 44	Rivets	1-03
	loy, 100 Degree Head, Tension	1-44	Sizes and Part Numbers for Internally	1.60
	Stump Type1-43		Threaded Rivets (Two Piece)	1-69

1-45	NAS452 100-Degree Countersunk	1-56	NAS1516 Through NAS1522 and	
1 16	Head, Rivnut Rivet		NAS1535 Through NAS1542 Pin,	
1-46	Nut, Blind Rivet - Countersunk Head,		Rivet, Swage Locking, Aluminum	
	Internal Thread, Non-Locking (Free		Alloy, 100 Degree Head, Tension	
	Running) or Self-Locking (Prevail-		Pull Type, Close Tolerance;	
1 47	ing Torque)		NAS1525 Through NAS1532 Pin,	
1-47	NAS453 Flathead, Rivnut Rivet		Rivet, Swage Locking, Aluminum	
1-48	Nut, Blind Rivet - Flathead, Internal		Alloy, Protruding Head, Tension,	
	Thread, Non-Locking (Free Run-		Pull Type, Close Tolerance;	
	ning) and Self-Locking (Prevailing		NAS1546 Through NAS1552 Pin,	
1 10	Torque)		Rivet, Swage Locking, Aluminum	
1-49	Rivnut Data		Alloy, 100 Degree Head, Tension,	
1-50	MS20450 Tubular Rivet1-87		StumpType, Close Tolerance;	
1-51	Jo-Bolt Hole Sizes and Countersink		NAS1556 Through NAS1562 Pin,	
	Diameters 1-91		Rivet, Swage Locking, Aluminum	
1-52	Substitution Chart for Hole-Filling,		Alloy, Protruding Head, Tension,	
	Aluminum and Aluminum-Alloy-		Stump Type, Close Tolerance	
	Type Rivets Maximum Recom-	1-57	Gages, Pins, and Collar Inspection	1-113
	mended Temperature 250°F1-105	1-58	Pull Type Installation Tools and Nose	
1-53	Substitution Chart for Hole-Filling		Assembly Section	1-114
	Stainless Steel andMonel-Type	1-59	MS90353 Fastener, Blind High	
	Rivets1-106		Strength, Pull Type, Positive	
1-54	NAS1414 through NAS1422 Pin, Riv-		Mechanical Lock, 100 Degree	
	et, Swage Locking, Alloy Steel,		Head Alloy Steel; MS90354 Fast-	
	100 Degree Shear Head, Stump		ener, Blind, HighStrength, Pull	
	Type, Close Tolerance; NAS1424		Type, Positive Mechanical Lock,	
	ThroughNAS1432 Pin, Rivet,		Protruding Head Alloy Steel;	
	Swage Locking, Alloy Steel, Pro-		MS21140 Fastener, Blind, High	
	truding Head, Shear, Stump Type,		Strength, Pull Type, Positive	
	Close Tolerance; NAS1436		Mechanical Lock,100 Degree Head	
	Through NAS1442 Pin, Rivet,		Corrosion Resisting Steel and	
	Swage Locking, Alloy Steel, 100		MS21141 Fastener, Blind, High	
	Degree Shear Head, Pull Type,		Strength, Pull Type, Positive	
	Close Tolerance; NAS1446		Mechanical Lock, Protruding Head,	
	ThroughNAS1452 Pin, Rivet,		CorrosionResisting Steel	1-116
	Swage Locking, Alloy Steel, Pro-	1-60	Blind Bolt Installation Tool and Nose	
	truding Head, Shear, Pull Type,		Assembly Selection	1-118
	Close Tolerance1-107	1-61	Blind Bolt Fastener Removal	
1-55	NAS1456 Through NAS1462 and	1-62	Substitution Chart for Nonhole Filling	
	NAS1475 Through NAS1482 Pin,		Alloy Steel Blind Fasteners	1-121
	Rivet, Swage Locking, Alloy Steel,	1-63	Substitution Chart for Nonhole Filling	
	100 Degree Head, Tension, Pull	1 05	A-286 StainlessSteel Blind Fasten-	
	Type, Close Tolerance; NAS1465		ers	1_122
	Through NAS1472 Pin, Rivet,	1-64	Huckrimp Fastener Installation Tool	1 122
	Swage Locking, Alloy	1 04	and Nose AssemblySection	1_123
	Steel, Protruding Head, Tension,	1-65	Huckrimp Fastener Inspection	
	Pull Type, Close Tolerance;	1-66		1-123
		1-00	Huckrimp Fastening System (108 K.S.I. Shear) Krimpin and	
	NAS1486 Through NAS1492 Pin,		· • • • • • • • • • • • • • • • • • • •	
	Rivet, Swage Locking, Alloy Steel,		Krimpnut for Shear/Tension Appli-	
	100 Degree Head, Tension, Stump		cations, 100 Degree Flush Crown	
	Type, Close Tolerance; NAS1486		HEAD orProtruding Head, 1/64	
	Through NAS1492 Pin, Rivet,		Inch Oversize Shank and Huckrimp	
	Swage Locking, AlloySteel, Pro-		Nut. AISI 8740 Alloy Steel	
	truding Head, Tension, Stump		Krimpin and A-286 Stainless Steel	1 105
	Type, Close Tolerance1-109		Krimpnut	1-125

1-67	Huckrimp Fastening System, (108	2-16	AN115401 Through AN115600, Flat	
	K.S.I. Shear), 100 Degree Counter-		Fillister Head, MachineScrews;	
	sunk or Protruding Head and		AN115601 Through AN115800,	
	Huckrimp Nuts for Shear Applica-		Flat Fillister Head, Drilled Shank	
	tions. AISI 8740 Alloy Steel and		Screws; and AN115801 Through	
	6AL-4V Pins with 2024 Aluminum		AN116150, Flat Fillister Drilled	
	Alloy Nuts1-127		Head, Machine Screws	2-29
1-68	Huckrimp Fastening System (108	2-17	AN116901 Through AN116912 and	>
1 00	K.S.I. Shear) Krimpin and	21,	AN116925 Through	
	Krimpnut for Shear/Tension Appli-		AN117040,Oval Fillister Head,	
	cations, 100 Degree Flush Crown		Machine Screws; AN116913	
	Head orProtruding Head. AISI		Through AN116924 and	
	8740 Alloy Steel Krimpin and A-		AN117041 Through AN117080,	
1-69	286 Stainless Steel Krimpnut		Oval Fillister Drilled Head, Ma-	2 20
1-09	Huckrimp Fastening System (108	2.10	chine Screws	2-30
	K.S.I.), Krimpin and Krimpnut for	2-18	NAS608 and NAS609, Socket Head,	2.20
	Shear/Tension Applications, 100	2.10	Machine Screws	2-30
	Degree Flush Crown Head or Pro-	2-19	NAS600 Through NAS606 and	
	truding Head, 1/32 Inch Oversize		NAS610 Through NAS616, Pan	2 22
	Shank and Huckrimp Nut. AISI		Head, Machine Screws	2-32
	8740 AlloySteel Krimpin and A-	2-20	NAS623 Pan Head, Short Thread,	
	286 Stainless Steel Krimpnut 1-131		Machine Screw	2-33
1-70	Krimpnut Torque Installation Tools 1-132	2-21	NAS1402 Through NAS1406, Pan	
1-71	Conventional Rivet Substitution with		Head, Machine Screws	2-34
	Blind Fasteners1-132	2-22	MS35188 Through MS35203, Flat-	
1-72	Recommendations for Hole Prepara-		head, and MS35204	
	tion1-165		ThroughMS35219, Pan Head, Ma-	
1-73	Basic Part Numbers 1-166		chine Screws	2-35
2-1	Screw and Bolt Markings2-2	2-23	AN526 Truss Head, Machine Screws	2-36
2-2	AN502 and AN503, Fillister Head,	2-24	AN504 Roundhead, Self-Tapping,	
	Structural Screws2-13		Machine Screws and	
2-3	AN509 100-Degree, Flathead, Struc-		AN530Roundhead, Self-Tapping,	
	tural Screws2-15		Sheet Metal Screws	2-37
2-4	NAS220 Through NAS227, Brazier	2-25	Hole Sizes for AN504 Roundhead,	
	Head, Structural Screws2-16		Self-Tapping, Machine Screws	2-38
2-5	NAS560 100-Degree Flathead, Non-	2-26	AN531 82-Degree, Flathead, Self-	
	magnetic, High Temperature,		Tapping, Sheet Metal Screw	2-40
	Structural Screw2-17	2-27	NAS548 100-Degree, Flathead, Self-	
2-6	NAS583 Through NAS590, 100-De-		Tapping, Sheet Metal Screw	2-40
2 0	gree, Flathead, StructuralScrews 2-19	2-28	Hole Sizes for AN530 Roundhead and	2 10
2-7	AN505 and AN510, 82-Degree, Flat-	2 20	AN531 82-Degree,Flathead, Self-	
2 /	head, Machine Screws2-19		Tapping, Sheet Metal Screws	2-41
2-8	AN507 100-Degree, Flathead, Ma-	2-29	AN535 Roundhead, Drive Screw	
2-0	chine Screws2-20	2-29	AN545 Roundhead, and AN550 Flat-	2-40
2-9	NAS200 100-Degree, Flathead and	2-30		2-47
2-9		2 21	head, Wood Screws	4-41
	NAS202 Roundhead, MachineS-	2-31	MS35492 Flathead, and MS35493	2 49
2.10	crews	2 22	Roundhead, Wood Screws	2-48
2-10	NAS514 100-Degree, Flathead, Ma-	2-32	AN565 Hexagon and Fluted Socket,	2 40
0.11	chine Screw 2-23	2.22	Headless Setscrew	
2-11	NAS517 100-Degree, Flathead, Ma-	2-33	NAS1081 Self-Locking Setscrew	
	chine Screw2-24	2-34	Drill and Extractor Sizes	2-51
2-12	NAS662 100-Degree, Flathead, Ma-	3-1	AN3 through AN20, Standard Aircraft	
	chine Screw2-25		Machine Bolt, and AN173 through	
2-13	AN508 Roundhead, Machine Screw 2-26		AN186, Close-Tolerance Machine	
2-14	AN515 and AN520, Roundhead, Ma-		Bolts	3-3
	chine Screws2-27	3-2	AN73 through AN81, Drilled Head,	
2-15	AN500 and AN501, Fillister Head,		Standard Aircraft MachineBolts	3-4
	Machine Screws2-28			

3-3	NAS501 Stabilized, Nonmagnetic, Corrosion-Resistant Steel Bolt	3-15	MS9033 through MS9039, Twelve Point Head, Heat-ResistantMachine	
3-4	NAS1003 through NAS1020, Hex Head, Nonmagnetic, Heat-Resistant	3-16	Bolts MS9088 through MS9094, Drilled	3-21
	Machine Bolts 3-6		Twelve Point Head, Cadmium-Plat-	
3-5	AN101001 through AN101900, Hex		ed Steel, Machine Bolts	3-22
	Head Bolts; AN101901 through	3-17	NAS464 Close-Tolerance Shear Bolt	
	AN102800, Drilled Shank, Hex	3-18	NAS563 through NAS572, Full	
	Head Bolts; AN102801 through		Threaded, Fully Identified, Head	
	AN103700, Drilled Hex Head (One		Bolts	3-26
	Hole) Bolts; and AN103701	3-19	AN21 through AN36, Celvis Bolts	
	through AN104600, Drilled Hex	3-20	AN42 through AN49, Eyebolts	
	Head (SixHoles) Bolts3-7	3-23	Typical Installation Torque Values	
3-6	AN104601 through AN105500,	3-24	Drill and Extractor Sizes	3-30 3-37
5 0	CRES, Hex Head Bolts;	4-1	Special Tools for Stud Installation and	5 51
	AN105501through AN106400,	⊤ -1	Removal	1.1
	CRES, Drilled Shank, Hex Head	4-2	NAS183 Coarse Thread Studs	
		4-2	NAS184 Fine Thread Studs	
	Bolts; AN106401 through			4-0
	AN107300, CRES, Drilled Hex	4-4	Stepped Studs, 1.5 Diameter and 2.0	4.7
	Head (One Hole) Bolts; and	1.5	Diameter Engagement	4-/
	AN107301 throughAN108200,	4-5	Drilled Stepped Studs, 1.5 Diameter	4.0
	CRES, Drilled Hex Head (Six	1.6	and 2.0 DiameterEngagement	4-8
2.7	Holes) Bolts	4-6	Necked Stepped Studs, 1.5 Diameter	4.0
3-7	NAS333 through NAS340, 100-De-		and 2.0 Diameter Engagement	4-9
	gree Countersunk Head, Close-Tol-	4-7	Drilled Necked Stepped Studs, 1.5	
	erance, High Strength Bolts3-10		Diameter and 2.0 Diameter En-	
3-8	NAS653 through NAS658, Hex Head,		gagement	4-9
	Close-Tolerance, ShortThread,	4-8	Wrench Pad Necked Stepped Studs,	
	4AL-4MN Titanium Alloy Bolts;		1.5 Diameter and 2.0Diameter En-	
	NAS663 through NAS668, 100-De-		gagement	4-10
	gree Flathead, Close-Tolerance,	4-9	Wrench Pad Drilled Necked Stepped	
	4AL-4MN Titanium Alloy Bolts;		Studs, 1.5 Diameter and 2.0 Diam-	
	and NAS673 throughNAS678, Hex		eter Engagement	4-11
	Head, Close-Tolerance, 4AL-4MN	5-1	Cross Reference on Nuts Replaced by	
	Titanium Alloy Bolts3-11		MS21042	5-2
3-9	NAS1303 through NAS1320, Hex	5-2	Cross Reference on Nuts Replaced by	
	Head, Close-Tolerance, 160,000		MS21043	5-4
	PSI Tensile Bolts3-13	5-3	Cross Reference on Nuts Replaced by	
3-10	NAS1103 through NAS1120, Hex		MS21044	5-4
	Head, Close-Tolerance, 160,000	5-4	Cross Reference on Nuts Replaced by	
	PSI, Short Thread Bolts; NAS1202		MS21044	5-6
	through NAS1207, 100-Degree,	5-5	Cross Reference on Nuts Replaced by	
	Close-Tolerance Head and Shank,		MS21045	5-7
	160,000 PSI, Short Thread Bolts;	5-6	Cross Reference on Nuts Replaced by	5 7
	and NAS1503 through NAS1510,	3 0	MS21046	5_8
	100-Degree, Close-Tolerance Head	5-7	Minimum Prevailing Torque Values	5 0
	and Shank, 160,000 PSI, Short	3-1	for Reused Self-Locking Nuts	5 10
	Thread Bolts	5-8	Torque Values For Free Spinning	3-10
3-11		3-0		5 21
3-11	NAS144 through NAS158, and	<i>5</i> 0	Self-Locking Plain Nut	3-21
	NAS172 through NAS176,	5-9	Recommended Torque Values (Inch-	5.00
2 12	Steel,Internal Wrenching Bolts	<i>7</i> 10	Pounds)	
3-12	MS20004 through MS20024, 160,000	5-10	Torque Values for Sheet Spring Nuts	
2 12	PSI, Internal WrenchingBolts3-19	5-11	Identification Markings on Nuts	
3-13	AN148551 through AN149350, Six	6-1	NAS70 Plain Washer	6-3
	Hole, Drilled Socket HeadBolts3-20	6-2	NAS143 Countersunk and Plain	
3-14	NAS624 through NAS644, Twelve		Washers	
	Point, External Wrenching, 180,000	6-3	NAS620 Washer	
	PSI Bolts 3-20	6-4	945 Washer	6-8

6-5	AN960 Washer	6-9	6-45	Locking Device - Positive Index	6-62
6-6	AN961 Washer		7-1	AN385 Plain Taper Pin	
6-7	AN970 Washer		7-2	AN386 Threaded Taper Pin	
6-8	AN122576 through AN122600, Wash-		7-3	AN392 through AN406, Flathead Pins	
	er	6-15	7-4	AN121601 through AN121621,	
6-9	MS20002 Countersunk and Plain,			AN121651 through,	
	High Strength Washer	6-16		AN121671,AN121701 through	
6-10	AN935 Lockwasher	6-17		AN121727, AN121751 through	
6-11	AN936 Lockwasher			AN121777, AN121801 through	
6-12	MS35333 Lockwasher			AN121829, AN121851 through	
6-13	MS35335 Lockwasher			AN121891	7-9
6-14	MS35334 Lockwasher		7-5	AN150201 through AN150300,	, ,
6-15	MS35336 Lockwasher		, 5	Lockpins	7-13
6-16	MS35337 Lockwasher		7-6	AN150301 through AN150400, Brass	/ 13
6-17	MS35338 Lockwasher		7 0	Lockpins	7-14
6-18	MS35339 Lockwasher		7-7	MS9047 Phosphate Finish Steel	/ 1 1
6-19	MS35340 Lockwasher		, ,	Spring Pin	7-16
6-20	NAS390 Flush Type, Finishing Wash-	0 33	7-8	MS9048 Cadmium-Plated Steel Spring	/ 10
0 20	er	6-37	, 0	Pin	7-19
6-21	NAS460 Tab Type Washer		7-9	MS171401 through MS171900,	/ 1/
6-22	NAS535 Step-Up Washer (Flexible	0 30	, ,	Spring Pins	7-22
0 22	Tubing Adapter)	6-30	7-10	NAS561 Heavy Duty Spring Pin	
6-23	NAS536 Retention Washer (Flexible	0-37	7-10 7-11	Recommended Spring Pin Sizes for	1-23
0 23	Tubing Adapter)	6-40	, 11	Clevis Joint Applications	7-29
6-24	NAS549 Flat, Phenolic Fiber Washer		7-12	NAS607 Machine Pin (Dowel)	
6-25	NAS391 Countersunk Type, Finishing	0-41	8-1	NAS72, 73, 74 Clamp-Up, Steel	1-30
0 23	Washer	6-43	0 1	Bushing	8-3
6-26	950 Ball Socket Washer		8-2	NAS75, 76 Plain, Press Fit Bushing	
6-27	955 Ball Seat Washer		8-3	NAS77 Flanged, Press Fit, Steel and	0-3
6-28	AN975 Taper Pin Washer		0-3	Bronze Bushing	8-6
6-29	AN4085 Double Type Magneto Coup-	0-40	8-4	NAS382 Plain Bearing, Pulley Bush-	0-0
0-27	ling Washer	6-47	0-4	ing	8-8
6-30	AN7503 Wheel Bearing Retaining	0-47	8-5	NAS537 Plain, Press Fit, Undersize	0-0
0-30	Washer	6.47	0-3	Inside Diameter Bushing	8 8
6-31	AN8013 Vibration Insulator Stop	0-47	8-6	NAS538 Flanged, Press Fit, Undersize	6-6
0-31	Washer	6.48	8-0	Inside Diameter Bushing	8.0
6-32	MS172201 through 172235, Key,	0-40	9-1	Installation Hole Sizes For Clinch	6-9
0-32	Bearing Retaining, Washer	6.40	9-1	Nuts	0.3
6-33	MS172271 through 172320, Key	0-49	9-2	Helical Coil Screw Thread Inserts,	9-3
0-33	Washer	6.51	9-2	Standard and Screw-Locking	0.0
6-34	MS25081 Key Way Washer		9-3		
6-35	MS90136 Spring Tension Washer; Se-	0-34	9-3	Helical Coil Insert Tapped Hole and Tooling Data	0.13
0-33	ries N Connectors	6.54	9-4	Oversize Insert Installation	
6-36	MS90139 Shouldered and Recessed	0-34	9- 4 9-5	Oversize Screw Thread and Screw-	9-19
0-30		6.51	9-3		0.20
6 27	Washer; Series N Connectors	0-34	9-6	Locking Inserts and Taps***	
6-37	MS90217 Spring Washer; Part of Co-	6 55	9-0 9-7	Twinsert Installation Twinsert Tool Numbers *	
6-38	axial Connectors	0-33	9-7 9-8		
0-36			9-8 9-9	Twinsert Tapped Hole Dimensions Helical Coil Screw Thread and Screw-	9-23
	Washer; Part of RF Coaxial Con-	6 55	9-9		0.26
6-39	nectors	0-33	9-10	Locking Twinserts	9-20
0-39	MS90221 Half Washer; Part of Series	6 56	9-10	Spark Plug Insert Installation and	0.20
6 40	C Connectors	0-30	0.11	Tool Data	9-29
6-40	MS90235 Holding Washer; Part of RF	6 57	9-11	Taper Pipe Thread Insert Installation	0.21
6 11	Coaxial Connectors	0-37	0.12	and Tool Data	
6-41	MS90242 Holding Washer; Part of	6 57	9-12	Metal Module Boxes	
6.42	Coaxial Connectors	0-3/	9-13	Thread Repair Packs	
6-42	MS91820 Split Washer; Part of Series	6 57	9-14	Oversize Packs	
6.42	C Connectors		9-15	Twinsert Packs	
6-43 6-44	Washer-Rod End Locking		9-16	Taper Pipe Thread Repair Packs	9-38
		11-1117			

9-17	Automotive Spark Plug Packs: 14-1.25mm and 18-1.5mm9-38	12-8	NAS96 Control Rod Assembly
9-18	Aviation Spark Plug Packs: 14-		(Welded Tube, 3/8-inch Outside Diameter, Fixed Clevis and Adjust-
9-10	1.25mm and 18-1.5mm		able Bearing Ends)12-9
0.10		12-9	NAS98 Control Rod Assembly
9-19	Stud-Locking Torque 9-41 Stud-Locking Insert Papeir Peaks 9-42	12-9	•
9-20	Stud-Locking Insert Repair Packs		(Welded Tube, 3/8-inch Outside
9-21	Helical Coil Screw Thread Inserts9-44		Diameter, 1/4 Adjustable Clevis
9-22	Helical Coil 18-1.5mm	10 10	Ends)
9-23	Helical Coil Stud-Locking Inserts9-54	12-10	NAS99 Control Rod Assembly
10-1	Size Designations		(Welded Tube, 3/8-inch Outside
10-2	Example of Style III Quick-Release		Diameter, 1/4 Adjustable Clevis
	Fastener Stud LengthSelection 10-8		and Bearing Ends) 12-10
10-3	Stud Length Selection, Installation,	12-11	NAS100 Control Rod Assembly
	and ReceptacleInstallation for		(Welded Tube, 3/8-inch Outside
	Paneloc Fasteners		Diameter, 1/4 Adjustable Bearing
11-1	Flexible Cable Construction and Phys-		Ends)12-11
	ical Properties11-2	12-12	NAS103 Control Rod Assembly
11-2	Nonflexible Cable Construction and		(Welded Tube, 1/2-inch Outside
	Physical Properties11-4		Diameter, 1/4 Adjustable Clevis
11-3	Turnbuckle Assembly - Fork 11-10		Ends)12-11
11-4	Turnbuckle Assembly - Pin Eye 11-11	12-13	NAS104 Control Rod Assembly
11-5	Turnbuckle Assembly - Cable Eye 11-11		(Welded Tube, 1/2-inch Outside
11-6	Turnbuckle Assembly - Swaging Ter-		Diameter, 5/16 Adjustable Clevis
	minal, Pin Eye11-12		Ends)
11-7	Turnbuckle Assembly - Swaging Ter-	12-14	NAS105 Control Rod Assembly
11 /	minal, Fork	12 11	(Welded Tube, 1/2-inch Outside
11-8	Turnbuckle Assembly - Swaging Ter-		Diameter, 1/4 Adjustable Clevis
11 0	minal11-13		and Bearing Ends)
11-9	Turnbuckle Assembly - Fork	12-15	NAS106 Control Rod Assembly
11-10	Turnbuckle Assembly - Pin Eye	12-13	-
			(Welded Tube, 1/2-inch Outside
11-11	MS20658 Fork End Cable Terminal 11-15		Diameter, 5/16 Adjustable Clevis
11-12	MS21259 Threaded Cable Terminal 11-16	10.16	and Bearing Ends)
11-13	MS20667 Fork End Cable Terminal 11-17	12-16	NAS107 Control Rod Assembly
11-14	MS20668 Eye End Cable Terminal 11-18		(Welded Tube, 1/2-inch Outside
11-15	AN100 Cable Thimble		Diameter, 1/4 Adjustable Bearing
11-16	AN111 Cable Bushing11-20		Ends)
11-17	AH115 Cable Shackle 11-20	12-17	NAS108 Control Rod Assembly
11-18	MS20663 Double Shank Ball End		(Welded Tube, 1/2-inch Outside
	Cable Terminal11-21		Diameter, 5/16 Adjustable Bearing
11-19	MS20664 Single Shank Ball End		Ends)
	Cable Terminal11-22	12-18	NAS111 Control Rod Assembly (Riv-
11-20	Recommended Terminals for Use with		eted Tube, 3/8-inchOutside Diam-
	ImprovisedWoven-Spliced or		eter, 1/4 Adjustable Clevis Ends) 12-15
	Wrap-Soldered Cable11-24	12-19	NAS112 Control Rod Assembly (Riv-
12-1	AN671 through AN686, Tie Rods 12-4		eted Tube 3/8-inch Outside Diam-
12-2	AN701 through AN708, Tie Rods12-5		eter, 1/4 Adjustable Clevis and
12-3	NAS354 Control Rod12-6		Bearing Ends)
12-4	NAS91 Control Rod Assembly (1/4	12-20	NAS113 Control Rod Assembly (Riv-
	Adjustable Clevis Ends) 12-6		eted Tube, 3/8-inchOutside Diam-
12-5	NAS92 Control Rod Assembly (1/4		eter, 1/4 Adjustable Bearing Ends) 12-16
12 0	Adjustable Clevis andBearing	12-21	NAS116 Control Rod Assembly (Riv-
	Ends)	12 21	eted Tube, 1/2-inchOutside Diam-
12-6	NAS93 Control Rod Assembly (1/4		eter, 1/4 Adjustable Clevis Ends) 12-17
12-0		12-22	
12.7	Adjustable Bearing Ends)	1 2-22	NAS117 Control Rod Assembly (Riv-
12-7	NAS95 Control Rod Assembly		eted Tube, 1/2-inchOutside Diam-
	(Welded Tube, 3/8-inch Outside		eter, 1/4 Adjustable Clevis and
	Diameter, Fixed and Adjustable		Bearing Ends)

12-23	NAS118 Control Rod Assembly (Riv-	12-37	AN948 Antifriction, Self-Aligning,	
	eted Tube, 1/2-inchOutside Diam-		Hollow Shank, Rod End Ball Bear-	10.00
	eter, 1/4 Adjustable Bearing Ends) 12-18		ing	12-30
12-24	NAS355 Control Tube Assembly	12-38	AN949 Plain, Self-Aligning, Hollow	
	(With Riveted Threaded Rod Ends) 12-18		Shank, Rod End Bearing	12-31
12-25	NAS356 Control Tube Assembly	12-39	AN951 Antifriction, Self-Aligning, In-	
	(With Riveted Clevis andThreaded		ternal Thread, Rod End Ball Bear-	
	Rod Ends)12-19		ing	12-32
12-26	NAS358 Control Tube Assembly	12-40	NAS5 Threaded Rod End (For Resis-	
	(With Welded Threaded RodEnds) 12-19		tance Welding)	12-33
12-27	NAS359 Control Tube Assembly	12-41	NAS170 Engine Control Rod End,	
	(With Welded Clevis andThreaded		Adjustable Clevis	12-33
	Rod Ends)12-20	12-42	NAS171 Rod End Clevis (For Resis-	
12-28	NAS361 Control Tube Assembly		tance Welding)	12-34
	(With Flash-Welded Clevis and	12-43	NAS357 Control Tube	
	Threaded Rod Ends)12-21	12-44	NAS360 Control Tube	12-35
12-29	NAS362 Control Tube Assembly	12-45	MS20270 Light Duty Universal Joint	12-36
	(With Flash-Welded Clevis and	12-46	MS20271 Heavy Duty Universal Joint	
	Threaded Rod Ends)12-21	16-1	Safetywire, Type and Size for Various	
12-30	AN481 Rod End Clevis		Turnbuckle CableDiameters	16-13
12-31	AN486 Rod End Adjusting Clevis 12-24	16-2	Safetywire, Number of Turns for Va-	
12-32	AN490 Threaded Rod End 12-24		rious Turnbuckle Cable Diameters	16-14
12-33	AN665 Tie Rod End Terminal12-25	16-3	Maximum Thread Extension for Vari-	
12-34	AN943 Plain, Self-Aligning, Internal		ous Cable Sizes andThreads	16-14
	Thread, Rod EndBearing 12-27	16-4	Locking Clip Application	
12-35	AN946 Antifriction, Self-Aligning,	16-5	Safety Cable Minimum Crimp Re-	
	External Thread, Rod End Ball		quirements (Pull-Off Load)	16-18
	Bearing12-28	16-6	Flex Limits, Inch (mm)	
12-36	AN947 Plain, Self-Aligning, External	16-7	Torque Wrench Pull-off Loads for	
	Thread, Rod EndBearing 12-29		Safety Cable	16-24
	,	17-1	Values for Inspection of Series 3700	
		-	and 3750 QuickDisconnects	17-6

FOREWORD

1. INTRODUCTION.

This is one of a series of manuals prepared to assist personnel engaged in the maintenance and repair of aerospace equipment. The purpose of this manual is to provide concise and accurate information to aid in the selection and correct use of aerospace hardware.

2. STRUCTURAL HARDWARE.

Because of the small size of most hardware items, their importance is often overlooked; however, the safe and efficient operation of any aerospace vehicle is greatly dependent upon correct selection and use of aerospace hardware. This manual covers mainly structural hardware, but certain nonstructural items such as electrical wiring, tubing, and flexible hose are also covered.

3. INSTRUCTIONS.

WARNING

Eye and ear protection shall be worn when and where deemed necessary.

CAUTION

Do not modify any structural hardware for use other than its intended purpose. Except on emergency war orders and approval from LG/CC. This restriction includes cutting, modifying or altering fasteners or fastener's threads. These fasteners are designed to safely withstand specific loads. Any alteration to their design will cause these fasteners to fail prematurely at loads lower than their design loads.

The instructions in this manual are general and are applicable except when otherwise specified in the manuals for the specific aerospace vehicle. If there is a conflict between this manual and the manuals for a particular aerospace vehicle, subsequent technical orders, technical notes, or change orders, the latter will govern in all cases.

- 3.1 Use of "Shall," "Will," "Should," and "May" in this technical manual.
- 3.2 Whenever the word "Shall" appears, it will be construed to mean that the requirements are binding.
- 3.3 The word "Will" is used to express declaration of purpose
- 3.4 Whenever the words "Should" or "May" appear, they will be construed as nonmandatory provisions.
- 3.5 The word "Should" is normally used to express a nonmandatory desire or preferred method of accomplishment.
- **3.6** The word "May" is normally used to express an acceptable or suggested means of accomplishment.

SAFETY SUMMARY

1. DEFINITIONS.

The following definitions apply to WARNINGS, CAUTIONS, and NOTES found throughout this publication.

WARNING

Highlights an essential operating or maintenance procedure, practice, condition, statement, etc., which, if not strictly observed, could result in injury to, or death of, personnel or long-term health hazards.

CAUTION

Highlights an essential operating or maintenance procedure, practice, condition, statement, etc., which, if not strictly observed, could result in damage to, or destruction of equipment or loss of mission effectiveness.

NOTE

Highlights an essential operating or maintenance procedure, condition or statement.

2. PRECAUTIONS.

The following are general precautions. These are precautions that personnel must understand and apply during the various phases of operation and maintenance required throughout this manual.

3. WEAR PROTECTIVE CLOTHING.

Wear protective clothing (gloves, goggles, etc) approved for the materials and tools being used.

4. USE SAFETY APPROVED EQUIPMENT.

When cleaners and primers are being applied, approved explosion-proof lights, blowers, and other equipment shall be used. Insure that firefighting equipment is available and in working order.

5. GIVE CLEANERS SPECIAL CARE.

Keep cleaners in approved safety containers and in minimum quantities. Discard soiled cleaning clothes into safety

containers. Observe manufacturer's warning labels; Material Safety Data Sheets (MSDS) instructions.

5.1 Icons are used in this manual to identify dangers associated with hazardous material. The icons used and their definitions are as follows:

The abstract symbol bug shows that a material may contain bacteria or viruses that present a danger to life or health.

The symbol of drops of liquid onto a hand shows that the material will cause burns or irritation of skin and tissue.

The rapidly expanding symbol shows that the material may explode if subjected to high temperatures, sources of ignition or high pressure.

The symbol of a person wearing goggles shows that the material will injure eyes.

The symbol of a flame shows that the material can ignite and burn.

The symbol of a skull and crossbones shows that the material is poisonous or a danger to life

The symbol of three circular wedges shows that radioactive energy is emitted which can injure tissue and organs.

The symbol of a human figure in a cloud shows that the material gives off vapors that are a danger to life or health.

6. CHEMICAL SUBSTANCES.

SOLVENT, TYPE II/III Military Specification, MIL-PRF-680

This solvent is toxic to skin, eyes and respiratory tract. Use in a well ventilated area. Avoid repeated and prolonged contact. Solvent is flammable, keep away from ignition sources. May leave a slight residue, do not use for final wipe down prior to painting.

1

SOLVENT, ISOPROPYL ALCOHOL Military Specification, TT-I-735

Using this product can cause skin, eye and respiratory tract irritation. Wear appropriate Personal Protective Equipment (PPE). Use general ventilation. Can explode when exposed to heat or open flames.

2

7. RESUSCITATION.

Personnel working with or near hazardous chemicals should be trained in modern methods of resuscitation.

8. HAZARDOUS WASTE DISPOSITION.

Unused or waste chemical substances may be hazardous and must be disposed of in accordance with Federal, State, and Local directives. Contact Base Environmental Personnel and applicable Material Safety Data Sheet (MSDS) for specific disposal instructions.

CHAPTER 1 RIVETS

1.1 <u>RIVETS</u>.

The different types of rivets are: common, solid shank: pin: self-plugging (friction lock); self-plugging (mechanical lock); explosive; internally threaded (two piece); rivnut; and tubular. For aircraft work, rivets are generally made from aluminum alloys. However, in special applications, Monel, corrosion-resistant steel, mild steel, titanium, iron, or copper rivets may be used. Common, solid shank rivets are usually used for fastening aircraft structures; the other rivets are used where special consideration must be given to strength, accessibility of installation area, and heat ranges to which the rivet may be exposed. Blind rivets, i.e., self-plugging, explosive, internally threaded, and rivnut rivets, are designed for use where only one side of the work is accessible. There are various types and designs of blind rivets, but all have in common the feature of self-heading. (See Figure 1-1.) The heading operation can be accomplished either mechanically or chemically. Rivets A and B in Figure 1-1 are self-plugging and employ a hollow rivet shank and a pin. Rivet C is hollow shanked and is expanded by a small explosive charge in the shank. Rivets D and E are threaded rivets; rivet D is a rivnut rivet and rivet E is a two-piece rivet.

1.1.1 Rivet Part Numbers. Part numbers for common, solid shank rivets consist of a basic number, letters, and dash numbers that indicate material, diameter, and length. For example, AN470AD5-12 is the number for a universal head rivet. The AN470 is the basic number; the AD5 indicates the material is 2117-T4 alloy with a 5/32-inch diameter, and the -12 indicates the length in sixteenths of an inch. The same rivet made of 2017-T4 material would have the number AN470D5-12. In the case of mild steel rivets only, when the letter P is added to the last dash group in the part number, it indicates that the rivet is cadmium or zinc plated. The National Aircraft Standards (NAS) numbering system for the other rivets is derived from several

sources. For the most part, conventional rivets retain the standard Air Force-Navy (AN) system as previously described. In other cases, the manufacturers part number has been adapted, and in certain instances Military Standard (MS) numbers are used.

1.1.2 Rivet Code. (See Figure 1-2.) The rivet code index is used by engineering departments to obtain the basic code designation of a given fastener for use in the northwest quadrant. This index is for engineering reference only and may be shortened by individual companies who have no need for all the types of fasteners listed. Additional data for other quadrants shall be added as covered in paragraph 3 of Figure 1-2. A general note or decal (stamp or Stik-On) similar to the sample decal layout shall be added to the drawing giving a cross reference to the codes used so that the identity of the fasteners may be determined on each drawing itself. (The shop has no need for reference to the rivet code index.) Decals (stamps or Stik-Ons) for this purpose, if used instead of general notes, may be prepared by each manufacturer to suit his own usage. Such decals may contain additional data not in conflict with the code and such decals may leave off optional items which the individual company chooses not to use. A local note or direct callout may always be used in place of the code at the discretion of the individual company.

- 1.1.3 <u>Rivet Materials</u>. Except under unusual conditions rivets should be used only for the type of application for which they are designed. In aircraft structural repair procedures the same type rivets should be used as in the original manufacture. Choice of materials is dependent upon three factors: usage, corrosion resistance, and strength.
- 1.1.4 <u>Rivet Identification Markings</u>. <u>Table 1-1</u> shows common rivet identification markings.

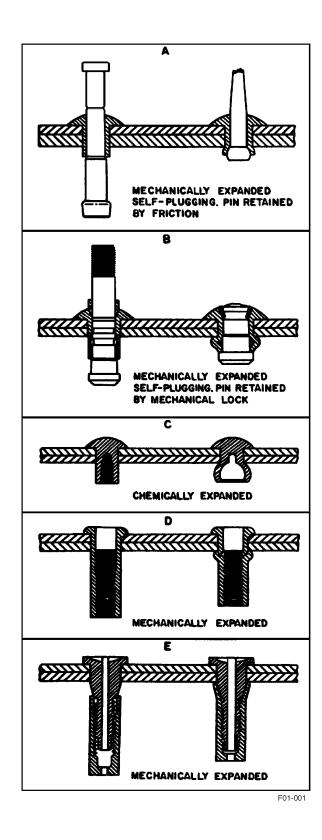


Figure 1-1. Types of Blind Rivets

1.1.5 Rivet General Uses. The 1100-F alloy rivet is made of pure aluminum and is used for riveting nonstructural parts fabricated from the softer aluminum alloys such as 1100-F, 3003, and 5052. The 2117-T4 alloy rivet is the rivet most commonly used in aluminum alloy structures. The main advantage of this rivet is that it may be used without further treatment, either heat or otherwise. The 2017-T4 and 2024-T alloy rivets are used in aluminum alloy structures where strength greater than that provided by the 2117-T4 rivet is required. These rivets are generally in 3/16-inch diameter sizes and larger. The 5056-H32 alloy rivet is used for riveting magnesium alloy structures because of its corrosion resistant qualities when used with magnesium. Other rivets should not be used with magnesium except in emergencies, as they produce an adverse corroding condition. Mild steel rivets are used primarily in riveting steel parts. Galvanized rivets should never be used on steel parts subject to high heat. Corrosion-resistant steel rivets are used primarily in riveting corrosion-resistant steel parts, such as firewalls, exhaust stack bracket attachments, and similar structures. Monel rivets are used for riveting high nickel steel alloys and nickel alloys. Monel rivets may be used interchangeably with stainless steel rivets; however, it is preferable to use stainless steel rivets in stainless steel parts. Titanium rivets are used in high performance aircraft where weight, shank, and hole tolerances are critical. Titanium rivets have high tensile strength with low weight, as well as resistance to heat and corrosion. Copper rivets are used for riveting copper alloys, leather, and nonmetallic materials. These rivets have limited usage in aircraft.

1.1.6 Rivet Corrosion Resistance.

CAUTION

Dangerous corrosion will result if steel, corrosion-resistant steel, Monel, titanium, copper, or iron rivets are used in riveting aluminum structures. Such applications should be confined to extreme emergencies. In such cases, one coat of zinc chromate primer should be applied to the rivet before and after installation. Proper replacement should be made as soon as materials are available.

In general, corrosion resistance is adequate when the rivet material is the same or nearly the same as that of the structure being riveted, provided the proper anticorrosion treatment has been applied. Anodized 2117-T4, 2017-T4, and 2024-T4 rivets may be used to rivet any aluminum alloy structure without producing corrosion.

General Description of Rivet Code

1. Types Of Fasteners

The word rivet has been assumed to include all types of fasteners in which the installation thereof imparts a permanent deformation which would force the destruction of the fastener to remove it.

2. Limitations

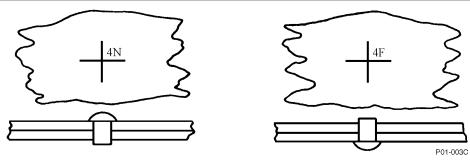
Fasteners which would be included in the above TYPES OF FASTENERS such as staples or wire stitching are not covered by the code.

3. Features Covered and Method of Showing

The symbol includes a single cross whose intersection is at the location of the fastener. When space does not permit, the symbol may be located off to the side and the location of the fastener indicated by an arrow. Fastener identity, size, installation requirements, etc, shall be indicated by a letter-numeric coding within the quadrants of the cross as defined herein. Quadrant orientation of the symbol is determined by the direction of the letter-numeric coding as written within the symbol. When the symbol is viewed in a position such that the letters are upright, the upper left hand quadrant is NW, etc. The following examples illustrate the basic symbol and quadrant identity.

Northwest Quadrant

Fastener Identity. - The identity of the fastener is shown in the NW quadrant by a two letter code as listed herein (see paragraph 4, APPLICATION). The code is made up of two nonsignificant letters and defines all features of the fasteners except diameter and grip. The code letters are assigned in sequence with the exception of the letters G, I, Q and U, and the combinations AD, AN and DD. These letters shall not be used in the fastener symbol.

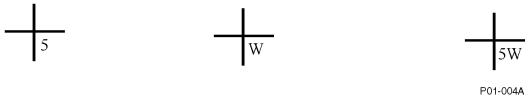


Northeast Quadrant

Fastener Diameter and Location of the Manufactured Head. - The fastener diameter and location of the manufactured head is shown in the NE quadrant by a numeric-letter code as defined below. The fastener diameter is shown by a number which is the dash number that represents the diameter in the full part number, if the diameter is designated by digits of the basic part number, then the significant digits shall be shown. The location of the manufactured (preformed) head of the fastener is defined by the code letter F for Far Side and N for Near Side. When the location of the manufactured head is insignificant or otherwise determined by the drawing itself, the code letter may be omitted.

Figure 1-2. Rivet Code (Sheet 1 of 11)

General Description of Rivet Code


Southeast Quadrant

Length and Spot Weld Alternate. - The length and permission to spot weld as an alternative assembly method is shown in the SE quadrant by a numeric-letter code as defined below.

The length is shown by a number which is the dash number that represents the length in the full part number.

Engineering permission to spot weld in lieu of using the fastener called for is denoted by the letter W.

The preceding data is an optional feature of the code, but the use of any alternate method of designating the preceding data within the symbol is not optional.

Southwest Quadrant

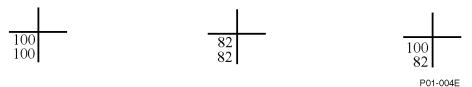
Dimple and Countersink Data. - The sheets to be dimpled or countersunk are shown in the SW quadrant by a numeric-letter code as defined below, not to exceed three digits per line. Unless otherwise noted the nominal angle for the dimple or countersink shall be the same as the angle of the manufactured rivet head.

The letter D is used to show a dimpling (form countersinking) operation and when more than one sheet is dimpled a number follows the D to show how many sheets are dimpled.

The letter C is used to show a countersinking (machine countersinking) operation. No number is used after the, countersinking designation because it is the responsibility of the individual designer to see that the thickness of materials to be countersunk for a flush condition will not violate applicable company requirements.

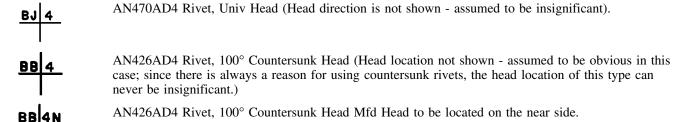
Protruding head rivets to be upset flush may be indicated by placing the numeric-letter code on the first line which indicates the dimple or countersink operation for the upset end. The second line indicates the nominal angle for the upset end.

The flush both sides condition may be indicated by placing the numeric-letter code on separate lines where:


Figure 1-2. Rivet Code (Sheet 2)

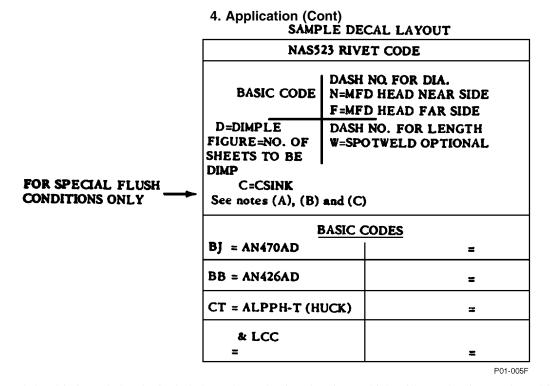
General Description of Rivet Code

- a. The first line indicates the dimple or countersink operation for the manufactured head.
- b. The second line indicates the dimple or countersink operation for the upset end.
- The third line indicates the nominal angle for the upset end when different than the angle of the manufactured head.


d. Optional, when the dimple-countersink operation for the double-flush rivets are controlled by applicable company requirements, the instruction to double flush may be indicated by noting the angle of the manufactured head on the first line and the angle of the upset end on the second line.

The use of the dimple-countersink feature of the symbol is optional. Any alternate method of designating the dimple-countersink feature for the flush one or both sides within the symbol is not optional.

4. Application


Examples and Expansion of Typical Symbols

AN426AD4 Rivets, 100° Countersunk Head first and second sheets adjacent to Mfd Head to be dimpled, remainder of sheets to be countersunk. The location of the Mfd Head is assumed to be obvious from the drawing in this case. (Some companies will not use this Southwest Quadrant as the information regarding dimpling and countersunk is covered in their process specification manual.)

ALPPH-T8-5 Lock Bolt - Pull-Type Protruding Head. Including LC-C8 collar. The location of the Mfd Head is assumed to be insignificant or obvious in this case.

Figure 1-2. Rivet Code (Sheet 3)

This suggested decal is intended to be included on all production drawings which will use the rivet code and is intended to give the shop all the information needed to completely identify the fasteners. As many as are required of the eight blanks in the lower portion are to be filled in by the draftsman to identify the basic code of the fasteners used on the particular drawing. (This suggested decal is composed for use at the top of a drawing. If the decal is to be used at the bottom of the drawing, the blanks could be provided at the top of the decal.) When the double-flush or the flush upset end conditions are to be used, the following notes shall be incorporated in the decal or appear elsewhere on the drawing as applicable.

(a) For Flush Upset End on Protruding Head Rivet

1st Line - Dimple or Countersink

2nd Line - Nominal Upset Angle

(b) Flush Both Sides

1st Line - Mfd Head Dimple or Countersink

2nd Line - Upset Head Dimple or Countersink

3rd Line - Upset Head Angle Different Mfd Head

(c) Flush Both Sides Optional

1st Line - Nominal Angle of Mfd Head

2nd Line - Nominal Angle of Upset Head

Figure 1-2. Rivet Code (Sheet 4)

5. Rivet Code Index

Basic Code	Basic Part No.	Shank Material	Description
		Conventional F	Rivets - Protruding Head
DF	AN435F	CRES	Rivet - Roundhead
AS	AN435-()C	Steel	Rivet - Roundhead
AT	AN435M	Monel	Rivet - Roundhead
HH	AN435C	Copper	Rivet - Roundhead
HX	AN435M-C	Monel	Rivet - Roundhead, Cadmium Plated
ВН	AN470A	1100-F	Rivet - Universal Head
BJ	AN470AD	2117-T3	Rivet - Universal Head
BK	AN470B	5056-F	Rivet - Universal Head
BL	AN470D	2017-T31	Rivet - Universal Head (Driven Ice-Boxed)
BM	AN470D	2017-T3	Rivet - Universal Head (Driven Hard)
CX	AN470DD	2024-T31	Rivet - Universal Head
ВО	NAS508M	Monel	Rivet - Universal Head
		Conventional Ri	vets - Countersunk Head
*BA	AN426A	1100-F	Rivet - 100° Csunk Head
*BB	AN426AD	2117-T3	Rivet - 100° Csunk Head
*BC	AN426B	5056-F	Rivet - 100° Csunk Head
*BD	AN426D	2017-T31	Rivet - 100° Csunk Head (Driven Ice-Boxed)
*BE	AN426D	2017-T3	Rivet - 100° Csunk Head (Driven Hard)
*CY	AN426DD	2024-T31	Rivet - 100° Csunk Head
CL	AN427-()C	Steel	Rivet - 100° Csunk Head
BF	AN427M	Monel	Rivet - 100° Csunk Head
DH	AN427F	CRES	Rivet - 100° Csunk Head
HF	AN427C	Copper	Rivet - 100° Csunk Head
HW	AN427M-C	Monel	Rivet - 100° Csunk Head, Cadmium Plated
		Blind Rive	ts - Protruding Head
AY	CR117	2117-T4	Rivet - Blind, Pull-Thru Protruding Head (Cherry)
FV	CR317	Steel	Rivet - Blind, Pull-Thru Protruding Head (Cherry)
AK	CR517	Monel	Rivet - Blind, Pull-Thru Protruding Head (Cherry)
EM	CR127	5056-F	Rivet - Blind, Pull-Thru Protruding Head (Cherry)
JK	RV5033C	2117-T4	Rivet - Blind, Pull-Thru Protruding Head (Olympic)
FS	RV550C	5056-F	Rivet - Blind, Pull-Thru Protruding Head (Olympic)
HJ	RV590C	Monel	Rivet - Blind, Pull-Thru Protruding Head (Olympic)
JL	CR6634	A286	Rivet - Blind, Mech Expanding, Protruding Head (Cherry)
EN	CR163C	2117-T4	Rivet - Blind, Mech Expanding, Protruding Head (Cherry)
EO	CR157C	5056-F	Rivet - Blind, Mech Expanding, Protruding Head (Cherry)
AL	CR563	Monel	Rivet - Blind, Mech Expanding, Protruding Head (Cherry)
FJ	CR175	2117-T4	Rivet - Blind, Mech Expanding, Protruding Head (Cherry)
AA	MS20600AD	2117-T4	Rivet - Blind, Mech Expanding, Protruding Head
AB	MS20600B	5056-F	Rivet - Blind, Mech Expanding, Protruding Head
JS	MS20600M	Monel	Rivet - Blind, Mech Expanding, Protruding Head

Figure 1-2. Rivet Code (Sheet 5)

5. Rivet Code Index - Continued

Basic Code	Basic Part No.	Shank Material	Description
			Protruding Head (Cont)
KV	MS20600MP	Monel Cad Pltd	Rivet - Blind, Mech Expanding, Protruding Head
HT	7951-S	CRES	Rivet - Blind, Mech Expanding, Protruding Head (Deutsch)
AW	6951S	CRES	Rivet - Blind, Mech Expanding, Protruding Head (Deutsch)
EK	CR1984	2117-T4	Rivet - Blind, Mech Expanding, Protruding Head (Cherry)
EV	RV250C	5056-F	Rivet - Blind, Mech Expanding, Protruding Head (Olympic)
EW	RV200C	2117-T4	Rivet - Blind, Mech Expanding, Protruding Head (Olympic)
FW	RV203C	2117-T4	Rivet - Blind, Mech Expanding, Protruding Head (Olympic)
HL	RV290C	Monel	Rivet - Blind, Mech Expanding, Protruding Head (Olympic)
EX	9SP-B-A	2117-T4	Rivet - Blind, Mech Expanding, Protruding Head (Huck)
CE	P	5056-F	Rivet - Blind, Keystone Brazier Head (Huck)
CZ	OS	5056-F	Rivet - Blind, Structural Head (Huck)
FB	DR-()A	2017-T4	Rivet - Blind, Explosive, Brazier Head (DuPont)
FC	56S-()A	5056-F	Rivet - Blind, Explosive, Brazier Head (DuPont)
JM	N()A	Nickel	Rivet - Blind, Explosive, Brazier Head (DuPont)
AF	MS20602AD	2017-T4	Rivet - Blind, Explosive, Brazier Head
AO	MS20602B	5056-F	Rivet - Blind, Explosive, Brazier Head
FL	P-56S-()A	5056-F	Rivet - Blind, Explosive, Brazier Head (Blast Free) (DuPont)
НС	PN()A	Nickel	Rivet - Blind, Explosive, Brazier Head (Blast Free) (DuPont)
HZ	CP PN()A	Nickel Cad Pltd	Rivet - Blind, Explosive, Brazier Head (Blast Free) (DuPont)
KX	PA286()A	A286	Rivet - Blind, Explosive, Brazier Head (Blast Free) (DuPont)
		Blind Rivets	- Countersunk Head
AX	CR116	2117-T4	Rivet - Blind, Pull-Thru 100° Csunk Head (Cherry)
EL	CR126	5056-F	Rivet - Blind, Pull-Thru 100° Csunk Head (Cherry)
BP	CR516	Monel	Rivet - Blind, Pull-Thru 100° Csunk Head (Cherry)
FT	RV551C	5056-F	Rivet - Blind, Pull-Thru 100° Csunk Head (Olympic)
HK	RV591C	Monel	Rivet - Blind, Pull-Thru 100° Csunk Head (Olympic)
AR	CR178	2117-T4	Rivet - Blind, Mech Expanding 100° Csunk Head (Oversize Cherry)
BR	CR562	Monel	Rivet - Blind, Mech Expanding 100° Csunk Head (Cherry)
EP	NS454	2117-T4	Rivet - Blind, Mech Expanding 100° Csunk Head (Cherry)
ER	CR156C	5056-F	Rivet - Blind, Mech Expanding 100° Csunk Head (Cherry)
FF	CR174	2117-T4	Rivet - Blind, Mech Expanding 100° Csunk Head (Cherry)
JN	CR6624	A286	Rivet - Blind, Mech Expanding 100° Csunk Head (Cherry)
FH	CR176	2117-T4	Rivet - Blind, Mech Expanding 100° Csunk Head (Oversize Cherry)
AC	MS20601AD	2117-T4	Rivet - Blind, Mech Expanding 100° Csunk Head
AE	MS20601B	5056-F	Rivet - Blind, Mech Expanding 100° Csunk Head
JT	MS20601M	Monel	Rivet - Blind, Mech Expanding 100° Csunk Head
KW	MS20601MP	Monel Cad Pltd	Rivet - Blind, Mech Expanding 100° Csunk Head

Figure 1-2. Rivet Code (Sheet 6)

5. Rivet Code Index - Continued

Dania Cada	Basic Part	Shank	Description			
Basic Code	No.	Material	Description			
	Blind Rivets - Countersunk Head (Cont)					
EY	9SP-100-A	2117-T4	Rivet - Blind, Mech Expanding 100° Csunk Head (Huck)			
AV	6950S	CRES	Rivet - Blind, Mech Expanding 100° Csunk Head (Deutsch)			
HS	7950-S	CRES	Rivet - Blind, Mech Expanding 100° Csunk Head (Deutsch)			
ES	RV201C	2117-T4	Rivet - Blind, Mech Expanding 100° Csunk Head (Olympic)			
ET	RV251C	5056-F	Rivet - Blind, Mech Expanding 100° Csunk Head (Olympic)			
HM	RV291C	Monel	Rivet - Blind, Mech Expanding 100° Csunk Head (Olympic)			
CD	100-V	5056-T4	Rivet - Blind, Keystone 100° Csunk, Head (Huck)			
AH	MS20603AD	2017-T4	Rivet - Blind, Explosive, 100° Csunk Head			
AJ	MS20603B	5056-F	Rivet - Blind, Explosive, 100° Csunk Head			
JO	N()100	Nickel	Rivet - Blind, Explosive, 100° Csunk Head (DuPont)			
EZ	DR-()-100	2017-T4	Rivet - Blind, Explosive, 100° Csunk Head (DuPont)			
FA	56S-()-100	5056-F	Rivet - Blind, Explosive, 100° Csunk Head (DuPont)			
FK	P-56S-()-100	5056-F	Rivet - Blind, Explosive, 100° Csunk Head (Blast Free) (Du-Pont)			
НВ	PN()100	Nickel	Rivet - Blind, Explosive, 100° Csunk Head (Blast Free) (Du-Pont)			
HY	CP PN()100	Nickel Cad Pltd	Rivet - Blind, Explosive, 100° Csunk Head (Blast Free) (Du-Pont)			
KY	PA286()100	A286	Rivet - Blind, Explosive, 100° Csunk Head (Blast Free) (Du-Pont)			

Figure 1-2. Rivet Code (Sheet 7)

5. Rivet Code Index - Continued							
Basic	Pasia Part No	Mating	Shank Meterial	Collar	Description		
Code	Code Basic Part No. Collar Material Material Description Lockbolts - Protruding Head						
CS	ALPPN-E	LC-F	7075-T6	6061-T6	Lockbolt - Protruding Head (Huck)		
CT	ALPPH-T	LC-C	Steel	2024-T4	Lockbolt - Protruding Head (Huck)		
CS	ALPPH-E	LC-F	7075-T6	6061-T6	Lockbolt - Protruding Head (Huck)		
СТ	ALPPN-T	LC-C	Steel	2024-T4	Lockbolt - Protruding Head (Huck)		
EB	ALPPH-T	LC-R	Steel	Steel	Lockbolt - Protruding Head (Huck)		
EB	ALPPN-T	LC-R	Steel	Steel	Lockbolt - Protruding Head (Huck)		
FM	R1028H-T	LC-C	Steel	2024-T4	Lockbolt - Protruding Head (Huck)		
FN	R1028H-T	LC-F	Steel	6061-T6	Lockbolt - Protruding Head (Huck)		
FM	R1028N-T	LC-C	Steel	2024-T4	Lockbolt - Protruding Head (Huck)		
FN	R1028N-T	LC-F	Steel	6061-T6	Lockbolt - Protruding Head (Huck)		
DS	R3001	LC-R	Steel	Steel	Lockbolt - Protruding Head, CT Shank (Huck)		
DT	R3001	LC-C	Steel	2024-T4	Lockbolt - Protruding Head, CT Shank (Huck)		
JE	R3001	7LC-C	Steel	2024-T4	Lockbolt - Protruding Head, CT Shank (Huck)		
DX	SALP	6LC-C	Steel	2024-T4	Lockbolt - Shear, Protruding Head (Huck)		
JV	SALP	DC-C	Steel	2024-T4	Lockbolt - Shear, Protruding Head (Huck)		
KP	NAS2406 thru 2412	NAS1080-C	Titanium	2024-T4	Lockbolt - Shear, Protruding Head (Huck)		
DY	SLSP	6LC-C	Steel	2024-T4	Lockbolt - Shear, Stump Type, Protruding Head (Huck)		
JW	SLSP	DC-C	Steel	2024-T4	Lockbolt - Shear, Stump Type, Protruding Head (Huck)		
KS	NAS2606 thru 2612	NAS1080-6	Titanium	2024-T4	Lockbolt - Shear, Stump Type, Protruding Head (Huck)		
CV	ALSF-E	LC-F	7075-T6	6061-T6	Lockbolt - Stump Type, Protruding Head (Huck)		
DA	ALSF-T	LC-C	Steel	2024-T4	Lockbolt - Stump Type, Protruding Head (Huck)		
EC	ALSF-T	LC-R	Steel	Steel	Lockbolt - Stump Type, Protruding Head (Huck)		

Figure 1-2. Rivet Code (Sheet 8)

5. Rivet Code Index - Continued						
Basic Code	Basic Part No.	Mating Collar	Shank Material	Collar Material	Description	
		Lockbo	lts - Protrudin	g Head (Cont)		
KD	HL18	HL70	Steel	2024-T4	Shear Bolt - Hi-Lok, Protruding Shear Head (Hi-Shear)	
KL	NAS2006 thru 2010	NAS1080	Titanium	2024-T4	Lockbolt - Tension, Protruding Head (Huck)	
KN	NAS2206 thru 2210	NAS1080	Titanium	2024-T4	Lockbolt - Tension, Stump Type, Protruding Head (Huck)	
		Lock	bolts - Counte	rsunk Head		
-CP	АСТ509Н-Е	LC-F	7075-T6	6061-T6	Lockbolt - 100° Csunk CT Head (Huck)	
CR	ACT509H-T	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk CT Head (Huck)	
DM	ACT509H-T	LC-R	Steel	Steel	Lockbolt - 100° Csunk CT Head (Huck)	
СР	ACT509N-E	LC-F	7075-T6	6061-T6	Lockbolt - 100° Csunk CT Head (Huck)	
CR	ACT509N-T	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk CT Head (Huck)	
ED	ACT509N-T	LC-R	Steel	Steel	Lockbolt - 100° Csunk CT Head (Huck)	
AM	ALP509H-E	LC-F	7075-T6	6061-T6	Lockbolt - 100° Csunk Head (Huck)	
AP	ALP509H-T	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk Head (Huck)	
AM	ALP509N-E	LC-F	7075-T6	6061-T6	Lockbolt - 100° Csunk Head (Huck)	
AP	ALP509N-T	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk Head (Huck)	
FP	R1029H-T	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk CT Head (Huck)	
FR	R1029H-T	LC-F	Steel	6061-T6	Lockbolt - 100° Csunk CT Head (Huck)	
FP	R1029N-T	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk CT Head (Huck)	
FR	R1029N-T	LC-F	Steel	6061-T6	Lockbolt - 100° Csunk CT Head (Huck)	
DJ	ALP426-E	LC-F	7075-T6	6061-T6	Lockbolt - 100° Csunk Head (Huck)	
DV	R3002	LC-R	Steel	Steel	Lockbolt - 100° Csunk CT Head and Shank (Huck)	
DW	R3002	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk CT Head and Shank (Huck)	
JF	R3002	7LC-C	Steel	2024-T4	Lockbolt - 100° Csunk CT Head and Shank (Huck)	
DZ	SAL100	6LC-C	Steel	2024-T4	Lockbolt - Shear, 100° Csunk Head (Huck)	

Figure 1-2. Rivet Code (Sheet 9)

5. Rivet Code Index - Continued						
Basic Code	Basic Part No.	Mating Collar	Shank Material	Collar Material	Description	
		Lockbol	ts - Countersu	nk Head (Cont)		
JX	SAL100	DC-C	Steel	2024-T4	Lockbolt - Shear, 100° Csunk Head (Huck)	
KR	NAS2506 thru 2512	NAS1080-C	Titanium	2024-T4	Lockbolt - Shear, 100° Csunk Head (Huck)	
EA	SLS100	6LC-C	Steel	2024-T4	Lockbolt - Shear, Stump Type, 100° Csunk Head (Huck)	
JY	SLS100	DC-C	Steel	2024-T4	Lockbolt - Shear, Stump Type 100° Csunk Head (Huck)	
KT	NAS2706 thru 2712	NAS1080-C	Titanium	2024-T4	Lockbolt - Shear, Stump Type, 100° Csunk Head (Huck)	
CW	ASCT509-E	LC-F	7075-T6	6061-T6	Lockbolt - Stump Type, 100° Csunk CT Head (Huck)	
DB	ASCT509-T	LC-C	Steel	2024-T4	Lockbolt - Stump Type, 100° Csunk CT Head (Huck)	
EE	ASCT509-T	LC-R	Steel	Steel	Lockbolt - Stump Type, 100° Csunk CT Head (Huck)	
JH	R3014	LC-C	Steel	2024-T4	Lockbolt - 100° Csunk Head, CT Shank (Huck)	
JJ	R3014	7LC-C	Steel	2024-T4	Lockbolt - 100° Csunk Head, CT Shank (Huck)	
KE	HL19	HL70	Steel	2024-T4	Shear Bolt - Hi-Lok, 100° Csunk CT Shear Head (Hi-Shear)	
KM	NAS2106 thru 2110	NAS1080	Titanium	2024-T4	Lockbolt - Tension, 100° Csunk Head (Huck)	
KC	NAS2306 thru 2310	NAS1080	Titanium	2024-T4	Lockbolt - Tension, Stump Type, 100° Csunk Head (Huck)	
		Hi-She	ar Rivets - Pro	truding Head		
BZ	HS38P	NAS528	Steel	2024-T4	Rivet - Hi-Shear, Protruding Head, CT Shank, High H.T.	
СВ	HS48	NAS528	Steel	2024-T4	Rivet - Hi-Shear, Protruding Head, High H.T.	
НО	HS48	HS32	Steel	Steel	Rivet - Hi-Shear, Protruding Head, High H.T.	
*BT	NAS529	NAS528	Steel	2024-T4	Rivet - Hi-Shear, Protruding Head, CT Shank, High H.T.	
*BW	NAS529	NAS179	Steel	2117-T4	Rivet - Hi-Shear, Protruding Head, CT Shank, High H.T.	
JC	HS128	HS60	CRES (17-4)	CRES (321)	Rivet - Hi-Shear, Protruding Head, CT Shank, High H.T., High Temp.	
JD	HS128	HS60M	CRES (17-4)	Monel	Rivet - Hi-Shear, Protruding Head, CT Shank, High H.T., High Temp.	
DN	HS68	HS60	CRES (431)	CRES (321)	Rivet - Hi-Shear, Protruding Head, High H.T. High Temp.	
HR	HS68	HS60M	CRES	Monel	Rivet - Hi-Shear, Protruding Head, High H.T., High Temp.	

Figure 1-2. Rivet Code (Sheet 10)

5. Rivet Code Index - Continued **Basic** Mating Shank Collar Code Basic Part No. Collar Material Material Description Hi-Shear Rivets - Protruding Head (Cont) FE 7075-T6 HS26 HS24 2117-T4 Rivet - Hi-Shear, Protruding Head JΖ NAS1054 **NAS179** Steel 2117-T4 Rivet - Hi-Shear, Protruding Head KA NAS1054 NAS528 Steel 2024-T4 Rivet - Hi-Shear, Protruding Head KF NAS1806 thru NAS179 Titanium 2117-T4 Rivet - Hi-Shear, Protruding Head, Interference Fit 1816 KH NAS1806 thru NAS528 Titanium 2024-T4 Rivet - Hi-Shear, Protruding Head, Interference Fit 1816 Hi-Shear Rivets - Countersunk Head BY HS37P Rivet - Hi-Shear, 100° Csunk CT NAS528 Steel 2024-T4 Head and Shank, High H.T. *BS NAS528 2024-T4 Rivet - Hi-Shear, 100° Csunk CT **NAS525** Steel Head and Shank, High H.T. *BV Rivet - Hi-Shear, 100° Csunk CT **NAS525 NAS179** Steel 2117-T4 Head and Shank, High H.T. CA HS47 NAS528 Steel 2024-T4 Rivet - Hi-Shear, 100° Csunk CT Head, High H.T. Rivet - Hi-Shear, 100° Csunk CT DP **HS67 HS60** CRES (431) CRES (321) Head, High H.T., High Temp. HP **HS67** HS60M **CRES** Monel Rivet - Hi-Shear, 100° Csunk CT Head, High H.T., High Temp. HN **HS47** HS32 Steel Steel Rivet - Hi-Shear, 100° Csunk CT Head, High H.T. EF HS2R7C NAS528 CRES (302) 2024-T4 Rivet - Hi-Shear, 100° Csunk CT Head KB NAS1055 **NAS179** 2117-T4 Rivet - Hi-Shear, 100° Csunk CT Steel Head KC NAS1055 NAS528 Steel 2024-T4 Rivet - Hi-Shear, 100° Csunk CT Head EH HS23 HS24 7075-T6 2117-T4 Rivet - Hi-Shear, 100° Csunk CT Hi-Shear Head EJ HS25 Rivet - Hi-Shear, 100° Csunk CT HS24 7075-T6 2117-T4 AN426 Head Rivet - Hi-Shear, 100° Csunk CT JA HS127 **HS60** CRES (17-4) CRES (321) Shank, High H.T., High Temp. Rivet - Hi-Shear, 100° Csunk CT JB HS127 HS60M CRES (17-4) CRES (321) Shank, High H.T., High Temp. Rivet - Hi-Shear, 100° Csunk KJ NAS1906 thru NAS179 Titanium 2117-T4 Head, Interference Fit 1916 KK NAS1906 thru NAS528 Titanium 2024-T4 Rivet - Hi-Shear, 100° Csunk Head. Interference Fit 1916

Code CF, CH, CJ, and CK are inactive due to the inactivation for design of NAS177 and NAS178.

Figure 1-2. Rivet Code (Sheet 11)

5. Rivet Code Index - Continued

Basic Code	Basic Part No.	Shank Material	Description
		Bolt	: - Blind Protruding Head
CC	BL	Steel	Bolt - Blind, Protruding Head (Huck)
DR	P	Steel	Bolt - Blind, Hex Head (Jo-Bolt)
JP	P()A	A286	Bolt - Blind, Protruding Head (Jo-Bolt)
HD	BB352	CRES	Bolt - Blind, Protruding Head (Hi-Shear)
		Bolt ·	- Blind Countersunk Head
DK	F	Steel	Bolt - Blind, 100° Csunk (Jo-Bolt)
JR	F()A	A286	Bolt - Blind, 100° Csunk (Jo-Bolt)
DL	FA	7075-T6	Bolt - Blind, 100° Csunk (Millable Jo-Bolt)
HE	BB351	CRES	Bolt - Blind, 100° Csunk Head (Hi-Shear)
			Miscellaneous
*FO	AN450C	Steel	Rivet - Tubular, Style C
*CM	AN450C()AD	2117-T4	Rivet - Tubular, Style C
*CN	AN450C() B	Brass	Rivet - Tubular, Style C
*CO	AN450D() AD	2117-T4	Rivet - Tubular, Style D
*FX	AN450A()C	Copper	Rivet - Tubular, Style A
*FY	AN450D	Steel	Rivet - Tubular, Style D
*FZ	AN450D()B	Brass	Rivet - Tubular, Style D
*HA	AN450D()M	Monel	Rivet - Tubular, Style D
DC	11101ADJ4()	2117-T3	Rivet - Flush, Jacketed, AN426 (Pastushin)
DE	44401ADJ4()	2117-T3	Rivet - Protruding Head, Jacketed, AN470 (Pastushin)
FD	860-015	2117-T4	Rivet - Sealing, 100° Csunk Head (Franklin C. Wolfe)
HV	860-065	5056-F	Rivet - Sealing, 100° Csunk Head (Franklin C. Wolfe)
*SUPERSE	EDURES		
	upersedes HS15		(Same Code Retained)
	NAS528 Supersede		(Same Code Retained)
NAS525 - NAS179	NAS179 Supersede	HS51P -	(Same Code Retained)
NAS529 -	NAS528 Supersede	HS52P - HS15	(Same Code Retained)
NAS529 - NAS179	NAS179 Supersede	HS52P -	(Same Code Retained)
MS20450 - Material C	Supersedes AN450 Coding)	(Identical	(Same Code Retained)
	Supersedes AN426	(Identical	(Same Code Retained)

Special Coding

The XA through XZ series indicate special individual company rivets.

Figure 1-2. Rivet Code (Sheet 11)

Table 1-1. Rivet Identification Markings

Heac	Head Marking	Physical Characteristics	Material	Classification or Specification
\bigcirc	Indented		Steel, Carbon	QQ-S-633, FS1010
(E2)	Raised or Indented			
Revised to		2.Hardness: Maximum - Rockwell B60 or equal	Steel	AMS7225
0	Indented Dash	Shear Strength: 45,000 to 55,000 PSI	Steel, Corr Res	QQ-W-423, FS302 or 304 Composition
)		Hardness: Maximum - Rockwell B60 or equal		
	Raised or Indented		Steel, Heat and	AMS7229 (18 Cr-11 N)
ЕНІ	Mark "H1" only on 0.062 Rivets		Corr Res	
	Raised or Indented			
EH2	Mark "H2" only on 0.062 Rivets		Steel, Heat and Corr Res	AMS7232
	Indented		Nickel Steel	QQ-S-624, FS2317
Z)				Alternates: FS3115, 4615, 8615, SAE8751, SAE2315, FS3315
4	Projected Cross	Tensile Strength: 53,000 - 68,000 PSI - Heat Treat	Steel, Medium	MIL-R-1223A
	Plain		Aluminum Alloy	2S (A)

Table 1-1. Rivet Identification Markings - Continued

Material Classification or Specification	Aluminum Alloy A17ST (AD)	Aluminum Alloy A17S-T4	A17S-T4 A17S-T	Aluminum Alloy 17ST (D)	Aluminum Alloy 17S-T4 (Anodized)	17S, 17ST, 17S-0, A17S-T	Aluminum Alloy 24ST (DD)	Aluminum Alloy 24S-T4 (Anodized)		Aluminum Alloy 56S (B) and 56S-F	Aluminum Alloy 56S (B)	Aluminum Alloy 2F-S (As fabricated)		Aluminum Alloy 53S-T-61	
Physical Characteristics M.	nimul Alumin	Shear Strength of Driven Rivet - Alumin 26,000 PSI	Recommended Safe Shear Design Stress - 9,500 PSI	Alumin	Shear Strength of Driven Rivet - Alumin 33,000 PSI	Recommended Safe Shear Design Stress - 11,000 PSI	Alumin	Shear Strength of Driven Rivet - Alumin 37,000 PSI	Recommended Safe Shear Design Stress - 12,000 PSI	Alumin	Alumin	Shear Strength of Driven Rivet - Alumin 11,000 PSI	Recommended Safe Shear Design Stress - 3,000 PSI	Shear Strength of Driven Rivet - Alumin 23,000 PSI	
Head Marking	Indented Dimple	0		Raised Teat	0		Raised Double Dash			+	 Indented, Blind Explosive (2) Raised, Solid 	Shank Marking		Shank Marking	

Table 1-1. Rivet Identification Markings - Continued

Classification or Specification	MIL-R-1223A	MIL-S-6098 for #8735 MIL-S-6049 for #8740 AN-QQ-S-687 for #6150 AN-QQ-S-690 for #3140 Optional - AN-QQ-S-690 for #313 MIL-S-5626 for #4140 MIL-S-5000 for #4340 MIL-S-8695 for #4037 MIL-S-6758 for #4130	QQ-N-281, Class A, Annealed		oy.				
Material	Steel, Grade HT	Steel; Cr, Ni, Mo Steel; Cr, Ni, Mo Steel; Cr, V Steel; Ni, Cr Steel Steel; Cr, Mo Steel; Cr, Mo Steel; Cr, Mo	Monel	s denotes mild steel.	(type D) aluminum all	uminum alloy.	luminum alloy.	aluminum alloy.) aluminum alloy.
Physical Characteristics	Tensile Strength: 68,000 - 83,000 PSI; Yield Point: 38,000 Heat Treat, Shear Strength: Min 64,000 PSI	Heat Treatment: 160,000 - 180,000 PSI for MIL-H-6875	Shear Strength: 49,000 - 59,000 PSI	When on non-aluminum alloy rivets denotes mild steel.	Denotes 2017-T3, -T4, -T31, -T41 (type D) aluminum alloy.	Denotes 2117-T3, -T4 (type AD) aluminum alloy.	Denotes 5056 or 5056-F (type B) aluminum alloy	Indicates 1100 or 1100-F (type A) aluminum alloy	Denotes 2024-T4 or -T31 (type DD) aluminum alloy
Head Marking	Projected Flutes	Indented Square	Twin Teats or Dimples	Recessed	Raised	Dimple	Raised	Plain	Raised
	0		00		0	\bigcirc	+		

1.1.7 Rivet Pattern Layout. Specific repair procedures are prescribed in Structural Repair Manuals for the various aircraft; however, there are some general procedures which will apply in all instances. Whenever possible, rivets should have the same configuration as the original installation. When new sections are to be added or when repairs are being made, the edge distance from the center of the rivet shank to the edge of the material should never be less than twice the diameter of the shank, nor should it be more than four times the shank diameter. (See Figure 1-3.) The distance between rivets in the same row, measured from center to center, should never be less than four times the shank diameter nor should it be more than ten times the shank diameter. The distance between rows of rivets should not be less than two and half times the shank diameter nor more than the largest rivet spacing within either row. The rivet sheet surface angle should not exceed values given in Figure 1-4 for either the manufactured or formed head. Spotfacing is required for larger angles. (See Figure 1-5.) When laying out a rivet pattern, use a pencil, aircraft marking MIL-P-83953A, yellow NSN 7510-00-537-6930, red NSN 7510-00-537-6935.

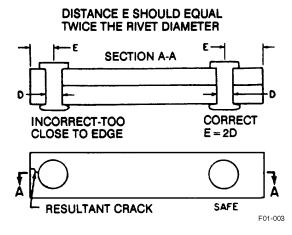


Figure 1-3. Rivet Edge Distance

1.1.8 <u>Drilling for Installation of Rivets</u>. Rivet repair holes may be drilled with a light power drill or a hand drill, using a standard straight shank twist drill. The holes can be located by placing the drilled part over the part to be drilled and using the existing holes as a guide for the drill. The hole location can also be established by scribing through the drilled part, then taking the part to be drilled to a work bench for center punching and drilling. When complete new sections are involved, 0.098-inch pilot holes are drilled first. Then the new sections are positioned in the finished attitude and fixed with C-clamps or skin fasteners. The rivet holes are drilled through the pilot holes; the sheets are

separated and the holes deburred. In drilling light stringers, the rivet line is marked along the length of the member with a pencil. The predrilled skin is placed over the stringer and the rivet line aligned with the holes. Skin fasteners are used to hold the stringer through the skin may prove more convenient, this will often result in an unsatisfactory, irregular rivet line.

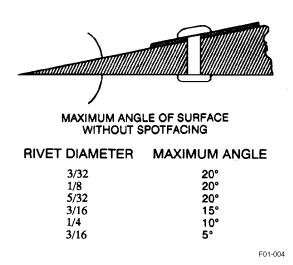
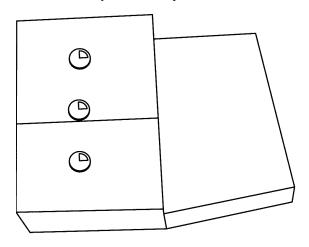



Figure 1-4. Sheet Surface Angle Limitations for Riveting

- 1.1.9 <u>Rivet Drill Sizes</u>. Table 1-2 through Table 1-8 list the hole and drill sizes for most, commonly used rivets. Table 1-9 specifies the sizes of twist drills from 1/2 inch down to number 80.
- 1.1.10 <u>Rivet Hole Drilling Procedure</u>. The procedure for drilling rivet holes is as follows:
 - a. Center punch all rivet locations. The center punch mark must be large enough to prevent the drill from slipping out of position, yet it must not dent the surface of the material. To prevent denting, place a bucking bar behind the material during punching. After center punching, use a 0.098 drill bit to pilot drill all hole locations.
 - b. Make sure the drill bit is the correct size and the point is ground properly. (See Figure 1-6.)
 - c. Place drill in center punch mark and drill hole.
 - d. While drilling, hold drill at a 90-degree angle to material surface.
 - e. Avoid excessive pressure. Let drill do cutting.
 - f. Do not push drill through material.

- g. Remove all burrs with a metal countersink or file.
- h. Clean away all drill chips.

SPOT FACE DIAMETER MUST BE 1/16 INCH GREATER THAN DIAMETER OF RIVET HEAD

F01-00

Figure 1-5. Spotfacing for Rivets

Table 1-2. Drill Sizes for Common, Solid Shank Rivets

Rivet Diameter	Drill Size	Drill Diameter
1/16	51	0.0670
3/32	41	0.0960
1/8	30	0.1285
5/32	21	0.1590
3/16	11	0.1910
1/4	F	0.2570
5/16	P	0.3230
3/8	W	0.3860

Table 1-3. Drill Sizes for Pin Rivets

Rivet Diameter	Drill Size	Drill Diameter
3/16	16	0.177
7/32	5	0.205
1/4	В	0.238

Table 1-3. Drill Sizes for Pin Rivets - Continued

Rivet Diameter	Drill Size	Drill Diameter
9/32	1	0.272
5/16	N	0.302
11/32	Q	0.332
3/8	U	0.368
13/32	X	0.397
7/16	27/64	0.4219
15/32	29/64	0.4531
1/2	31/64	0.4844
17/32	33/64	0.5156

Table 1-4. Drill Sizes and Hole Size Limits for Self-Plugging Rivets (Friction Lock)

		Inspection	on Limits
Rivet Diameter	Finish Drill Size	Min	Max
3/32	40	0.097	0.101
1/8	30	0.128	0.132
5/32	20	0.160	0.164
3/16	10	0.192	0.196
7/32	2	0.220	0.225
1/4	F	0.256	0.261
9/32	L	0.289	0.295
1/8 oversize	29	0.137	0.141
5/32 oversize	16	0.177	0.181
3/16 oversize	5	0.206	0.210
9/32 Monel	M	0.294	0.300

Table 1-5. Drill Sizes for Self-Plugging Rivets (Mechanical Lock)

Rivet Diameter	Pilot Drill	Finish Drill	Hole Size
1/8	32 (.116)	30 (.1285)	0.129 to 0.132
5/32	26 (.147)	20 (.161)	.1595 to 0.1635
3/16	16 (.177)	10 (.1935)	.1915 to 0.196

Table 1-6. Drill Sizes for Explosive Rivets

Rivet Diameter	Pilot Drill Size	Finish Drill Size	Hole Size
1/8	30	29 (0.1360)	0.1345 to 0.138
5/32	22	17 (0.1730)	0.1730 to 0.176
3/16	12	6 (0.2040)	0.2040 to 0.207

Table 1-7. Drill Sizes for Internally Threaded Rivets (Two Piece)

Rivet Diameter	Drill Size	Drill Diameter
0.187	3/16	0.187
0.234	A	0.234
0.265	17/64	0.265

Table 1-8. Drill Sizes for Rivnut Rivets

Rivet Thread Size	Pilot Drill	Finish Drill
6-32	19 (0.166)	12 (0.189)
8-32	8 (0.199)	2 (0.221)
10-32	1 (0.228)	1/4 (0.250)

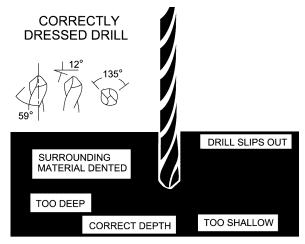
Table 1-9. Sizes of Twist Drills from 1/2 Inch to Number 80 with Decimal Equivalents

Size	Decimal Equiv
1/2	0.5000
31/64	0.4844
15/32	0.4687
29/64	0.4531
7/16	0.4375
27/64	0.4219
Z	0.4130
13/32	0.4062
Y	0.4040
X	0.3970
25/64	0.3906
W	0.3860
V	0.3770
3/8	0.3750

Table 1-9. Sizes of Twist Drills from 1/2 Inch to Number 80 with Decimal Equivalents - Continued

Size	Decimal Equiv	
U	0.3680	
23/64	0.3594	
T	0.3580	
S	0.3480	
11/32	0.3437	
R	0.3390	
Q	0.3320	
21/64	0.3281	
P	0.3230	
0	0.3160	
5/16	0.3125	
N	0.3020	
19/64	0.2969	
M	0.2950	
L	0.2900	
9/32	0.2812	
K	0.2810	
J	0.2770	
I	0.2720	
Н	0.2660	
17/64	0.2656	
G	0.2610	
F	0.2570	
1/4	0.2500	
D	0.2460	
С	0.2420	
В	0.2380	
15/64	0.2344	
A	0.2340	
1	0.2280	
2	0.2210	
7/32	0.2187	
3	0.2130	
4	0.2090	
5	0.2055	
6	0.2040	
13/64	0.2031	
7	0.2010	
8	0.1990	
9	0.1960	
10	0.1935	

Table 1-9. Sizes of Twist Drills from 1/2 Inch to Number 80 with Decimal Equivalents - Continued


Table 1-9. Sizes of Twist Drills from 1/2 Inch to Number 80 with Decimal Equivalents - Continued

Size	Decimal Equiv	
11	0.1910	
12	0.1890	
3/16	0.1875	
13	0.1850	
14	0.1820	
15	0.1800	
16	0.1770	
17	0.1730	
11/64	0.1719	
18	0.1695	
19	0.1660	
20	0.1610	
21	0.1590	
22	0.1570	
5/32	0.1562	
23	0.1540	
24	0.1520	
25	0.1495	
26	0.1470	
27	0.1440	
9/64	0.1446	
28	0.1405	
29	0.1360	
30	0.1285	
1/8	0.1250	
31	0.1200	
32	0.1160	
33	0.1130	
34	0.1130	
35	0.1110	
7/64	0.1100	
36	0.1094	
37	0.1040	
38	0.1015	
39	0.0995	
40	0.0980	
41	0.0960	
3/32	0.0937	
42	0.0935	
43	0.0890	
44	0.0860	

Size	Decimal Equiv
45	0.0820
46	0.0810
47	0.0785
5/64	0.0781
48	0.0760
49	0.0730
50	0.0700
51	0.0670
52	0.0635
1/16	0.0625
53	0.0595
54	0.0550
55	0.0520
3/64	0.0469
56	0.0465
57	0.0430
58	0.0420
59	0.0410
60	0.0400
61	0.0390
62	0.0380
63	0.0370
64	0.0360
65	0.0350
66	0.0330
67	0.0320
1/32	0.0313
68	0.0310
69	0.0292
70	0.0280
71	0.0260
72	0.0250
73	0.0240
74	0.0225
75	0.0210
76	0.0200
77	0.0180
78	0.0160
1/64	0.0156
79	0.0145
80	0.0135

Table 1-9. Sizes of Twist Drills from 1/2 Inch to Number 80 with Decimal Equivalents - Continued

Size	Decimal Equiv	
Fractional sizes are available in 1/64 increasing up to 1-3/4 inch diameter. Tolerances on drilled holes, unless otherwise specified, are as follows:		
Nominal Drill Diameter	Hole Tolerance	
0.404 to 0.1285	+0.002 -0.001	
0.136 to 0.228	+0.003 -0.001	
0.234 to 1/2	+0.004 -0.001	
33/64 to 3/4	+0.005 -0.001	
49/64 to 1	+0.007 -0.001	
1-1/64 to 2	+0.010 -0.001	

F01-006

Figure 1-6. Drilling for Rivets

1.1.11 Countersinking for Installation of Rivets. When using countersunk rivets the material must also be countersunk so the rivet will fit flush with the surface. (See Figure 1-7.) When using a hand-operated countersink, the hole must be tried with a rivet so the recess will not be too deep. It is best to use a stop countersink with an electric drill motor so that the depth of the hole can be controlled. The minimum sheet thickness for machine countersinking 100-degree rivets is subject to the limitations shown in Table 1-10.

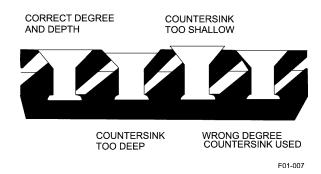


Figure 1-7. Countersinking for Rivet

1.1.12 <u>Dimpling for Installation of Rivets</u>. Dimpling is done with a punch and die set. The punch has a guide pin the size of the rivet hole and the same degree countersink as the rivet. The die has a hole and the same degree countersink as the punch. Dimpling is accomplished by inserting the punch in the rivet hole and then into the die, which should be resting on a solid surface. The punch is then struck, forming a dimple. Care must be taken to keep the striking surfaces parallel with the skin surface. Coin dimpling is accomplished by inserting the proper countersunk rivet in the hole. A recessed gun draw tool is placed over the rivet shank. As the rivet is driven, the head forms its own dimple and the rivet shank is upset in the usual manner. Power squeezers may be used for these operations. (See Figure 1-8.) Countersunk pin rivets are used only with machine countersinking or machine subcountersinking, then coin dimpling the top or outer sheet upon installation of the rivet.

1.1.13 <u>Subcountersinking</u> for <u>Installation</u> of <u>Rivets</u>. Subcountersinking is the process where the inner structure or skin is machine countersunk and the outer surface is dimpled or coin dimpled. The sheet thickness limitations for subcountersinking are shown in <u>Table 1-11</u>.

1.1.14 Rivet Failure. As a rule, riveted joints are designed on the assumption that the total joint strength is the summation of the strength of the rivets in the joint. It is then obvious that when any one rivet fails, its load must be distributed to the others, and if they are unable to withstand the added load, progressive joint failure will occur. Stress concentrations will usually cause one rivet to fail first, and visual detection of such a rivet in a joint indicates that it has been highly loaded, with the possibility that other rivets may actually have partially failed.

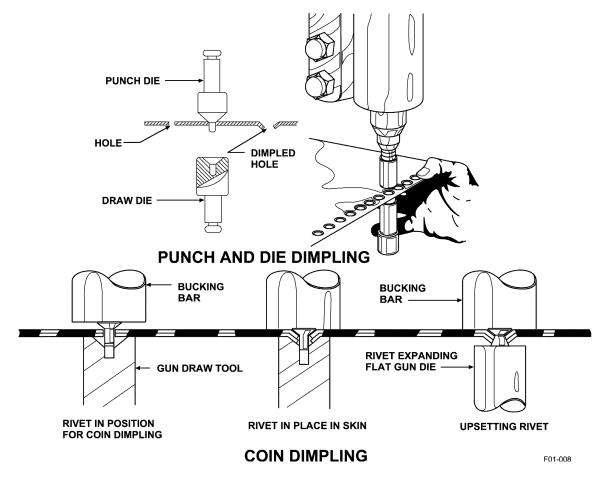


Figure 1-8. Dimpling for Installation of Rivets

1.1.15 Rivet Shear Failure. Shear failure, which is perhaps the most common, is simply a breakdown of the rivet shank caused by parallel forces exerted in opposite directions on the two sheets joined by the rivet. The slipping action may be severe enough to break the rivet shank in two. If the rivet shank has been loaded beyond the yield point of the material, permanent deformation occurs and the shank of the rivet is notched. Sheet displacement also occurs, causing the rivet holes to become out of alignment.

Table 1-10. Minimum Sheet Gage for 100-Degree Machine Countersink

Rivet Size	3/32	1/8	5/32	3/16	1/4
Gage	0.040	0.050	0.064	0.072	0.072

1.1.16 Rivet Bearing Failure. Bearing failure can occur in the sheet at the edge of the rivet hole if the rivet is excessively strong in shear. Large rivets in thin sheets cause such failures. The sheet is locally crushed in such cases, having been loaded beyond its yield point, and the resulting permanent distortion destroys the mechanical

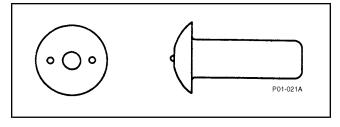
rigidity of the joint. If the hole elongation is slight, replacement can be made by the next larger size rivet. If the failure occurs at the edge of the sheet, causing appreciable distortion out to the sheet edge, or if complete tear-out has occurred, the sheet must be replaced.

1.1.17 Rivet Head Failure. Certain more complex loadings may be placed on a joint, causing tensions to be applied to the rivet head. Since rivets are not designed to withstand appreciable tension loads, the head may fall by shearing through the area corresponding to the rivet shank, or may fail through a prying action which causes failure of the head itself. Any visible head distortion in cause for replacement. This latter type of failure usually occurs with blind rivets (mechanically expanding or explosive) wherein the formed head is distorted by tension forces, allowing the rivet to crack, which continues until a rivet tension failure occurs. This is especially true of single shear lap joints in the thicker sheet gages.

1.1.18 <u>Detecting Rivet Failures</u>. Signs of rivet failure include tipped heads and looseness and sometimes chipped or cracked paint. If the heads are tipped in the same direction and the rivets are loose in consecutive groups, the joint has undergone excessive load. Rivet heads which appear to be tipped in different directions and are not in

groups may be improperly installed. In the case of chipped or cracked paint, it may be necessary to remove the paint to check the true condition of the rivets. Rivets that have been subjected to critical loads but show no distortion should be inspected if failure is suspected. The head should be drilled off, and the shank should be carefully punched out. Failure will be indicated by the notched rivet shank and misaligned holes. Flush rivets that show head slippage within the dimple or countersink indicate either sheet bearing or rivet shear failure and must be removed for inspection and replacement. If failure of rivets cannot be detected by visual inspection, the joint can be checked by drilling and punching out several rivets. If the rivet shanks are notched, the rivets should be replaced with the next larger size rivets. If the rivet holes show elongation due to local failure in bearing of the sheet, the next larger size rivet must be used in replacement. Any deformation of the sheet around the rivet, tear outs, or cracks between the rivets usually indicates partially failed or damaged rivets. Complete repair of the joint will require replacement by the next larger size rivets. The practice of using the next 1/32-inch larger diameter rivet is necessary to obtain a tight joint when the original hole has been enlarged. If the original size rivet were installed, the rivet would not be able to carry its share of the shear load, and the joint would not meet its strength requirements.

Table 1-11. Minimum Gage for Subcountersinking


Rivet Size	3/32	1/8	5/32	3/16	1/4
Gage	0.040	0.064	0.072	0.072	0.072

1.1.19 Removal of Rivets. When removing rivets, care should be taken not to enlarge the rivet hole, as this would necessitate the use of a larger size rivet for replacement. To remove a rivet, file a flat surface on the manufactured head if accessible. It is always preferable to work on the manufactured head rather than on the one that is bucked over, since the former will always be more symmetrical about the shank. Indent the center of the filed surface with a center punch and use a drill of slightly less than shank diameter to drill through the rivet head. Remove the drill and, if the other rivet end is supported, shear the head off with a sharp chisel. Always cut along the direction of the plate edge. Firmly support the sheet from the opposite side and drive the shank out with a pin punch. If the rivet is unduly tight because of swelling between the sheets, drill the rivet out with an undersize drill. (See Figure 1-9.)

1.2 COMMON, SOLID SHANK RIVETS.

(Refer to Table 1-12 through Table 1-19.)

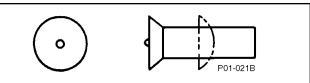
Table 1-12. NAS508 Universal Head, Monel, Common, Solid Shank Rivet

First Dash Number	Shank Diameter	Head Diameter
-M2	0.062 - 0.001/+0.003	0.125 ± 0.006
-M3	0.094 - 0.001/+0.003	0.187 ± 0.009
-M4	0.125 - 0.001/+0.003	0.250 ± 0.012
-M5	0.156 - 0.001/+0.004	0.312 ± 0.016
-M6	0.187 - 0.001/+0.004	0.375 ± 0.019
-M8	0.250 - 0.001/+0.004	0.500 ± 0.025

Code

First dash number indicates nominal shank diameter in 1/32 inch.

Second dash number indicates length in 1/16 inch Example of part number:


NAS508M3-12 = universal head rivet, 0.094-inch diameter, 3/4-inch length.

Material:

Monel, Federal Specification QQ-N-281, Class A annealed.

1.2.1 Types of Common, Solid Shank Rivets. Universal head, roundhead, flathead, brazier head, and countersunk head are the head styles of rivets used in aircraft repair. Universal head rivets are used for both interior and exterior application. Roundhead rivets are used in the interior of aircraft except where clearance is required for adjacent members. Flathead rivets are used in the interior of aircraft where interference of adjacent members does not permit the use of roundhead rivets. Brazier head rivets are used on the exterior of aircraft where there is no requirement for a flush surface. Countersunk head rivets are used on the exterior of aircraft where a smooth aerodynamic surface is desired. Countersunk head rivets permit dimpling of the structure to provide a higher shear strength.

Table 1-13. AN425 78-Degree Countersunk Head, Common, Solid Shank Rivet

First Dash Number	Shank Diameter	Head Diameter
-2	0.062 - 0.001/+0.003	0.112 ± 0.006
-3	0.094 - 0.001/+0.003	0.170 ± 0.008
-4	0.125 - 0.001/+0.0035	0.225 ± 0.011
-5	0.156 - 0.001/+0.004	0.282 ± 0.014
-6	0.187 - 0.001/+0.004	0.339 ± 0.017
-8	0.250 - 0.001/+0.004	0.452 ± 0.023

First dash number indicates nominal diameter in 1/32 inch.

Second dash number indicates length in 1/16 inch.

A after basic part number indicates 1100-H14 aluminum rivet.

AD after basic part number indicates 2117-T4 aluminum alloy rivet.

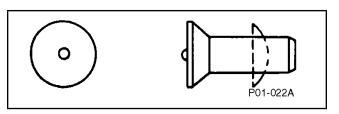
DD after basic part number indicates 2024-T4 aluminum alloy rivet.

D after basic part number indicates 2017-T4 aluminum alloy rivet.

Example of part number:

AN425A3-12 = 1100-H14 aluminum rivet, 3/32-inch diameter, 3/4-inch long.

Material:


1100-H14 aluminum, Military Specification MIL-W-7986.

2017-T4 aluminum alloy, Military Specification MIL-W-7986.

2024-T4 aluminum alloy, Military Specification MIL-W-7986.

2117-T4 aluminum alloy, Military Specification MIL-W-7986.

Table 1-14. MS20426 100-Degree Countersunk Head, Common, Solid Shank Rivet

	Shank Diameter		
First Dash Number	Min	Max	Head Diameter ±0.004
-2	0.061	0.065	0.114
-3	0.093	0.097	0.179
-4	0.124	0.128	0.225
-5	0.155	0.159	0.286
-6	0.186	0.190	0.353
-8	0.249	0.253	0.476
-10	0.311	0.315	0.564
-12	0.374	0.378	0.694

Code:

First dash number indicates nominal diameter in 1/32 inch.

Second dash number indicates length in 1/16 inch.

A after basic part number indicates 1100-H14 aluminum rivet.

B after basic part number indicates 5056-H32 aluminum rivet

AD after basic part number indicates 2117-T4 aluminum rivet.

DD after basic part number indicates 2024-T4 aluminum rivet.

D after basic part number indicates 2017-T4 aluminum rivet.

Example of part number:

AN426B3-12 = 5056-H32 aluminum rivet, 3/32-inch diameter, 3/4-inch long.

Material:

1100-H14 aluminum, Military Specification MIL-W-7986.

5056-H32 aluminum alloy, Military Specification MIL-W-7986.

2117-T4 aluminum alloy, Military Specification MIL-W-7986.

2024-T4 aluminum alloy, Military Specification MIL-W-7986.

2017-T4 aluminum alloy, Military Specification MIL-W-7986.

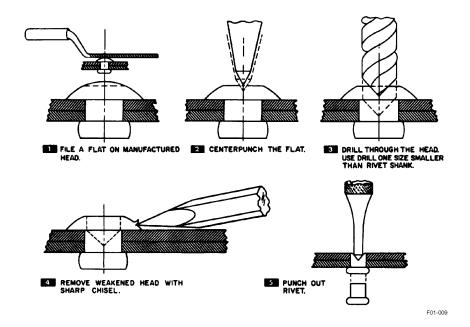
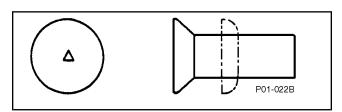



Figure 1-9. Removal of Rivets

Table 1-15. MS20427 100-Degree Countersunk Head, Common, Shank Rivet

	Shank Diameter		
First Dash Number	Min	Max	Head Diameter (Min)
-2	0.061	0.065	0.0898
-3	0.093	0.097	0.1548
-4	0.124	0.128	0.2006
-5	0.155	0.159	0.2566
-6	0.186	0.190	0.3234
-8	0.249	0.253	0.4412
-10	0.311	0.315	0.5288
-12	.0374	0.378	0.6586

First dash number indicates nominal diameter in 1/32 inch.

Second dash number indicates length in 1/16 inch.

Dash numbers shown are for carbon steel rivets, either cadmium- or zinc-plated.

C after basic part number indicates copper rivet (available in nominal diameters of 1/16 through 3/16 inch only).

F after basic part number indicates corrosion-resistant steel rivet.

M after basic part number indicates Monel rivet.

C after first dash number indicates cadmium-plated rivet.

U after first dash number indicates unplated, carbon steel rivet.

Z after first dash number indicates zinc-plated rivet. Example of part number:

AN427-2C4 = cadmium-plated carbon steel rivet, 1/16-inch diameter, 1/4-inch long.

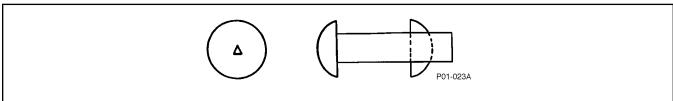
AN427M2C4 = cadmium-plated Monel rivet, 1/16-inch diamerer, 1/4-inch long.

Material:

Carbon steel, Federal Specification QQ-W-409 or QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-W-423.

Monel, Federal Specification QQ-N-281.


Copper, Federal Specification QQ-W-341.

Finish:

Cadmium plating, Federal Specification QQ-P-416, Type I, Class C.

Zinc plating, Federal Specification QQ-Z-325.

Table 1-16. AN435 Roundhead, Common, Solid Shank Rivet

First Dash Number	Shank Diameter	Head Diameter
-2	0.063 - 0.004/+0.003	0.109
-3	0.094 - 0.004/+0.003	0.166
-4	0.125 - 0.004/+0.004	0.219
-5	0.156 - 0.004/+0.004	0.273
-6	0.188 - 0.006/+0.004	0.327
-8	0.250 - 0.006/+0.004	0.438
-10	0.313 - 0.008/+0.004	0.546
-12	0.375 - 0.010/+0.005	0.656
-14	0.438 - 0.010/+0.005	0.765

First dash number indicates nominal diameter in 1/32 inch.

Second dash number indicates length in 1/16 inch.

Dash numbers shown are for carbon steel rivets.

C after basic part number indicates copper rivet (available in nominal diameters of 1/16 through 3/16 inch only).

F after basic part number indicates corrosion-resistant steel rivet.

M after basic part number indicates Monel rivet (available in nominal diameters of 1/16 through 1/4 inch only).

C after first dash number indicates cadmium-plated rivet.

U after first dash number indicates unplated, carbon steel rivet.

Z after first dash number indicates zinc-plated rivet.

P after last dash number indicates carbon steel rivet, either cadmium- or zinc-plated.

Example of part number:

AN435-2-2P = cadmium- or zinc-plated carbon steel rivet, 1/16-inch diameter, 1/8-inch long.

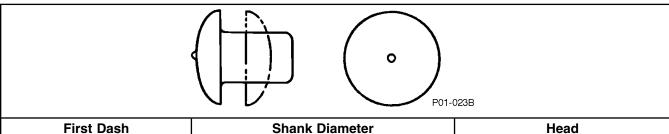
AN435M2C2 = cadmium-plated Monel rivet, 1/16-inch diameter, 1/8-inch long.

Material:

Carbon steel, Federal Specification QQ-W-409 or QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-W-423.

Monel, Federal Specification QQ-N-281.


Copper, Federal Specification QQ-W-341.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Zinc plating, Federal Specification QQ-Z-325.

Table 1-17. MS20470 Universal Head, Common, Solid Shank Rivet

First Dash Number	Shank Diameter -0.001	Head Diameter
-2	0.062 + 0.003	0.125 ± 0.006
-3	0.094 + 0.003	0.187 ± 0.009
-4	0.125 + 0.0035	0.250 ± 0.012
-5	0.156 + 0.004	0.312 ± 0.016
-6	0.187 + 0.004	0.375 ± 0.019
-8	0.250 + 0.004	0.500 ± 0.025
-10	0.312 + 0.004	0.625 ± 0.031
-12	0.375 + 0.004	0.750 ± 0.037

First dash number indicates nominal diameter in 1/32 inch.

Second dash number indicates length in 1/16 inch.

A after basic part number indicates 1100-H14 aluminum rivet.

AD after basic part number indicates 2117-T4 aluminum alloy rivet.

B after basic part number indicates 5056-H32 aluminum alloy rivet.

D after basic part number indicates 2017-T4 aluminum alloy rivet.

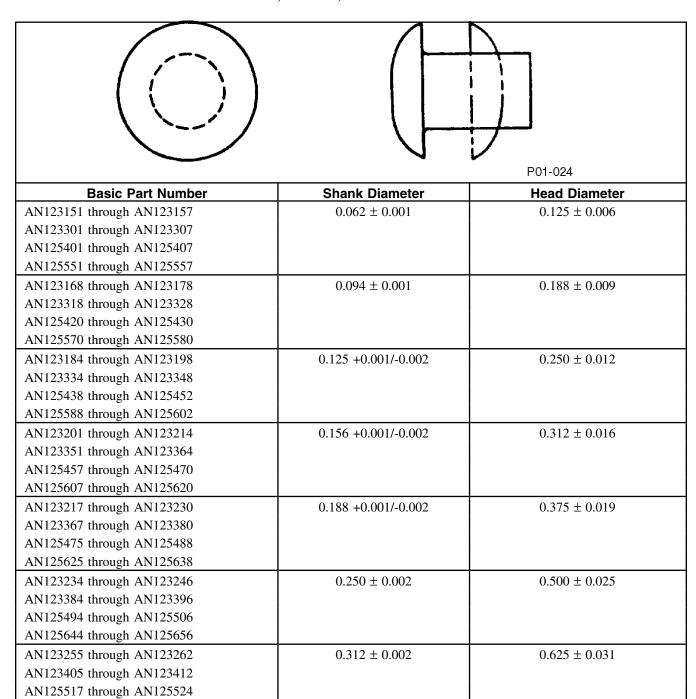
DD after basic part number indicates 2024-T4 aluminum alloy rivet.

Example of part number:

AN470A2-12 = 1100-H14 aluminum rivet, 1/16-inch diameter, 3/4-inch long.

Material:

1100-H14 aluminum, Military Specification MIL-W-7986.


2017-T4 aluminum alloy, Military Specification MIL-W-7986.

2024-T4 aluminum alloy, Military Specification MIL-W-7986.

2117-T4 aluminum alloy, Military Specification MIL-W-7986.

5056-H32 aluminum alloy, Military Specification MIL-W-7986.

Table 1-18. AN123151 through AN123300, Universal Head, High Temperature, Common, Solid Shank Rivets; AN123301 through AN123450, Universal Head, High Temperature, Common, Solid Shank Rivets; AN125401 through AN125550, Universal Head, Common, Solid Shank Rivets; and AN125551 through AN125700, Universal Head, Common, Solid Shank Rivets

 0.375 ± 0.002

AN125667 through AN125674 AN123272 through AN123278

AN123422 through AN123428 AN125536 through AN125542 AN125686 through AN125692 0.750 ± 0.037

Table 1-18. AN123151 through AN123300, Universal Head, High Temperature, Common, Solid Shank Rivets; AN123301 through AN123450, Universal Head, High Temperature, Common, Solid Shank Rivets; AN125401 through AN125550, Universal Head, Common, Solid Shank Rivets; and AN125551 through AN125700, Universal Head, Common, Solid Shank Rivets - Continued

Material:

Corrosion- and heat-resistant steel, Aeronautical Material Specification AMS7229 (applicable to AN123151 through AN123300 only).

Corrosion- and heat-resistant steel, Aeronautical Material Specification AMS7232 (applicable to AN123301 through AN123450 only).

Corrosion-resistant steel, Aeronautical Material Specification AMS7228 (applicable to AN125401 through AN125550 only).

Steel, Aeronautical Material Specification AMS7225 (applicable to AN125551 through AN125700 only). Finish:

Cadmium plating, Aeronautical Material Specification AMS2400 (applicable to AN125551 through AN125700 only).

Table 1-19. AN123451 through AN123600, Countersunk Head, High Temperature, Common, Solid Shank Rivets; AN123601 through AN123750 Countersunk Head, High Temperature, Common, Solid Shank Rivets; and, AN124951 through AN125100, 100-Degree Countersunk Head, Common, Solid Shank Rivets

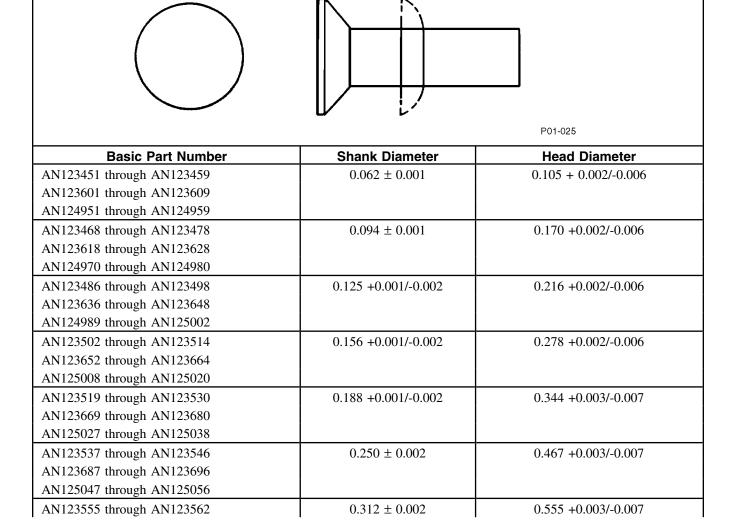


Table 1-19. AN123451 through AN123600, Countersunk Head, High Temperature, Common, Solid Shank Rivets; AN123601 through AN123750 Countersunk Head, High Temperature, Common, Solid Shank Rivets; and, AN124951 through AN125100, 100-Degree Countersunk Head, Common, Solid Shank Rivets - Continued

Basic Part Number	Shank Diameter	Head Diameter
AN123705 through AN123712		
AN125067 through AN125074		
AN123572 through AN123578	0.375 ± 0.002	0.685 + 0.003/-0.007
AN123722 through AN123728		
AN125086 through AN125092		

Corrosion- and heat-resistant steel, Aeronautical Material Specification AMS7229 (applicable to AN123451 through AN123600 only).

Corrosion- and heat-resistant steel, Aeronautical Material Specification AMS7232 (applicable to AN123601 through AN123750 only).

Corrosion- and heat-resistant steel, Aeronautical Material Specification AMS7228 (applicable to AN124951 through AN125100).

1.2.2 Common, Solid Shank Rivet Strength. For structural applications, strength of the replacement rivet is of primary importance. Replacement should not be made with rivets of lower strength material unless the difference in strength is compensated for by use of a larger rivet. For example, a rivet of 2024-T4 material should not be replaced by a rivet of 2017-T4 or 2117-T4 material unless the next larger size is used. Similarly, when 2117-T4 rivets are used to replace 2017-T4 rivets, the next larger size should be used. Table 1-20 gives the allowable shear strength for raised head, machine countersunk, and simple countersunk rivets. Since shear values of rivets are dependent upon sheet thickness, Table 1-20 also shows single and double shear strength factors for figuring shear strength of rivets in various sheet thicknesses. Sheet thickness is that of the thinnest sheet in single shear joints and the middle sheet in double shear joints. The values of shear strength should be multiplied by the strength factors given in Table 1-20 when the ratio of hole diameter divided by sheet thickness is greater than 3.0 for single shear joints or 1.5 for double shear joints. See paragraph 1.2.5 for other factors which affect the interchangeability of rivets with respect to head styles. A17050 rivets may be used as an optional substitute when strength is considered.

1.2.3 Common, Solid Shank Rivet Heat Treatment. For specific details in the heat treatment of metals used in rivets, refer to T.O. 1-1A-9, U.S. and British Commonwealth of Nations Aircraft Metals. The 2024-T4 rivets must never be driven while in a hardened condition. Rivets of 2024-T4 material must be driven within 20 minutes after quenching to avoid cracking, unless the rivets are kept at low temperatures. These rivets may be stored in dry ice for a period of two weeks, or for 24 hours when stored in ordinary ice. When removed from storage they must be driven within 20 minutes. If care is exercised, 2024-T4 rivets may be heat treated repeatedly without injury to the alloy. The number of heat treatments should be controlled on the basis of workability after repeated heat treatments. Parts to be riveted should be heat treated before

riveting, since heat treating after riveting will cause the parts to warp. In addition to warping, the salt solution cannot be thoroughly washed out of crevices, which result in corrosive action on the parts.

1.2.4 <u>Selection of Common, Solid Shank Rivets</u>. The AN rivet code designation gives head type, material, and dimensions. To determine the correct rivet length for a given job, add to the thickness of the material through which the rivet must pass the values calculated as shown in Table 1-21.

1.2.5 Common, Solid Shank Rivet Substitution and Interchangeability. Substitution of rivets depends on material, size, and head style. Material considerations, as specified in paragraph 1.1.3, must be followed in substituting one rivet material for another. Where replacement of aluminum alloy rivets is necessary, the AN470 universal head rivets should be used to replace roundhead, flathead, and brazier head rivets. However, existing stocks of AN430, AN442, and AN456 rivets should be used until depleted. Countersunk rivets must be replaced by rivets of the same type and degree of countersink. If the required countersunk rivet heads are not available, a raised head rivet may be driven from the opposite side and upset into the countersink. Care must be taken in this operation to keep the flat surface of the tools parallel to the work. Rivet length should be such that both the hole and the countersink are completely filled. If this procedure is impractical, the drilled-out rivet head may be used as a washer, and a brazier head rivet inserted and driven in the normal manner. In this procedure, care must be taken to drill the hole in the center of the countersunk rivet head.

NOTE

The procedures outlined above should be confined to interior work and should not be used in exterior applications on flush-riveted skin surfaces.

1.2.6 Replacement of Common, Solid Shank Rivets with Special Rivets. In certain cases, common, solid

shank rivets may be replaced by special rivets. (Refer to paragraphs 1.3.15 and 1.3.24.)

Table 1-20. Shear Strength of Aluminum Alloy Rivets (Pounds per Rivet)

			Raised H	lead Rivet	 S			
					iameter			
Rivet Material	1/16	3/32	1/8	5/32	3/16	1/4	5/16	3/8
2117-T4	106	217	389	596	860	1556	2458	3511
2017-T4	120	246	441	675	974	1764	2786	3979
2024-T4	144	296	532	814	1175	2127	3359	4798
5056-H32	95	195	347	536	774	1400	2210	3160
			100° Dimple	Counters	unk			
2117-T4		276	480	735	1020			
2017-T4		300	530	810	1130			
2024-T4		350	620	950	1325			
		1	100° Machin	e Counter	sunk		,	
2117-T4		186	331	518	745			
2017-T4		206	368	574	828			
2024-T4		241	429	670	966			
Shear	r Strengths	of Protrud	ing and Flu	sh Head A	luminum Al	loy Rivets	(Pounds)	
5056	99	203	363	556	802	1450	2290	3280
2117-T3	106	217	388	596	862	1550	2460	3510
2017-T31	120	247	442	675	977	1760	2790	3970
2017-T3	135	275	494	755	1090	1970	3110	4450
2024-T31	145	296	531	815	1180	2120	3360	4800
		Singl	e Shear Riv	et Strengt	h Factors			
Sheet Thickness								
0.014								
0.016	0.964							
0.018	0.984							
0.020	0.996							
0.025	1.000	0.972						
0.032		1.000	0.964					
0.036			0.980					
0.040			0.996	0.964				
0.045			1.000	0.980				
0.051				0.996	0.972			
0.064				1.000	1.000	0.964		
0.072						0.980	0.964	
0.081						0.996	0.974	
0.091						1.000	0.984	
0.102							0.996	0.972
0.128							1.000	1.000

Table 1-20. Shear Strength of Aluminum Alloy Rivets (Pounds per Rivet) - Continued

		Singl	e Shear Riv	et Strength	า Factors			
Sheet Thickness								
0.156								
0.188								
0.250								
		Doub	le Shear Riv	vet Strengt	h Factors			
Sheet Thickness								
.014								
.016	0.688							
.018	0.753							
.020	0.792							
.025	0.870	0.714						
.032	0.935	0.818	0.688					
.036	0.974	0.857	0.740					
.040	0.987	0.896	0.792	0.688				
.045	1.000	0.922	0.831	0.740				
.051		0.961	0.870	0.792	0.714			
.064		1.000	0.935	0.883	0.818	0.688	'	
.072			0.974	0.919	0.857	0.740		
.081			1.000	0.948	0.896	0.792	0.688	
.091				0.974	0.922	0.831	0.753	
.102				1.000	0.961	0.870	0792	0.71
.128					1.000	0.935	0.883	0.81
.156						0.987	0.935	0.88
.188						1.000	0.974	0.93
.250							1.000	1.00

Rivet Diameter	Material Thickness	Add
1/4 inch or less	1/2 inch or less	1-1/2 X diameter of rivet
1/4 inch or less	Over 1/2 inch	1-1/2 X diameter of rivet +1/16 inch for every 1/2 inch of material thickness
5/16 inch or more	1 inch or less	1-1/2 X diameter of rivet
5/16 inch or more	Over 1 inch	1-1/2 X diameter of rivet +1/16 inch for every 1 inch of

Table 1-21. Calculating Correct Rivet Length

1.2.7 Replacement of Common, Solid Shank Rivets with Bolts and Screws. Cadmium- or zinc-plated steel standard bolts or NAS, AN, or MS structural screws may be used to replace standard, solid shank rivets only when the proper rivets or riveting equipment are not available. In such cases, steel bolts or screws the same size as the replaced rivet are adequate. Care should be taken to obtain a close fit in such installations. Zinc-plated bolts are not to be used in place of stainless steel rivets where subjected to temperatures in excess of 371°C (700°F), because of rapid deterioration. Cadmium-plated bolts are not to be used in place of stainless steel rivets where subjected to temperatures in excess of 204°C (400°F), because of lessened resistance to corrosion at the higher temperatures. Countersunk head screws may be used to join thin, dimpled sheets with threads in bearing, since the load carried from sheet to sheet through the dimples imposes a load on the screw in tension rather than in shear.

1.2.8 Installation of Common, Solid Shank Rivets. After drilling and prior to driving the rivets, the parts to be joined must be secured firmly in position to prevent slipping during riveting. C-clamps may be used for this purpose, or any of several varieties of skin fasteners may be inserted in previously drilled holes. (See Figure 1-10.) Self-tapping screws may also be used, but they must be small enough so that the holes may be reworked to the proper rivet size. Take care when installing the screws to prevent the screwdriver from marring the skin surface. When riveting thin gage materials, care must be taken in handling rivet tools to avoid damaging the material. All aircraft power riveting is done by upsetting or heading the rivet shank against a bucking bar. The three methods of driving rivets are: hand, squeeze, and pneumatic gun.

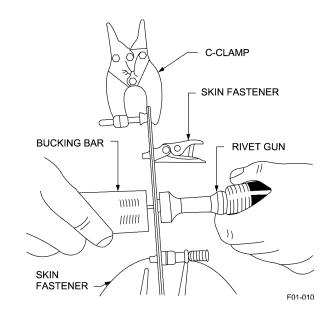


Figure 1-10. Fasteners for Riveting

1.2.9 <u>Driving Common, Solid Shank Rivets by Hand</u>. Hand riveting should be done only when power riveting is impossible due to lack of facilities or to inaccessibility to work area. Hand riveting is generally accomplished by driving from the head end and bucking the shank, or by driving from the shank end and bucking the head with a rivet set attached to a bucking bar. A 12– to 16-ounce ballpeen hammer is heavy enough to drive most rivets. The bucking bar and rivet set must be held square to the work. To get good results, as few hammer strokes as possible should be used. It is possible to install countersunk rivets by bucking the shank and driving on the head; however, it is preferable to insert a nonflush rivet and upset the shank into the countersink.

1.2.10 Driving Common, Solid Shank Rivets Using Rivet Squeezers. The squeeze method is limited to locations where it is effective and is used only over the edge of sheets. The two types of riveters, hand and pneumatic, are basically the same, the difference being in the actuating power. One jaw of the squeezer is stationary and

serves as a bucking bar, while the movable jaw upsets the shank. (See Figure 1-11.)

1.2.11 Driving Common, Solid Shank Rivets Using Pneumatic Rivet Gun. The pneumatic rivet gun (Figure 1-12) used in conjunction with a separate bucking bar (Figure 1-13) is the most common and most satisfactory method of riveting. It is used with a rivet set and applied to the head end of the rivet. Pressure is applied in a series of rapid strokes and the shank end is upset against the bucking bar. The gun and bucking bar must be held at right angles to the work at all times, and sufficient pressure exerted to keep the tools from jumping off the rivet. Excessive pressure should be avoided because it may result in dented surfaces and bent stringers.

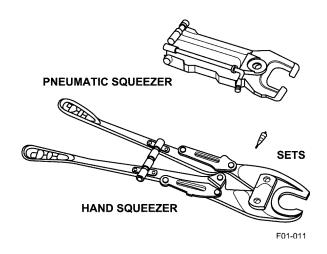


Figure 1-11. Rivet Squeezers

1.3 RIVET SETS.

A rivet set is a tool with a die in one end for driving a particular type of rivet and is used in both hand and pneumatic methods. Rivet sets are made of hardened, polished steel. They must be kept smooth and well-polished at all times.

- 1.3.1 <u>Rivet Draw Sets</u>. A draw set (Figure 1-14) is essentially a rod with a hole drilled in one end which is 1/32-inch larger than the rivet shank for which it is made. The depth of the hole is sufficiently shallow to expand the shank of the rivet at the same time the rivet draws the sheets together.
- 1.3.2 <u>Rivet Bucking Bars</u>. Bucking bars are made in a variety of shapes to facilitate rivet bucking in any possible

location. They are made of hardened steel and must be kept clean, smooth, and well-polished at all times. Figure 1-13 gives general shapes for a set of bucking bars required to perform work in most locations of aircraft. Certain areas may require specially made bucking bars.

1.3.3 Rivet Driving Practice and Precautions. Inasmuch as riveting is the major means of joining aircraft parts, the proper procedures must be followed to maintain a high quality of workmanship. Examples of correctly and incorrectly driven rivets are shown in Figure 1-15. Table 1-22, which should be used with Figure 1-15, lists types of faulty rivet installations, their causes, and corrective action to be taken. The height of the shop head of a solid shank rivet should be 0.3 to 0.5 of the shank diameter. The diameter of the shop head should be 1.4 to 1.5 times the shank diameter. If there is any appreciable deviation, remove and replace rivet.

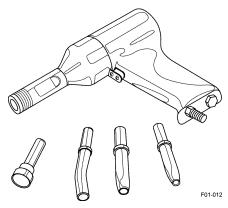


Figure 1-12. Pneumatic Rivet Gun and Rivet Sets

1.3.4 Pin Rivets. (Refer to Table 1-23 through Table 1-32.) Pin rivets are essentially threadless bolts. The pin is headed at one end and is grooved about the circumference at the other. A metal collar is swaged onto the grooved end, effecting a firm tight fit. Pin rivets are made in a variety of materials and are used only in shear applications. Due to the shear strength being greater than either the shear or bearing strength of aluminum alloys, pin rivets are used to greater advantage only in the thicker gage sheets. They are never used where the grip length is less than the shank diameter. The 100-degree countersunk type is used where flush surfaces are desired. An example of the part numbering system is shown in Table 1-23.

1.3.5 <u>Substitution of Bolts for Pin Rivets</u>. Pin rivets may be replaced with AN bolts of the same diameter and self-locking nuts, using flush head bolts for flush head rivets and protruding head bolts for protruding head rivets. The bolt thread must not extend into the material.

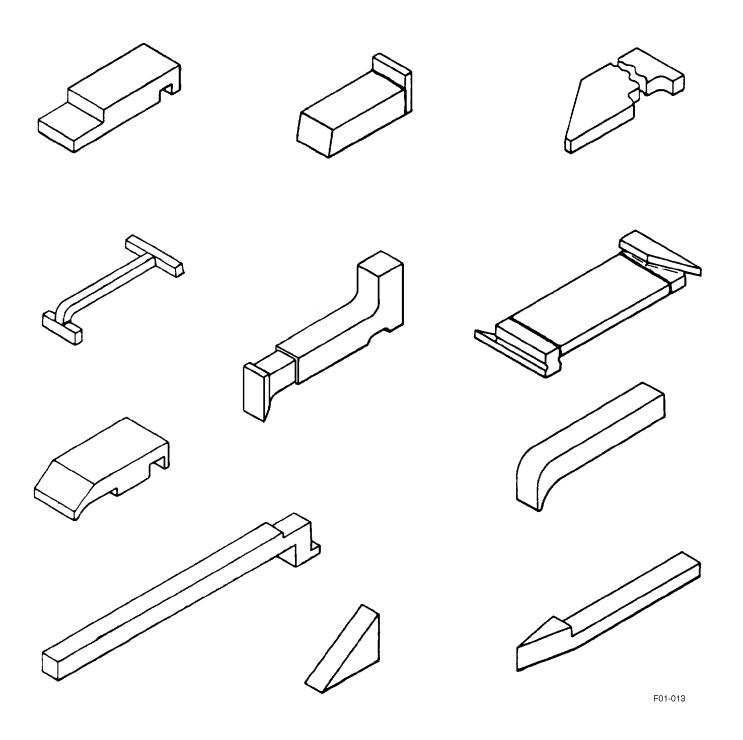


Figure 1-13. Types of Bucking Bars

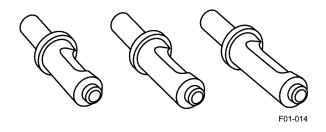


Figure 1-14. Draw Sets

1.3.6 <u>Selection of Pin Rivets</u>. The proper length rivet may be determined by the code or by trial. The last dash number gives the rivet grip length in sixteenths of an inch. In determining the correct length, the straight portion of the shank should not extend more than 1/16 inch through the work. If necessary, a washer may be placed under the collar or under the head of the stud as an adapter to give the proper shank protrusion.

1.3.7 Spotfacing for Installation of Pin Rivets. Spotfacing should be used under the head of a rivet where the surface is not level, but need not be used under the collar unless the angle of the surface is not perpendicular to the centerline of the rivet hole by more than five degrees. The size of the spotface for the head need not be much greater than the rivet diameter, but in the case of the collar, the spotface must often be large enough to allow for riveting tool clearance. (See Figure 1-5.)

Table 1-22. Correctly and Incorrectly Driven Rivets

	Imperfection	Cause	Remedy	Action
A	None.	None.	None.	None.
В	Cut head.	Improperly held tools.	Improperly held tools. Hold riveting tools firmly against work.	
С	Excessively flat head, resultant head cracks.	Excessive driving, too much pressure on bucking bar.	Improve riveting technique.	Replace rivet.
D	Sheet separation.	Work not held firmly together and rivet shank swelled.		
Е	Sloping head.	 a. Bucking bar not held firmly. b. Bucking bar permitted to slide and bounce over the rivet. Hold bucking bar without too much without too much slide and bounce over the rivet.		Replace rivet.
F	Buckled shank.	Improper rivet length, and E above.	E above and rivet of proper length.	Replace rivet.

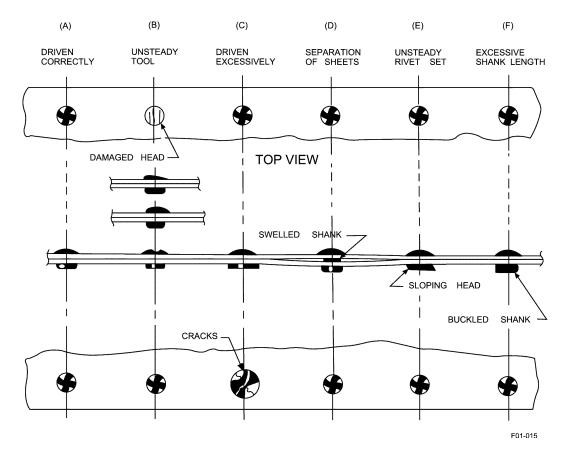
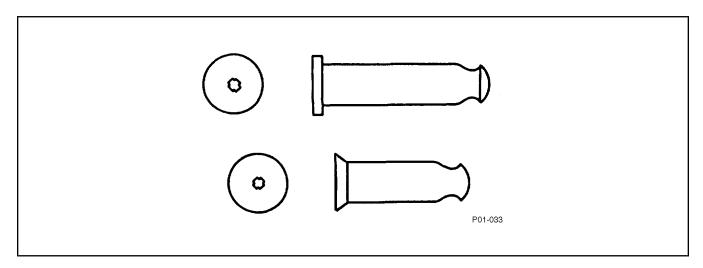



Figure 1-15. Correctly and Incorrectly Driven Rivets

Table 1-23. NAS177 100-Degree Countersunk Head, Pin Rivet ANS NAS178 Flathead Pin Rivet

	Shank Diameter			
First Dash Number	Min	Max		
-4	.1215	.1240		
-6	.1865	.1890		
-8	.2460	.2490		
-10	.3085	.3115		

Table 1-23. NAS177 100-Degree Countersunk Head, Pin Rivet ANS NAS178 Flathead Pin Rivet - Continued

	Shank I	Diameter
First Dash Number	Min	Max
-12	.3710	.3740
-14	.4330	.4365
-16	.4955	.4990
-18	.5575	.5615
-20	.6200	.6240
-24	.7440	.7490
-28	.8690	.8740
-32	.9930	.9990

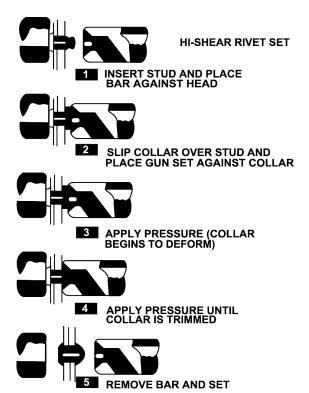
First dash number indicates nominal diameter in 1/32 inch.

Second dash number indicates maximum grip in 1/16 inch when NAS179 collar is used.

Example of part number:

NAS177-14-17 = pin rivet, 7/16-inch diameter, 1-1/16 inch maximum grip.

Material:


Steel, Military Specifications MIL-S-5626, MIL-S-6049, MIL-S-6050, MIL-S-6098, MIL-S-6758, and MIL-S-8695.

Heat treatment:

125,000 to 150,000 PSI, Military Specification MIL-H-6875.

Finish

Cadmium plating, Federal Specification QQ-P-416, Type I, Class C.

F01-016

Figure 1-16. Using Pin Rivet Set

1.3.8 Tools for Installation of Pin Rivets. The special tools required for use with pin rivets differ from conventional sets only in the design of the collar swaging and trimming features and the discharge port through which excess collar material is ejected. (See Figure 1-16.) Various tools and combinations of tools are available for installing rivets in limited-access areas.

1.3.9 <u>Installation of Pin Rivets</u>. Pin rivets may be driven from either end. With the exception of slipping the collar over the stud, and the use of the special rivet set, the general driving procedure is similar to that of common, solid shank rivets. (See Figure 1-17.)

1.3.10 Driving Pin Rivet from Collar End.

- a. Insert pin rivet into hole.
- b. Place bucking bar against rivet head.
- c. Slip the collar over end of protruding rivet end.
- d. Place rivet set over collar and align with rivet.
- e. Apply pressure on rivet set. Collar will form in locking groove on rivet.

f. Continue applying pressure until collar is properly formed, and excess collar material is trimmed off. (See Figure 1-18).

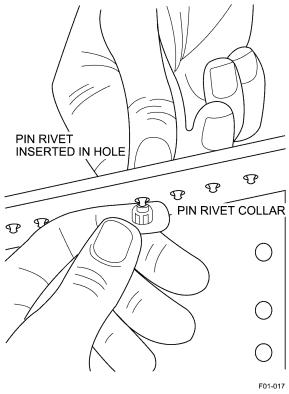


Figure 1-17. Inserting Pin Rivet

1.3.11 Driving Pin Rivet from Head End.

- a. Insert rivet in hole.
- b. Slip collar over protruding end of rivet and place bucking bar, with a rivet set insert into it, against the collar.

- c. Apply pressure with a rivet gun and flush rivet set from the head end until the collar is formed in the rivet groove.
- d. Continue applying pressure until excess collar material is trimmed off. (See Figure 1-19.)
- 1.3.12 <u>Precautions in Using Pin Rivets</u>. Use of pin rivets requires observance of certain precautions not associated with common, solid shank rivets. Those listed below, with examples shown in Figure 1-21, are those most frequently encountered.
 - a. Be sure sheets are clamped together firmly to avoid selecting a stud that is too long.
 - b. To assure that correct length stud is used, drive a few test rivets into a material of thickness equal to that of the actual work. The straight portion of the shank should not protrude more than 1/16 inch through the work.
 - c. Be sure rivet fits snugly in the hole. Pin rivets do not expand to fill oversize holes.
 - d. Keep rivet set aligned with rivet stud so that the collar will seat evenly, shear off evenly, and be uniform around the rivet.
 - e. Be sure the holes are properly aligned. Pin rivets are used where shear loads are high and the amount of bearing surface is critical.
 - f. Do not overdrive the rivet more than 1/32 inch, or the tensile strength of the collar-formed head will be reduced.
 - g. Do not underdrive the rivet. An underdriven rivet indicates that the collar has not been swaged completely into the rivet groove, and the rivet may fail under full tension loads.

Table 1-24. NAS525 100-Degree Countersunk Head, Close-Tolerance Head and Shank, Pin Rivet and NAS529 Flathead, Close-Tolerance Shank, Pin Rivet

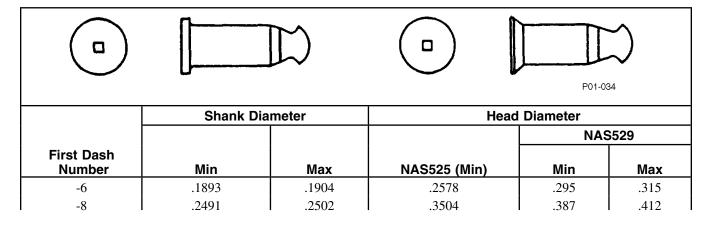


Table 1-24. NAS525 100-Degree Countersunk Head, Close-Tolerance Head and Shank, Pin Rivet and NAS529 Flathead, Close-Tolerance Shank, Pin Rivet - Continued

	Shank Dia	meter	Head Diameter			
				NAS	S529	
First Dash Number	Min	Max	NAS525 (Min)	Min	Max	
-10	.3116	.3127	.4289	.475	.505	
-12	.3741	.3752	.5149	.565	.600	
-14	.4366	.4377	.6047	.641	.676	
-16	.4990	.5001	.6901	.735	.770	
-18	.5615	.5626	.7655	.829	.864	
-20	.6238	.6250	.8518	.918	.953	

Dash numbers 6 through 12 are used with NAS528 collars.

Dash numbers 14 through 20 are used with NAS179 collars.

Code:

Second dash number indicates maximum grip in 1/16 inch.

Example of part number:

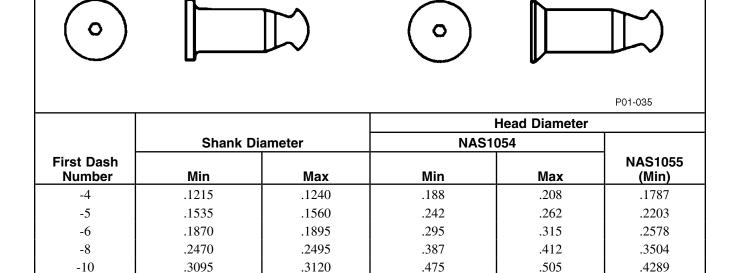
NAS529-12-16 = flathead, pin rivet, 1-inch maximum grip.

Material

Steel, Military Specifications MIL-S-6098, MIL-S-6049, MIL-S-5626, MIL-S-5000, MIL-S-6758, MIL-S-8695, and MIL-S-8503.

Heat treatment:

-12


160,000 to 180,000 PSI, Military Specification MIL-H-6875.

.3720

Finish:

Cadmium plating, Federal Specification QQ-P-416, Type I, Class C.

Table 1-25. NAS1054 Protruding Head, Pin Rivet and NAS1055 100-Degree, Flush, Close-Tolerance Head, Pin Rivet

.565

.600

.3745

.5149

Table 1-25. NAS1054 Protruding Head, Pin Rivet and NAS1055 100-Degree, Flush, Close-Tolerance Head, Pin Rivet - Continued

NAS1054 and NAS1055 pin rivets are used with NAS179 or NAS528 collars.

Code:

Second dash number indicates maximum grip in 1/16 inch.

Example of part number:

NAS1054-6-8 = protruding head, pin rivet, 1/2-inch maximum grip.

Material

Steel, Military Specifications MIL-S-6098, MIL-S-6049, MIL-S-8503, MIL-S-5626, MIL-S-5000, MIL-S-8695, and MIL-S-6758.

Heat treatment:

160,000 to 180,000 PSI, Military Specification MIL-H-6875.

Finish:

Cadmium plating, Federal Specification QQ-P-416, Type II, Class C.

Table 1-26. NAS1806 through NAS1816, Titanium Alloy, Flathead, Interference Fit, Pin Rivets and NAS1906 through NAS1916, Titanium Alloy 100-Degree Head, Interference Fit, Pin Rivets

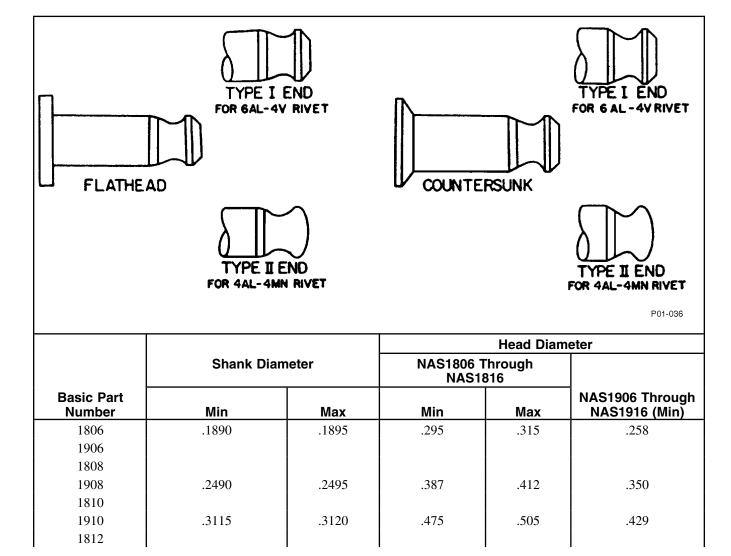


Table 1-26. NAS1806 through NAS1816, Titanium Alloy, Flathead, Interference Fit, Pin Rivets and NAS1906 through NAS1916, Titanium Alloy 100-Degree Head, Interference Fit, Pin Rivets - Continued

				eter	
	Shank Diameter		NAS1806 Through NAS1816		
Basic Part Number	Min	Max	Min	Max	NAS1906 Through NAS1916 (Min)
1912	.3740	.3745	.565	.600	.515
1814					
1914	.4365	.4370	.641	.676	.605
1816					
1916	.4990	.4995	.735	.770	.690

NAS1806 through NAS1812 and NAS1906 through NAS1912 are used with NAS528 collars.

NAS1814, NAS1816, NAS1914, and NAS1916 are used with NAS179 collars.

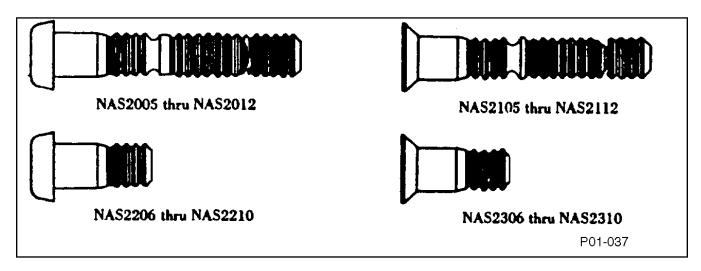
Code:

Last two digits of basic part number indicate nominal diameter in 1/32 inch.

Dash number indicates maximum grip in 1/16 inch.

V after basic part number indicates 6A1-4V titanium alloy rivet.

Example of part number:


NAS1808-12 = flathead, 4A1-4Mn titanium alloy, pin rivet, 1/4-inch diameter, 3/4-inch maximum grip.

NAS1908V12 = 100-degree head, 6A1-4V titanium alloy, pin rivet, 1/4-inch diameter, 3/4-inch maximum grip.

4A1-4Mn titanium alloy, National Aircraft Standard NAS621.

6A1-4V titanium alloy, National Aircraft Standard NAS621.

Table 1-27. NAS2005 through NAS2012 Pin, Rivet, Swage Locking, Titanium Alloy, Protruding Head, Tension, Pull Type; NAS2105 through NAS2112 Pin, Rivet, Swage Locking, Titanium Alloy, 100 Degree Head, Tension, Pull Type; NAS2206 through NAS2210 Pin, Rivet, Swage Locking, Titanium Alloy, Protruding Head, Tension, Stump Type; NAS2306 through NAS2310 Pin, Rivet, Swage Locking, Titanium Alloy, 100 Degree Head, Tension Stump Type

T.O. 1-1A-8

			Head Diameter					
	Shank D	Diameter	NAS2005 Through NAS2012		NAS2105 Through NAS2112	NAS2206 Throu NAS2210		
Basic Part Num- ber	Min	Max	Min	Max	and NAS2306 Through NAS2310 (Min)	Min	Max	
NAS2005								
NAS2105	.1635	.1640	.258	.282	.298			
NAS2006								
NAS2106	.1890	.1895	.297	.327	.344	.302	.317	
NAS2206								
NAS2306								
NAS2008								
NAS2108								
NAS2208	.2490	.2495	.390	.430	.454	.396	.411	
NAS2308								
NAS2010								
NAS2110								
NAS2210	.3115	.3120	.485	.535	.574	.500	.515	
NAS2310								
NAS2012	.3740	.3745	.595	.655	.693			
NAS2112								

NAS2005 and NAS2105 are used with NAS1080-5 collars.

NAS2006, NAS2106, NAS2206, and NAS2306 are used with NAS1080-6 collars.

NAS2008, NAS2108, NAS2208, and NAS2308 are used with NAS1080-8 collars.

NAS2010, NAS2110, NAS2210, and NAS2310 are used with NAS1080-10 collars.

NAS2012 and NAS2112 are used with NAS1080-12 collars.

Code:

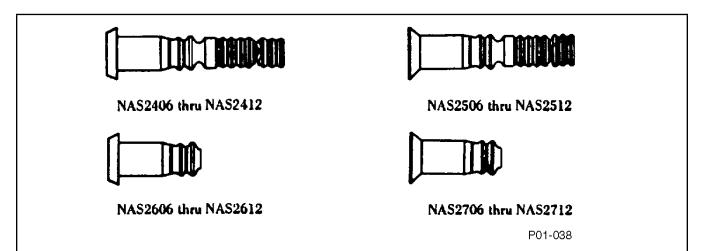
Last two digits of basic part number indicate nominal diameter in 1/32 inch.

Dash number indicates nominal grip in 1/16 inch.

V after basic part number indicates 6A1-4V titanium alloy rivet.

Example of part number:

NAS2206-8 = protruding head, 4A1-4Mn titanium alloy, pin rivet, 3/16-inch diameter, 1/2-inch nominal grip.


NAS2306VB = 100-degree head, 6A1-4V titanium alloy, pin rivet, 3/16-inch diameter, 1/2-inch nominal grip.

The above is also available with sealant escape groove; and "H" in place of NAS to part number, example H2306V8. Material:

4A1-4Mn titanium alloy, National Aircraft Standard NAS621.

6A1-4V titanium allov, National Aircraft Standard NAS621.

Table 1-28. NAS2406 through NAS2412 Pin, Rivet, Swage Locking, Titanium Alloy, Protruding Head, Shear, Pull Type; NAS2506 through NAS2512 Pin, Rivet, Swage Locking, Titanium Alloy, 100 Degree Shear Head, Pull Type; NAS2606 through NAS2612 Pin, Rivet, Swage Locking, Titanium Alloy, Protruding Head, Shear, Stump Type; NAS2706 through NAS2712 Pin, Rivet, Swage Locking, Titanium Alloy, 100 Degree Shear Head, Stump Type

			Head Diameter					
	Shank Diameter		and NAS26	ough NAS2412 06 Through 2612	NAS2506 Through NAS2512 and NAS2706 Through NAS2712			
Basic Part Number	Min	Max	Min	Max	Min*	Max*		
NAS2406								
NAS2506	.1890	.1895	.288	.302	.262	.305		
NAS2606								
NAS2706								
NAS2408								
NAS2508	.2490	.2495	.363	.377	.344	.399		
NAS2608								
NAS2708								
NAS2410								
NAS2510	.3115	.3120	.455	.471	.416	.479		
NAS2610								
NAS2710								
NAS2412								
NAS2512	.3740	.3745	.549	.565	.494	.566		
NAS2612								
NAS2712								

^{*}For Engineering reference only.

NAS2406, NAS2506, NAS2606, and NAS2706 are used with NAS1080-C6 collars.

NAS2408, NAS2508, NAS2608, and NAS2708 are used with NAS1080-C8 collars.

NAS2410, NAS2510, NAS2610, and NAS2710 are used with NAS1080-C10 collars.

NAS2412, NAS2512, NAS2612, and NAS2712 are used with NAS1080-C12 collars.

Code:

Last two digits of basic part number indicate nominal diameter in 1/32 inch.

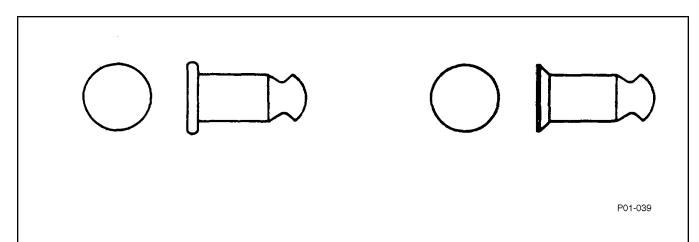
Table 1-28. NAS2406 through NAS2412 Pin, Rivet, Swage Locking, Titanium Alloy, Protruding Head, Shear, Pull Type; NAS2506 through NAS2512 Pin, Rivet, Swage Locking, Titanium Alloy, 100 Degree Shear Head, Pull Type; NAS2606 through NAS2612 Pin, Rivet, Swage Locking, Titanium Alloy, Protruding Head, Shear, Stump Type; NAS2706 through NAS2712 Pin, Rivet, Swage Locking, Titanium Alloy, 100 Degree Shear Head, Stump Type - Continued

Dash number indicates maximum grip in 1/16 inch.

V after basic part number indicates 6A1-4V titanium alloy rivet.

Example of part number:

NAS2406-8 = protruding head 4A1-4Mn titanium alloy, pin rivet, 3/16-inch diameter, 1/2-inch maximum grip.


NAS2506V8 = 100-degree head, 6A1-4V titanium alloy, pin rivet, 3/16-inch diameter, 1/2-inch maximum grip.

The above is also available with sealant escape groove: add "H" instead of NAS to part number, example H2506V8. Material:

4A1-4Mn titanium alloy, National Aircraft Standard NAS621.

6A1-4V titanium alloy, National Aircraft Standard NAS621.

Table 1-29. MS21000 Flathead, Oversize, Pin Rivet and MS21001 100-Degree Countersunk Head, Oversize, Pin Rivet

			Head Diameter			
	Shank Diameter		MS21000		MS21001	
First Dash Number	Min	Max	Min	Max	Min	Max
-7	.2197	.2186	.315	.295	.3016	.2966
-9	.2822	.2811	.412	.387	.3948	.3898
-11	.3447	.3436	.505	.475	.4739	.4689
-13	.4072	.4061	.600	.565	.5604	.5554
-15	.4697	.4686	.676	.641	.668	.662
-17	.5322	.5311	.770	.735	.754	.748

Code:

First dash number indicates nominal diameter in 1/32 inch.

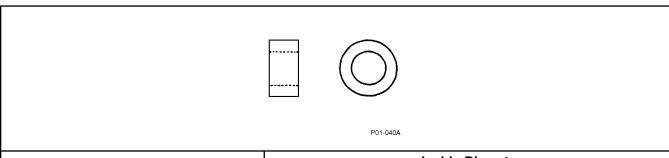
Second dash number indicates maximum grip in 1/16 inch.

Example of part number:

MS21000-7-3 = flathead, oversize, pin rivet, 7/32-inch nominal diameter, 3/16 inch maximum grip.

Material:

Table 1-29. MS21000 Flathead, Oversize, Pin Rivet and MS21001 100-Degree Countersunk Head, Oversize, Pin Rivet - Continued


Steel, Military Specification MIL-S-8695, MIL-S-6626, MIL-S-6049, MIL-S-6050, MIL-S-6098 or MIL-S-6758. Heat treatment:

160,000 to 180,000 PSI, Military Specification MIL-H-6875.

Finish:

Cadmium plate, Military Specification QQ-P-416, Type I, Class C

Table 1-30. NAS179 Pin Rivet Collar

	Inside Di	ameter
Dash Number	Min	Max
-4	.1240	.1280
-6	.1890	.1930
-8	.2490	.2530
-10	.3115	.3155
-12	.3740	.3780
-14	.4370	.4410
-16	.4990	.5030
-18	.5620	.5660
-20	.6240	.6280
-24	.7490	.7530
-28	.8740	.8780
-32	.9990	1.0030

Code:

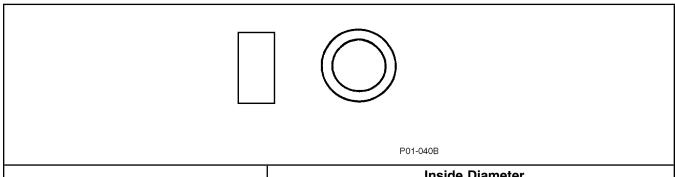
Dash number indicates nominal rivet diameter in 1/32 inch.

Example of part number:

NAS179-8 = pin rivet collar for 1/4-inch diameter rivet.

Material:

2117 aluminum alloy, Military Specification MIL-W-7986.


Heat treatment:

In accordance with Military Specification MIL-H-6088.

Finish:

Anodize, Military Specification MIL-A-8625.

Table 1-31. NAS528 Pin Rivet Collar

	Inside Diameter		
Dash Number	Min	Max	
-6	.1895	.1930	
-8	.2495	.2530	
-10	.3120	.3160	
-12	.3745	.3785	
-14	.4370	.4415	
-16	.5000	.5050	
-18	.5620	.5670	
-20	.6250	.6300	

Dash number indicates nominal rivet diameter in 1/32 inch.

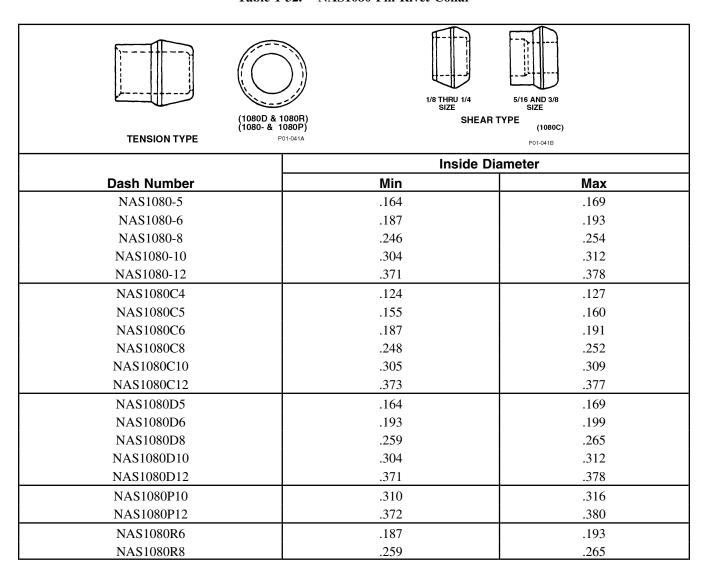
A before dash number indicates aluminum alloy collar.

Example of part number:

NAS528-A6 = aluminum alloy, pin rivet collar, for 3/16-inch diameter rivet.

Material:

2024-T4 aluminum alloy, Military Specification MIL-W-7986.


Heat treatment:

In accordance with Military Specification MIL-H-6088.

Finish:

Anodize, Military Specification MIL-A-8625.

Table 1-32. NAS1080 Pin Rivet Collar

Dash number indicates nominal rivet diameter in 1/32 inch.

No letter before dash number indicates 2024-T4 aluminum alloy, tension collar.

P or no letter before dash number indicates 2024-T4 aluminum alloy, tension collar.

R before dash number indicates carbon steel, tension collar.

Example of part number:

NAS1080-C6 = 2024-T4 aluminum shear collar for 3/16-inch diameter pin rivet.

Material:

Aluminum Alloy, Carbon Steel and Alloy Steel, National Aerospace Standard NAS1413.

- 1.3.13 <u>Removal of Pin Rivets</u>. The conventional method of removing rivets by drilling off the head may be utilized on either end of the pin rivet. (See Figure 1-20.) Center punching is recommended prior to applying drilling pressure. In some cases, the alternate methods listed below may be more desirable for particular instances.
- a. Grind a chisel edge on a small pin punch to a blade width of 1/8 inch. Place this tool at right angles to collar and drive with a hammer to split collar down one side. Repeat operation on opposite side, and with chisel blade, pry collar from rivet. Tap rivet out of hole.

- b. Use a special, hollow punch having one or more blades placed so as to split collar. Pry collar from groove and tap out rivet.
- c. Grind a pair of nippers so that cutting blades will cut collar in two pieces, or use nippers at right angles to rivet and cut through small neck.
- d. A hollow-mill collar cutter can be used in a power hand drill to cut away enough of collar material to permit rivet to be tapped out of work.

1.3.14 Self-Plugging Rivets (Friction Lock). (Refer to Table 1-33 through Table 1-35.) This self- plugging rivet (friction lock) retains the stem in position by friction. The stem is drawn up into the rivet shank and the mandrel portion of stem upsets the shank on the blind side, forming a plug in the hollow center of the rivet. The excess portion of the stem breaks off at a groove due to the continued pulling action of the rivet gun. The two styles of rivet heads are 100-degree countersunk, and universal. These correspond to AN426 and AN470 rivet types, respectively. Materials used are 2117-T4 and 5056-F aluminum alloys, and Monel for special applications. The shank diameter and grip length are designated by dash numbers after the basic part number. (See Table 1-36.)

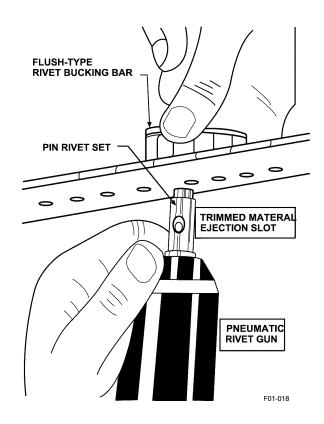
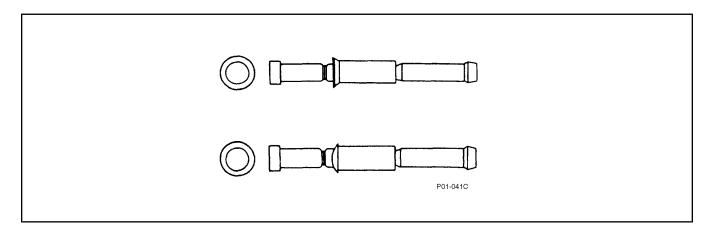



Figure 1-18. Driving Pin Rivet from Collar End

Table 1-33. NAS454-162C Blind, Countersunk Head, Self-Plugging Rivet (Friction Lock) and NAS455-163C Blind, Brazier Head, Self-Plugging Rivet (Friction Lock)

First Dash Number	Shank Diameter	Head Diameter
-4	1/8	.216/+.002006
-5	5/32	.278/+.002006
-6	3/16	.344/+.003007
-7	7/32	.406/+.003007

Table 1-33. NAS454-162C Blind, Countersunk Head, Self-Plugging Rivet (Friction Lock) and NAS455-163C Blind, Brazier Head, Self-Plugging Rivet (Friction Lock) - Continued

First Dash Number	Shank Diameter	Head Diameter
-8	1/4	.467/+.003007
-9	9/32	.510/+.003007

Second dash number indicates nominal grip in 1/32 inch.

Example of part number:

NAS454-162C-4-2 = self-plugging rivet, 1/6-inch nominal grip.

Material:

Hollow barrel, 2117T aluminum alloy, Military Specification MIL-W-7986.

Stem, 2017 aluminum alloy, Military Specification MIL-W-7986.

Finish:

Anodize, Military Specification MIL-A-8625

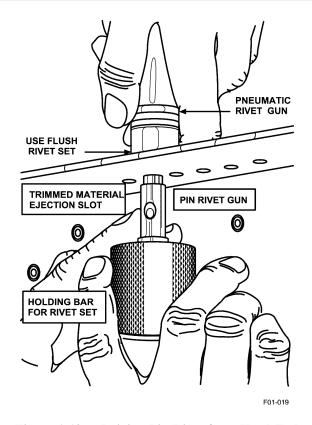


Figure 1-19. Driving Pin Rivet from Head End

1.3.15 <u>Substitution of Self-Plugging Rivets</u> (Friction <u>Lock</u>) for Common, <u>Solid Shank Rivets</u>. Self-plugging rivets (friction lock) should not be used on control surface hinge brackets, wing attachment fittings, landing gear fittings, fixed tail surface attachment fittings, or in other similar heavily stressed locations. These rivets also should not be used in hulls, floats, or tanks where a fluid-tight joint is required. Self-plugging rivets (friction lock) should not

be used to replace solid shank rivets unless absolutely necessary. The self-plugging rivet (friction lock), when properly installed, may be used to replace 2117-T4 solid shank rivets, size for size. When used to replace 2017-T4 rivets driven in the heat-treated and aged condition, or 2024-T31 solid rivets, the next size self-plugging rivet (friction lock) should be used. In replacement of solid shank rivets, the size of the hole must be checked. If the hole diameter, after removal of the solid shank rivet, exceeds the maximum allowable hole size, the next larger size self-plugging rivet (friction lock) should be used. Selfplugging rives (friction lock) shall not be used in a given joint to replace such a considerable number of solid rivets that overstressing of the remaining solid rivets may result. Table 1-37 covers the single shear strength of protruding head, self-plugging rivets (friction lock) when used in sheet thickness equal to, or greater than, those listed. Countersunk head rivets in dimpled sheets develop practically the same shear strength as the protruding head. The rivet holes should be drilled after the sheets are dimpled at the pilot holes. Countersunk rivets in machine countersunk sheets develop considerably lower shear strength. In thin gage sheets, the single shear strength for both protruding and countersunk heads will vary with the thickness of the sheets.

1.3.16 <u>Selection of Self-Plugging Rivets (Friction Lock)</u>. This type of self-plugging rivet permits rather broad tolerances from .004 to .006 inch in the hole sizes. The grip length is dependent upon the thickness of the material being riveted, with a desired protrusion of from 3/64 to 1/8 inch before drawing.

1.3.17 Installation Tools for Self-Plugging Rivets (Friction Lock). The guns used for installing this type of self-plugging rivet are the G-10 hand gun, and the G-15 and G-40 power guns. The G-15 power gun uses G-6H pulling heads as does the G-11 hand gun. The G-40 power gun uses the H-40 pulling heads primarily; however,

through the use of a 226 adapter, G-6H heads may be used. Extensions are available for all guns using G-6H heads. There is also a small hand gun, type G-20, to which a ratchet wrench is attached at the butt end and turned to pull the gun head and rivet stem. (See Figure 1-22.) The pulling heads are essentially an outer sleeve and a draw bolt. The heads are manufactured in three different sizes to accommodate the different rivet diameters. For ease of selection, the sizes are stamped on the parts of the pulling head.

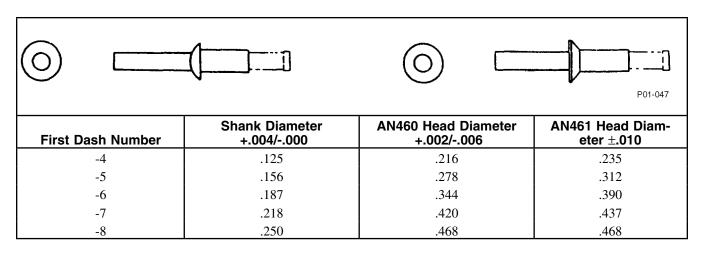
1.3.18 Installation of Self-Plugging Rivets (Friction Lock). It is important that the proper drawbolt and sleeve be used for the rivet being installed. The drawbolt should correspond to the diameter of the rivet, and the sleeve should correspond to the rivet diameter and head style. Speed of installation may be increased by inserting a number of rivets in the work and then applying the gun. In other instances, such as overhead work, it is apparent that this method would be impractical and the rivet should be loaded into the gun and then inserted into the prepared hole. The rivet must be completely inserted into the slot in the drawbolt, because improper seating of the rivet may permit the head to break off before the rivet is properly set. (See Figure 1-23.) When using a hand gun, hold the rigid handle of the gun parallel to the rivet axis. Open the movable handle as far as it will go, then partially close. Repeat this operation until the rivet stem breaks, then release the gun by completely closing the movable handle. When using the power gun, hold the head of the gun parallel to the axis of the rivet. Push the gun against the work with enough force to seat the head of the rivet firmly, and to insure contact between the parts being riveted. Pull the trigger until the stem breaks. The stem will be ejected through the rubber tube at the back of the gun head. It is important that this tube be in place in order to prevent stems from getting into the gun mechanisms.

1.3.19 <u>Self-Plugging Rivet (Friction Lock) Cutoff Tools.</u> There are three types of cutoff tools. (See Figure 1-24.) The most common cutoff tool is the flatground hand nippers. The type 220 and 225 trimmers attach to a power drill for rolling a locking burr on the rivet as it is trimmed. The type 220 accommodates diameters of 1/8, 5/32, and 3/16 inch, while the type 225 trims 7/32, 1/4, and 9/32-inch diameters. The third type of trimmer is the type 301 stem saw, which attaches to a power drill for sawing off the stem flush with the rivet head.

1.3.20 <u>Inspection of Self-Plugging Rivets (Friction Lock)</u>. When the blind side of the rivet is visible, some

variation in the rivet head characteristics will be noted. See Figure 1-25 for examples of satisfactory and unsatisfactory installations. If the blind side of the rivet is not visible, the rivet may be tested by applying force to the rivet pin. Table 1-38 shows the forces to be applied for different diameter rivets.

NOTE


The values contained in Table 1-38 were taken from Procurement Specification MIL-R-7885. Since these values were intended for qualification testing of the rivets, no spindle testing tools are available from Air Force stock. If these rivets have been correctly installed, especially in regards to the grip length and hole diameter, it is not considered necessary to perform this test. However, if an incorrect rivet installation is suspected, it may be tested by applying the force shown in the table.

1.3.21 The rivet is satisfactory if the pin is firm and the head is seated tightly on the face of the material. Occasionally, the head will rise slightly in the area which was under the slot of the pulling head. This condition is acceptable if the head is not loo badly deformed and the tension characteristics of the joint are not made critical by the deformation of the head.

1.3.22 Removal of Self-Plugging Rivets (Friction Lock). These rivets are removed in much the same manner as the common, solid shank rivets, except the preliminary step of driving out the rivet stem. (See Figure 1-26.)

- a. Punch out the rivet stem with a pin punch.
- b. Drill out the rivet head, using a drill the size of the rivet shank.
- c. Pry off the weakened rivet head with a pin punch.
- d. Push out the remainder of the rivet shank with a punch. If the shank will not push out, drill the shank, taking care not to enlarge the hole in the material. If the hole should be enlarged, finish-drill for an oversize rivet.

Table 1-34. 460 Blind, 100-Degree Countersunk Head, Self-Plugging Rivet (Friction Lock) and 461 Blind, Brazier Head, Self-Plugging Rivet (Friction Lock)

Code: First dash number indicates nominal diameter in 1/32 inch.

Second dash number indicates nominal minimum grip in 1/100 inch.

Example of part number: 461-4-16 = self-plugging rivet (friction lock), 1/8-inch nominal diameter, 16/100-inch nominal minimum grip.

Material: Aluminum alloy.

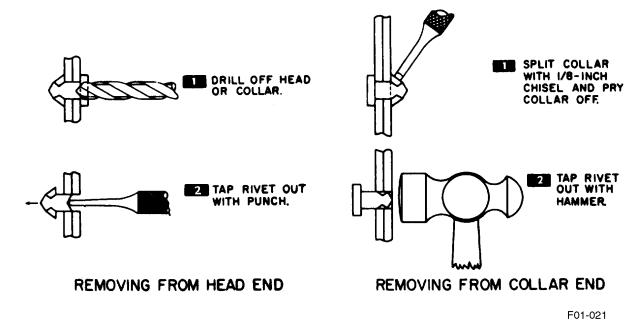
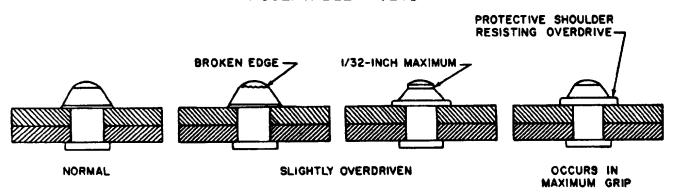
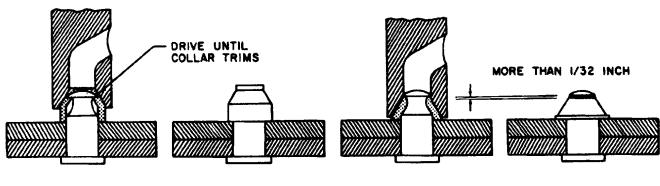
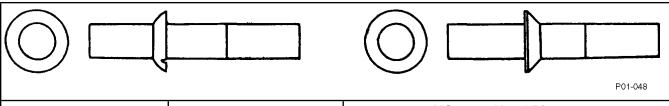




Figure 1-20. Removing Pin Rivet


ACCEPTABLE RIVETS

UNACCEPTABLE RIVETS


UNDERDRIVEN COLLAR - DO NOT REMOVE, BUT CONTINUE DRIVING UNTIL COLLAR TRIMS OVER DRIVEN COLLAR-REMOVE

F01-020

Figure 1-21. Pin Rivet Inspection

Table 1-35. MS20600 Blind, Mechanically Expanding, Protruding Head, Self-Plugging Rivet (Friction Lock) and MS20601 100-Degree Countersunk Head, Self-Plugging Rivet (Friction Lock)

		MS20600 Head Diameter		
First Dash Number	Shank Diameter +.003/001	Brazier Head ±.010	Universal Head	
-AD4	.125	.235	.250 ±.012	
-AD5	.156	.312	.312 ±.016	
-AD6	.187	.390	.375 ±.019	
-AD8	.250	.468	.500 ±.025	

AD after basic part number indicates 2117-T4 aluminum alloy rivet.

B after basic part number indicates 5056-H32 aluminum alloy rivet.

Second dash number indicates maximum grip in 1/16 inch.

Example of part number:

MS20600AD5-5 = self-plugging rivet, 5/16-inch maximum grip.

Material:

2117-T4 and 5056-H32 aluminum alloy, Federal Specification MIL-W-7986.

Finish:

Anodize, Military Specification MIL-A-8625, or surface treat, Military Specification MIL-C-5541.

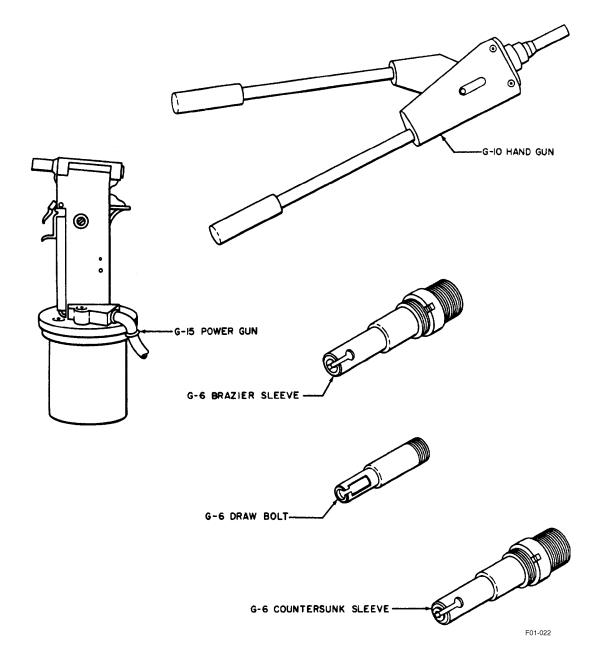


Figure 1-22. Self-Plugging Rivet (Friction Lock) Installation Tools

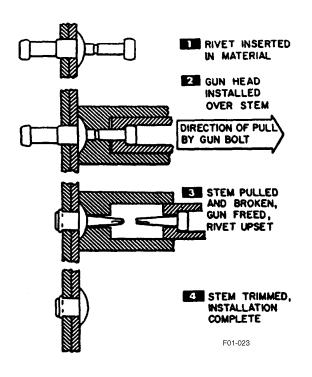
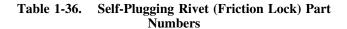



Figure 1-23. Self-Plugging Rivet (Friction Lock)
Installation

MS Number	Material	Head Style
MS20600AD4-1	2117-T4 alumi- num alloy	Universal head
MS20600B4-1	5056-aluminum alloy	Universal head
MS20601AD4-1	2117-T4 alumi- num alloy	Countersunk head
MS20601B4-1	5056-aluminum alloy	Countersunk head

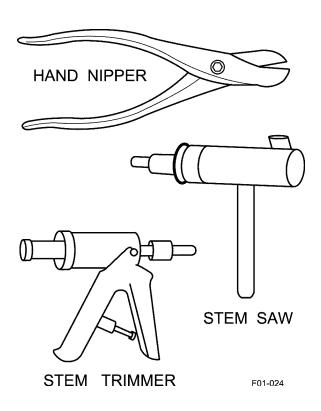


Figure 1-24. Self-Plugglng Rivet (Friction Lock)
Cutoff Tools

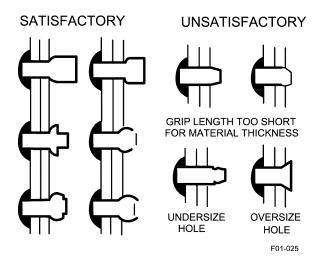


Figure 1-25. Inspection of Self-Plugging Rivets (Friction Lock)

Rivet Diameter	Rivet Hole Diameter	Sheet Thickness	Shear Strength In Pounds
1/8	.129	.040	387
5/32	.160	.050	598
3/16	.192	.064	858
7/32	.220	.072	1152
1/4	.257	.081	1556

Table 1-37. Single Shear Strength for Self-Plugging Rivets (Friction Lock)

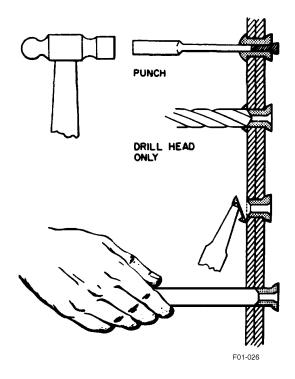


Figure 1-26. Removal of Self-Plugging Rivets (Friction Lock)

1.3.23 Self-Plugging Rivets (Mechanical Lock). Rivet B in Figure 1-1 is a blind rivet that operates on the same principal as rivet A, both employing a mandrelled stem and hollow shank. The main difference in A and B is in the method of pin retention: rivet A relies on friction for pin retention, while the rivet B employs a mechanical lock between the head of the rivet and the pull stem. The rivet is made of 5056 aluminum alloy sleeve with 2024 aluminum alloy pin or a monel sleeve with 17-4 PH stainless steel pin or an A286 sleeve and pin. The blind end portion of the stem incorporates a head and a land with an extruding angle which expands the rivet shank.

Table 1-38. Testing Self-Plugging Rivets (Friction Lock)

Rivet Diameter (Inch)	Pin Force (Pounds)
1/8	15
5/32	25
3/16	35
1/4	50

1.3.24 Substitution of Self-Plugging Rivets (Mechanical Lock) for Common, Solid Shank Rivets. The loads allowable for the self-plugging rivets are comparable to those for solid shank rivets of the same shear strength, regardless of sheet thickness. The composite ultimate shear strength of the 5056-H14 shank and the 2024-T36 pin exceeds 38,000 PSI on standard rivet hole diameter; their tensile strength is in excess of 28,000 PSI. Pin retention characteristics are excellent in these rivets and the possibility of the pin working out is minimized by the lock formed in the rivet head. Table 1-39 covers the single shear strength for these rivets when used in sheet thicknesses equal to, or greater than, those listed. In thin sheets, the shear strength will be different for each thickness. On countersunk head rivets used in dimpled sheets, the shear strength is approximately the same as for protruding head rivets the shear strength will be considerably less. (See Table 1-51 and Table 1-52 for substitutability.)

1.3.25 <u>Selection of Self-Plugging Rivets (Mechanical Lock)</u>. The B rivets in Figure 1-1 are manufactured in 1/8, 5/32, 3/16, and 1/4 inch diameters in brazier head and countersunk head styles. Grip ranges are shown in Table 1-40.

1.3.26 Installation Tools for Self-Plugging Rivets (Mechanical Lock). Tools and nose assemblies for installing these rivets are shown in Table 1-41. The nose of the tool includes: a set of chuck jaws which fit the pull grooves in the rivet pin and pull it through the rivet shank to drive the rivet; an outer anvil which bears against the outer part of the manufactured head during the driving operation; and, an inner anvil which advances automatically to drive the locking collar home after the blind head is formed. A short nose assembly, interchangeable with the

standard nose assembly, is available for use in areas where there is not sufficient clearance for the standard nose.

1.3.27 <u>Driving Self-Plugging Rivets (Mechanical Lock)</u>. Proper driving procedures are vital to obtain a firm joint. The recommended procedures are as follows:

NOTE

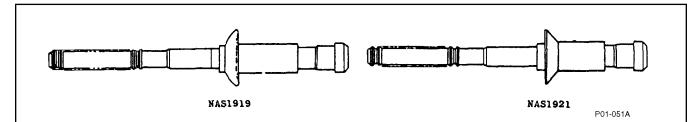
The driving cycle and tooling are the same for like diameters and materials.

- Material to be joined must be secured firmly in position. Cleco or other temporary fasteners may be used.
- b. Determine thickness of material to be joined.
- c. Select diameter and proper length fastener.
- d. Insert proper fastener in prepared hole.
- Select proper installation tool and nose assembly for diameter of fastener to be installed.
- f. Place the nose assembly of the installation tool over the serrated pull grooves of the blind rivet pin.
- g. Installation tool and nose assembly must be aligned with the fastener and held firmly against the head of the fastener.
- h. Actuate the tool by depressing the trigger, the head of the serrated pin is pulled up to contact the end of the sleeve. The sleeve is then squeezed between the head of the pin and the nose assembly of the installation tool. The head of the pin upsets the sleeve to form a strong bulbed head on the blind side of the joint. When the blind head has been formed, the tool automatically forces the locking collar (at the pin-tail end of the sleeve) into the conical space between the recess in the head and

the locking groove in the pin. The tool continues to pull breaking the pin-tail from the installed fastener. The pin-tail is ejected from the tool.

1.3.28 <u>Driving Sequence for Self-Plugging Rivets</u> (<u>Mechanical Lock</u>). The rivet is actually cold-squeezed by the action of the pin head drawing against the hollow shank end. Shank expansion through the action of the extruding angle, blind head formation, and setting of the mechanical lock in the rivet head all follow in automatic sequence and require but a fraction of a second.

NOTE


In some places, such as near the trailing edge of a control surface, there may not be sufficient space between the two surfaces to insert the rivet. In such cases, the pin may be forced into the hollow shank until the head of the pin just touches the end of the shank. Since no further shank expansion will result, the drill hole should not be enlarged to provide a free fit of the already expanded rivet. To insert the rivet, use a hollow drift pin which will accommodate the rivet pin and the locking collar. (See Figure 1-27.) This allows a driving force to be exerted on the head of the rivet. Drive the head into firm contact with the sheet and then apply the rivet pull tool in the usual manner to upset the rivet.

1.3.29 Due to the mechanical lock feature of the pin and sleeve, the driven rivet is substantially the mechanical equivalent of a one-piece solid rivet. The mechanical lock feature increases the load-carrying capacity in single shear from about 10.3 percent in the case of thick sheets where joint strength is considered critical in rivet shear, to as much as 63.3 percent in thin sheets where sheet bearing is considered critical.

Table 1 20	Single Cheen Strongt	o for Colf Dlugging	Rivets (Mechanical Lock)
Table 1-39.	Single Shear Strengti	n tor Selt-Piligging	Rivers (Wiechanical Lock)

		Shear Strength		
Rivet Diameter	Rivet Hole Diameter	Alum	Monel	A286
1/8	.129/.132	495	1020	1090
5/32	.160/.164	755	1565	1670
3/16	.192/.196	1090	2260	2400
1/4	.256/.261	1970	4000	4250

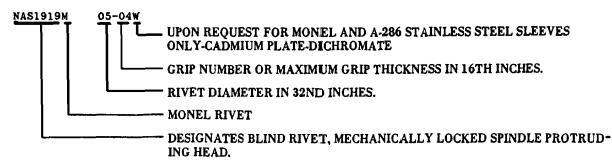
Table 1-40. Self-Plugging Mechanical Locked Spindle Blind Rivet - Rivet B

			Head Diameter			
	Shank Diameter NAS19		1919	NAS1921		
Basic Part No.	Min	Max	Min	Max	Min	Max
NAS1919*04 NAS1921*04	.124	.128	.238	.262	.221	.229
NAS1919*05 NAS1921*05	.155	.159	.296	.328	.282	.290
NAS1919*06 NAS1921*06	.186	.190	.356	.394	.349	.357
NAS1919*08 NAS1921*08	.249	.253	.475	.525	.472	.480

*RIVET COMPOSITION CODE LETTER

CODE:

FIRST DASH NUMBER DESIGNATES DIAMETER IN .0312 INCREMENTS.


SECOND DASH NUMBER DESIGNATES MAXIMUM GRIP IN .0625 INCREMENTS. ADD "B" AFTER BASIC NUMBER FOR COMPOSITION B ALUMINUM RIVET.

ADD "C" AFTER BASIC NUMBER FOR COMPOSITION C A286 CRES RIVET.

ADD "M" AFTER BASIC NUMBER FOR COMPOSITION M MONEL RIVET ADD "W"

AFTER SECOND DASH NUMBER FOR CADMIUM PLATED RIVET SLEEVE. ADD "O" (ZERO) BEFORE SINGLE DIGIT DASH NUMBERS FOR COMPUTER PRINTOUT.

EXAMPLE OF PART NUMBER:

P01-051B

PROCUREMENT SPECIFICATION NAS 1900

NOTE

Rivet "B" in Figure 1-1 is a Self-Plugging Mechanical Locked Spindle Blind Rivet. These are available in 5056 Aluminum Alloy, Monel and A286 Stainless Steel in both Protruding Head and 100 Degree Head Styles

		Model 200 Installation Tool	Model 350 Installation Tool
Fastener	Dia.	Nose Assembly Part No.	Nose Assembly Part No.
NAS1919B	1/8 inch	78975	78975
NAS1919C	5/32 inch	99-454	78976*
NAS1919M	3/16 inch	99-455	78977*
	1/4 inch	99-789*	
NAS1921B	1/8 inch	78972	78972
NAS1921C	5/32 inch	99-458	78973*
NAS1921M	3/16 inch	99-459	78974*
	1/4 inch	99-740*	
*Aluminum only			

Table 1-41. Self-Plugging Blind Rivet Mechanical Lock Installation Tool and Nose Assembly Selection

1.3.30 <u>Self-Plugging</u> <u>Rivet</u> (<u>Mechanical Lock</u>) <u>Removal</u>. Removal of this rivet is accomplished easily without damage to the work by use of the following procedure. (See <u>Figure 1-28</u>.)

- a. Shear the lock by driving out the pin, using a tapered steel drift pin not over 3/32-inch diameter at the small end. If working on thin material, back up the material while driving out the pin. If inaccessibility prohibits this, partially remove the rivet head by filing, or with a rivet shaver. An alternative would be to file the pin flat, center punch the flat, and carefully drill out the tapered part of the pin forming the lock.
- b. Pry the remainder of the locking collar out with a drift pin.
- c. Use the proper size drill to drill nearly through the rivet head. For a 1/8-inch diameter rivet, use a number 31 drill; for a 5/32, use a number 24; and, for a 3/16, use a number 15.
- d. Break off the drilled head, using a drift pin as a pry.
- e. Drive out the remainder of the rivet with a pin having a diameter equal to, or slightly less than, the rivet diameter.

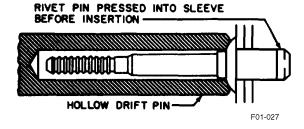


Figure 1-27. Inserting Self-Plugging Rivet (Mechanical Lock)

1.3.31 Inspection of Self-Plugging Rivet (Mechanical Lock). Visual inspection of the seating of the pin in the manufactured head is the most reliable and simple means of inspection. (See Figure 1-30.) If the proper grip length has been used and the locking collar and broken end of the pin are approximately flush with the manufactured head, the rivet has been properly upset and the lock formed. Insufficient grip length would be indicated by the pin breaking below the surface of the manufactured head, and excessive grip length would be indicated by the pin breaking off well above the manufactured head. In either case, the locking collar might not be properly seated, thus forming an unsatisfactory lock. Figure 1-29 gives limits for proper pin seating.

1.3.32 Explosive Rivets.

WARNING

Since the explosive rivet presents a fire hazard, it must not be driven in locations where gasoline or other flammable vapors are likely to be present.

(Refer to Table 1-42.) Explosive rivets are blind, expansion rivets used in areas of limited access. The rivets have a cavity in the shank which contains a small explosive charge. The explosive charge is detonated by the application of heat to the rivet head. Upon detonation of the charge, the shank expands in the material and forms a bulbed head on the blind side. Figure 1-31 shows various types of explosive rivets. The blast-free rivets are safer to use in that the fire hazard has been greatly reduced by the development of the plug for the shank explosive cavity. Explosive blind rivets are manufactured in brazier head and countersunk head types.

1.3.33 <u>Substitution of Explosive Rivets for Common, Solid Shank Rivets</u>. Explosive rivets shall not be used on control surface hinge brackets, wing attachment fittings, landing gear fittings, fixed tail surface attachment fittings, or in other similar heavily stressed locations. The rivets should be used only in applications where it is possible to hold the sheets or materials to be fastened by clamps or

other suitable means while the rivets are expanded. In cases of dimpled assembly, the rivet holes should be drilled after the sheets are dimpled at the pilot holes. Explosive rivets should not be used in the manufacture or repair of fuel tanks or oil tanks. These rivets should only be used on allmetal or noninflammable materials. Explosive rivets may be used for patching hulls and floats, provided that a suitable seam-sealing material or compound can be used. Explosive rivets may be used as replacement for 2017-T4 and 2117-T4 solid shank rivets, size for size. Explosive rivets one size larger must be used for 2024-T4 solid shank rivets. Explosive rivets shall not be used in a given joint to replace such a considerable number of solid rivets that overstressing of the remaining solid rivets may result. Table 1-43 covers the single shear strength for protruding head, explosive rivets when used in sheet thickness equal to, or greater than, those listed. In thin sheets, the shear strength will be lower and different for each thickness. Countersunk rivets in dimpled sheets develop practically the same shear strength as the protruding head rivets, while the shear strength of countersunk head rivets in machine countersunk sheets is considerably lower than that of the protruding head rivets.

1.3.34 <u>Selection of Explosive Rivets</u>. The selection of the proper explosive rivet should be based on required shank diameter, head type, grip length, and location of installation. Figure 1-32 may be used as an aid in determining the grip length requirement.

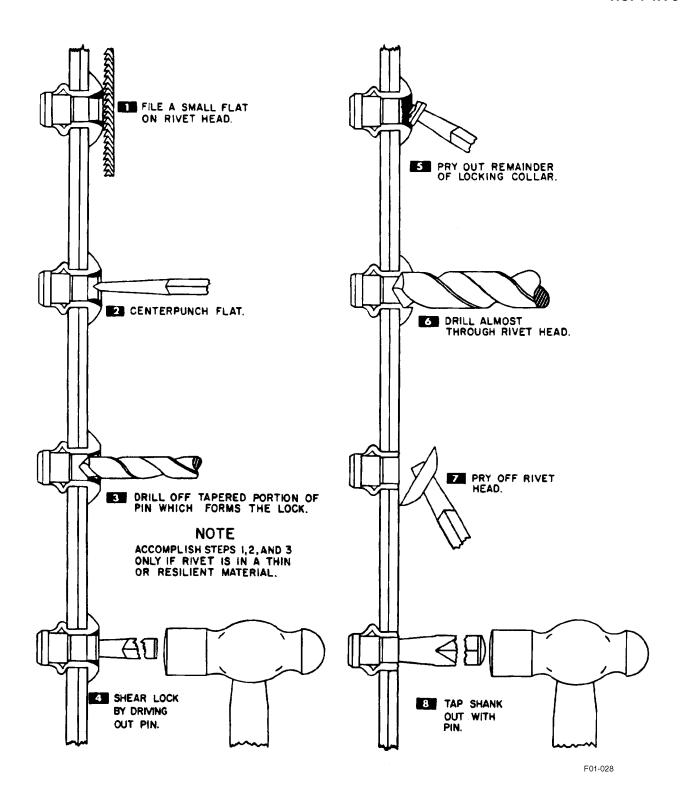
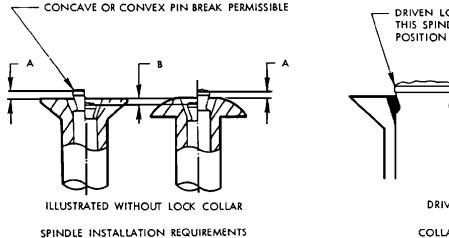
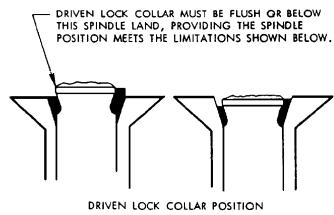




Figure 1-28. Removing Self-Plugging Rivet (Mechanical Lock)

COLLAR INSTALLATION REQUIREMENTS

NOMINAL RIVET DIA	A DIM	B DIM	
.125	.018	.008	"A" MAX ALLOWABLE DISTANCE OF TOP OF LAND OF SPINDLE ABOVE RIVET HEAD.
.156	.022	.010	
. 190	.025	.012	"8" MAX ALLOWABLE DISTANCE OF TOP OF
,250	.032	.016	LAND OF SPINDLE BELOW RIVET HEAD

DIMENSIONS IN INCHES

SPINDLE AND COLLAR FLUSHNESS LIMITS

F01-099

Figure 1-29. Inspection Criteria for Self-Plugging Rivets (Mechanical Lock)

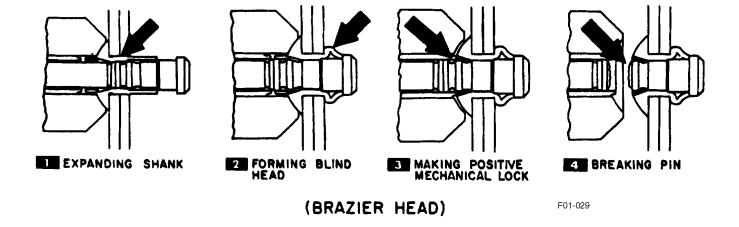
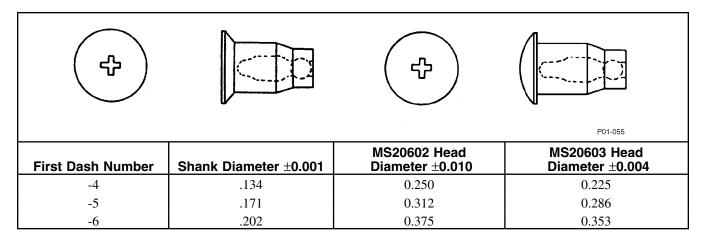



Figure 1-30. Forming of Self-Plugging Rivet (Mechanical Lock) Head

Table 1-42. MS20602 Blind, Brazier Head, Explosive Rivet and MS20603 100-Degree Countersunk Head, Explosive Rivet

Second dash number indicates nominal maximum grip in 1/100 inch.

D after basic part number indicates 2017-T4 aluminum alloy rivet.

B after basic part number indicates 5056-H32 aluminum alloy rivet.

Example of part number:

MS20602D4-32 = 2017-T4 aluminum alloy explosive rivet, brazier head, 32/100-inch nominal maximum grip.

Material:

2017-T4 and 5056-H32 aluminum alloy, Federal Specification MIL-W-7986.

Finish:

Anodize, Military Specification MIL-A-8625, or surface treat, Military Specification MIL-C-5541.

Table 1-43. Single Shear Strength for Explosive Rivets

Rivet Diameter	Rivet Hole Diameter	Sheet Thickness	Shear Strength
1/8 Inch	0.135 Inch	0.040 Inch	440 Pounds
5/32 Inch	0.173 Inch	0.050 Inch	780 Pounds
3/16 Inch	0.204 Inch	0.064 Inch	1085 Pounds

1.3.35 Special Tools for Explosive Rivets. A number of tools are available for installing explosive rivets. Riveting iron numbers 7, 8, and 9A are soldering iron types and are most commonly used in repair work. (See Figure 1-33.) The number 7 iron is most frequently used for all regular diameter rivets up to 3/16 inch. There are several interchangeable iron tips for use with the different rivet head styles. Special tips with 45 and 90-degree offsets are available for riveting in difficult locations. A heater control unit is used with the riveting irons to control the iron heat and to insure uniform rivet expansion time. There are various types of heater control units. Each has a rating of 860 volt-amperes, a rated current of 5 amperes, a maximum current of 75 amperes, an input of 115 volts AC, and an output voltage of from 0 to 135 volts.

1.3.36 Operation of Riveting Irons.

- a. Plug heater control unit into proper electrical outlet and plug riveting iron into heater control.
- b. Set heater control knob to setting for rivet being expanded, and allow iron to heat up.
- c. To prevent damaging the tip by overheating, heat the iron for 15 minutes at the low setting. Then press the tip firmly against a small rivet in a 0.190 to 0.204-inch thick aluminum alloy test sheet. If expansion does not take place in three seconds, advance heater control knob. Wait ten minutes then try expanding another rivet. Repeat the operation until expansion takes place in from 1.5 to 3 seconds.

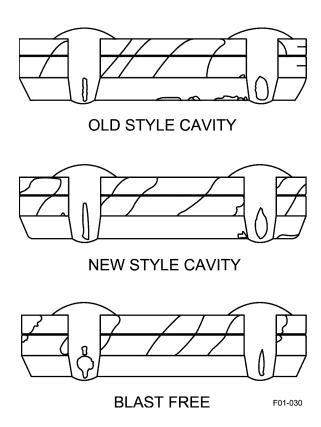


Figure 1-31. Types of Explosive Rivets

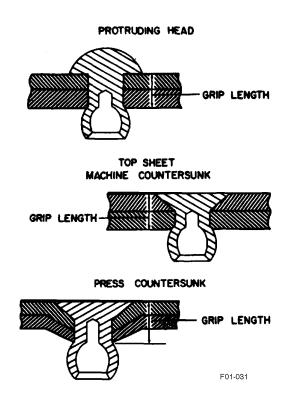


Figure 1-32. Explosive Rivet Grip Lengths

1.3.37 Maintenance of Riveting Irons and Tips.

- a. Handle with care to prevent damage to heating elements and tips.
- b. Keep all stud screws tight.
- c. Keep heater head recess threads and bevel clean.
- d. Riveting iron tips are made of special metal and should not be filed. The points of the tips should be reshaped with a wire brush periodically to assure satisfactory rivet expansion.

1.3.38 Installation of Explosive Rivets.

- a. Insert the rivet. A push fit by hand is desirable, but a wooden mallet may be used to tap the rivet lightly to ensure a satisfactory seat. Be careful not to damage the protective coating on the shank and head.
- b. After the rivet iron has reached the proper temperature, apply firmly to rivet head. Avoid contact between the surrounding sheet and the rivet head. (See Figure 1-34.)
- c. The rivet should expand in from 1.5 to 6 seconds. Remove the riveting iron from the rivet immediately after expansion.

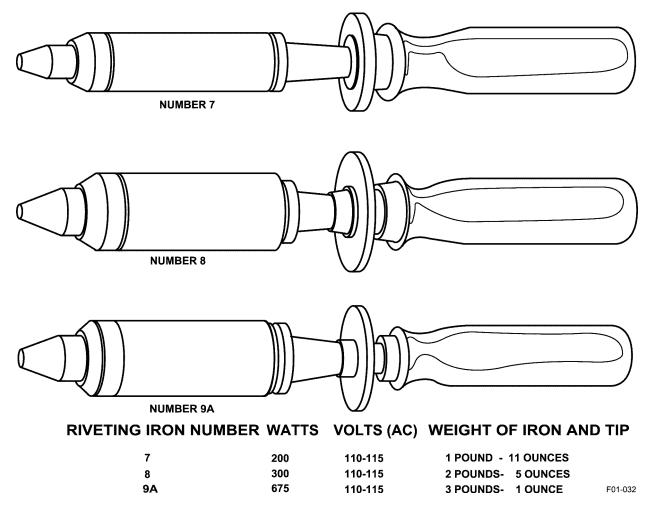


Figure 1-33. Explosive Rivet Riveting Irons

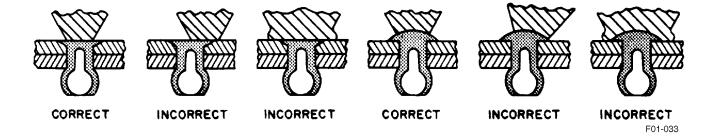


Figure 1-34. Explosive Rivet Installation

1.3.39 Precautions in Using Explosive Rivets.

- a. Explosive rivets must be handled with care and kept in the original, properly marked containers.
- b. Explosive rivets must be expanded with manufacturer approved riveting irons only.
- c. Explosive rivets are not to be installed in holes exceeding the maximum diameters given in Table 1-6.
- d. Unexpanded rivets must not be thrown in trash. If the rivets are misshapen and unfit for use, place in a suitable sturdy container and destroy by heating over a forge or open fire.

e. Rivets spilled from containers should not be used until inspected and found serviceable. Serviceable rivets should be replaced in their proper boxes.

WARNING

Do not expand explosive rivets in the presence of flammable vapors. Wings or other structures containing gasoline vapors must have inspection covers removed for circulation of free air or should be purged with carbon dioxide, when available, before riveting is started. If liquid gasoline is present, the structure must be thoroughly dried and ventilated until all traces of gasoline vapors have been removed.

- f. Explosive rivets must be kept cool and dry, and should not be exposed to temperatures in excess of 52°C (125°F) while in storage.
- g. Where riveting is totally blind and expansion cannot be checked, it is recommended that rivets be expanded periodically in open sheets to check for proper expansion.
- 1.3.40 Internally Threaded Rivets (Two Piece). Internally threaded rivets (two piece) are blind riveting devices consisting of a barrel and a head. The rivet is made in 100 degree countersunk or flat-head styles with the heads fabricated from either aluminum or steel. The barrels are made of aluminum alloy and have either open or closed blind ends. When installed, the barrel screws up over an enlarged segment of the head shank and expands to grip the metal on the blind side. (See Figure 1-35.)
- 1.3.41 <u>Selection of Internally Threaded Rivets (Two Piece)</u>. Internally threaded rivets (two piece) are made in three diameters. <u>Table 1-44</u> lists the diameters and part numbers for various metal thicknesses.
- 1.3.42 <u>Installation Tools for Internally Threaded Rivets (Two Piece)</u>. The component parts of the hand driving tool are shown in Figure 1-36. Adapter information is given in Table 1-44.
- 1.3.43 <u>Installation of Internally Threaded Rivets (Two Piece)</u>. (See Figure 1-37.)
 - Attach the correct head driver and barrel blade on the tool.

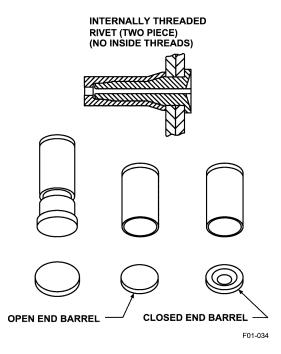


Figure 1-35. Internally Threaded Rivet (Two Piece)

- b. Place the internally threaded rivet (two piece) over the barrel blade and against the head driver. Align head slots with the driving teeth on the head driver. Align the barrel blade with the rectangular hole in end of barrel.
- Adjust pawl lever on the ratchet handle for proper ratchet direction for tightening the barrel.
- d. Insert the rivet in the hole, holding the head of the rivet against the driving head.
- e. Apply pressure and turn blade handle counterclockwise. The barrel blade will turn the rivet barrel and draw it against the head shoulder and sheet.
- f. Take a one-eighth to one-quarter turn on the ratchet to tighten the barrel firmly, then remove the tool.
- 1.3.44 Rivnuts. (Refer to Table 1-45 and Table 1-47.) Rivnuts are internally threaded and counterbored tubular rivets that can be headed blind and are used where bucking access is impossible. Rivnuts are made of 6053 aluminum alloy or steel, with either a flat or countersunk head. (See Figure 1-38.) The blind end of the rivet shank is manufactured in both open and closed ends. Special tools are required for installation. Rivnuts may be used as attaching plates in thin-walled material, or if no attachments are incorporated, the hole in the rivnut may be plugged with a steel screw.

Table 1-44. Sizes and Part Numbers for Internally Threaded Rivets (Two Piece)

	Alumin	um Flathead F	Part Number	Steel F	lathead Part I	Number
Metal Thickness	.187 Dia	.234 Dia	.265 Dia	.187 Dia	.234 Dia	.265 Dia
.010045	6811	6875	6915	6816	6870	6910
.045080	6812	6876	6916	6817	6871	6911
.080 115	6813	6877	6917	6818	6872	6912
.115150	6814	6878	6918	6819	6873	6913
.150185	6815	6879	6919	6820	6874	6914
Use Adapter Number	18	16	16	18	15	15
		uminum 100-l		Si	teel 100-Degre	ee
Metal Thickness	Counte	ersunk Head F	Part Number	Counters	unk Head Pa	rt Number
.045085	6935	6905	6925	6930	6900	6920
.085120	6936	6906	6926	6931	6901	6921
.120155	6937	6907	6927	6932	6902	6922
.155190	6938	6908	6928	6933	6903	6923
.190225	6939		6929	6934		
Use Adapter Number	18	16	16	18	15	15

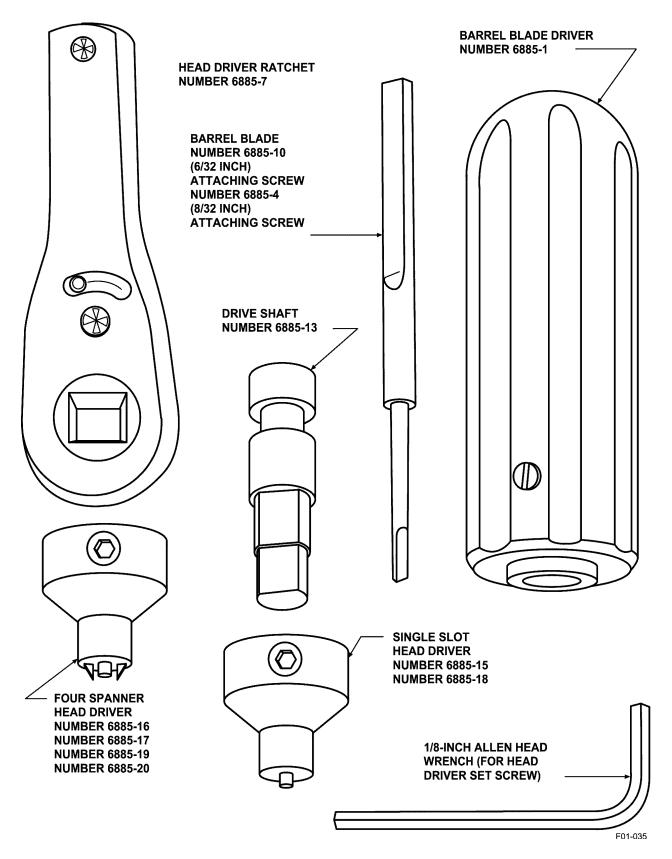
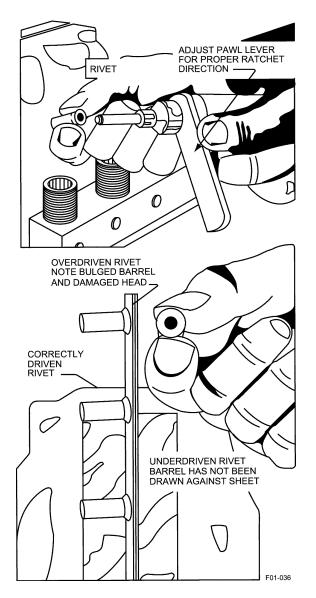



Figure 1-36. Hand Driving Tool for Internally Threaded Rivets (Two Piece)

1.3.45 Selection of Rivnuts. Table 1-49 gives grip lengths for all sizes and types of rivnuts. Each of the types is made in three thread sizes: number 6-32 (3/16-inch shank); number 8-32 (7/32-inch shank); and, number 10-32 (1/4-inch shank). Each type is also available in six grip ranges, shown in Table 1-45. The number at the left in each column indicates the machine screw size of the thread. The number at the right in each column indicates the maximum grip in thousandths of an inch. A dash between the two numbers indicates open end keyless; a B, closed end keyless; a K, open end with key; and a KB, closed end with key. If the figures at the right in each column are divisible by 5, the rivnut is the flathead type; if not divisible by 5, the rivnut is a countersunk type. Figure 1-39 gives information useful in determining the correct grip length for a particular job.

1.3.46 <u>Installation Tools for Rivnuts</u>. Both power and hand-operated tools are used to install rivnuts. The tools incorporate a threaded mandrel which is threaded into the rivnut prior to insertion of the rivnut into the material. Hand tools are made for straight, 45 degree, and 90 degree installations. A special tool is provided for forming keyways for keyed rivnuts. The keyway tool will not accommodate the heavier gage sheets. In these cases, a keyway can be made with a small round file.

Figure 1-37. Installation of Internally Threaded Rivets (Two Piece)

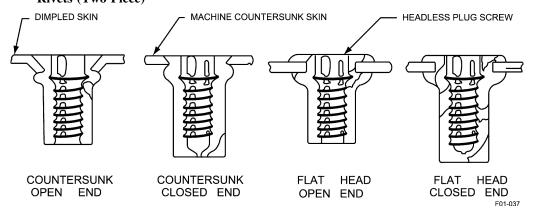
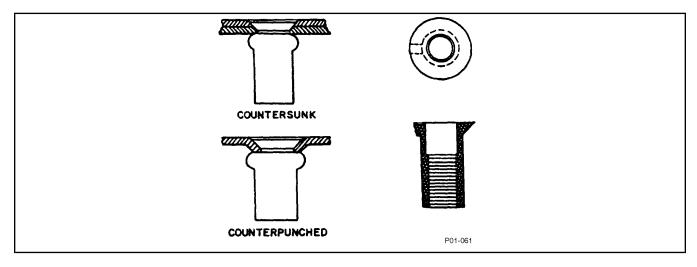



Figure 1-38. Types of Rivnuts

Table 1-45. NAS452 100-Degree Countersunk Head, Rivnut Rivet

Dash Number	Shank Diameter ±.0015	Attachment Screw Size
-6-106		
-6-161	.189	6-32 NC-2
-6-201		
-6-221		
-8-106		
-8-161	.221	8-32 NC-2
-8-221		
-10-136		
-10-201	.251	10-32 NF-2
-10-221		
-10-261		

Second dash number indicates maximum grip in 1/1000 inch.

K after first dash number indicates rivnut rivet with key.

L after first dash number indicates self-locking, rivnut rivet.

S after second dash number indicates cadmium-plated, steel, rivnut rivet.

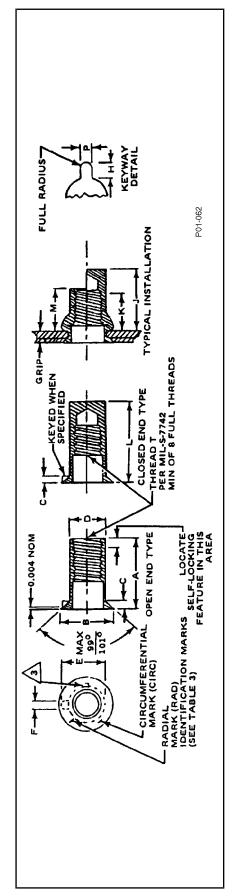
If attachment screws are not used with rivnut rivets, they may be filled with plug screws.

Example of part number:

NAS452-6K-106-S = rivnut rivet, cadmium-plated steel, .106-inch maximum grip, with a key.

Material:

6063W aluminum alloy.


AISI 1108 steel.

Finish:

Cadmium Plating, Federal Specification QQ-P-416.

Anodize, Military Specification MIL-A-8625

Table 1-46. Nut, Blind Rivet - Countersunk Head, Internal Thread, Non-Locking (Free Running) or Self-Locking (Prevailing Torque)

			r							
	Keyway Dimensions	н	.046 - .048	- 950. 950.	- 950. - 058	- 950. 950.	- 950. - 058	.097 - .102	.110 -	.135 - .140
	Key Dimer	P +.003/ 000	.062	.062	.062	.062	.062	.128	.128	.159
	Install Hole Size	Max	.157	.193	.226	.256	.338	.423	.500	.650
	Install F	Min	.155	.189	.221	.250	.332	.413	.490	.640
		Install Drill Size (Ref)	5/32	NO. 12	NO. 2	Ξ	ð	Z	12.5MM	41/64
Table 1	J	+.005 /	.054	.054	.054	.054	.054	.120	.120	.151
Tab	3	Max	.198	.240	.271	.302	.382	505.	.597	.772
	a	+.000/	.155	189	.221	.250	.332	.413	.490	.640
	3	Max	.051	690.	.063	590°	680'	.104	.124	.154
	В	No	.263	.323	.355	.391	.529	959:	.770	066.
		Thread Size	.1120-40 UNC-3B	.1380-32 UNC-3B	.1640-32 UNC-3B	.1900-32 UNF-3B	.2500-28 UNF-3B	.3125-24 UNF-3B	.3750-24 UNF-3B	.5000-20 UNF-3P
		First Dash No	-04	90-	80-	£-	- 7-	S -	9-	8-

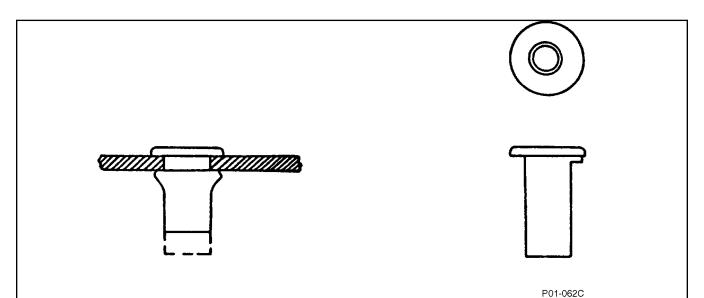
Table 1-46. Nut, Blind Rivet - Countersunk Head, Internal Thread, Non-Locking (Free Running) or Self-Locking (Prevailing Torque) - Continued

		Table 2		
Dash No		Axial Tensile Strength Lb Min	o Min	
	AI	Carbon Steel	Cres	Alloy Steel
-04	510	910	1270	1170
90-	650	1330	1670	1590
80-	800	1660	1950	2570
-3	1070	1850	3150	4130
4-	1820	3500	4760	9659
۵-	2290	4330	0289	9040
9-	3340	6840	8450	12700
8-	5550	12590	*	*
* Not Available				

MATERIAL:	ALUMINUM ALLOY-6053-T4 PER MIL-R-1150 (EXCEPT TEMPER) (NON-LOCKING NUTS ONLY)
	STEEL-CARBON PER QQ-W-405 STEEL NO. 1108 OR 1110 (NON-LOCKING NUTS ONLY)
	ALLOY STEEL PER QQ-W-405 STEEL NO. 4037 (SEAM FREE)
	CRES - PER QQ-W-423 FORM 1 COMP. 430 (NON-LOCKING NUTS ONLY)
FINISH:	ALUMINUM ALLOY - ANODIZE PER MIL-A-8826, TYPE II STEEL - CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 2
	PARTS WITH CLASS 3 PLATING MAY BE FURNISHED FROM SUPPLIER'S STOCK UNTIL 15 SEPT. 1977.
	CRES - PICKLED AND PASSIVATED, QQ-P-35 TYPE II
CODE:	DIAMETER AND GRIP RANGE AS TABULATED. LETTER BETWEEN BASIC NUMBER AND DASH NUMBER INDI-
	CATES MATERIAL AND FINISH; "A" FOR ALUMINUM ALLOY, "S" FOR CARBON STEEL, "H" FOR ALLOY
	STEEL, AND "C" FOR CORROSION RESISTANT STEEL. LETTER BETWEEN DASH NUMBERS INDICATES TYPE:
	CLOSED END. ADD "L" TO PART NUMBER TO INDICATE THREAD LOCKING PER MIL-N-25027 ON OPEN END,
	KEYED, ALLOY STEEL NUTS ONLY.
EXAMPLE OF PART NUMBER:	NAS1330A3K166 = ALUMINUM ALLOY KEYED OPEN END 10-32 INTERNAL THREAD .116 TO .166 GRIP RANGE
	NAS1330C6KB296 = CRES KEYED CLOSED END 3/8-24 INTERNAL THREAD .211 TO .296 GRIP RANGE.
	NAS1330H3K166L = ALLOY STEEL KEYED, OPEN END 10-32 INTERNAL THREAD .116 TO .166 GRIP RANGE, THREAD LOCKING FEATURE.
NOTES:	1. DIMENSIONS IN INCHES.
	2. THREAD LOCKING TYPE MUST BE INSTALLED WITH A MODIFIED STUD (REDUCED PITCH DIAMETER AND 0.D. ON FIRST FEW THREADS)
	△ IDENTIFY SELF-LOCKING TYPE NUT WITH "L" DEPRESSED .010 MAX. (LOCATION OPTIONAL)

Table 1-46. Nut, Blind Rivet - Countersunk Head, Internal Thread, Non-Locking (Free Running) or Self-Locking (Prevailing Torque) - Continued

		4. P	PROCUREMENT SPECIFICATION: MIL-N-25027 FOR SELF-LOCKING NUTS APPLICABLE	IT SPECIFICA	TION: MIL-N-	.25027 FOR SI	ELF-LOCKING	3 NUTS APPL	ICABLE.	
			Open End Keyor	End Keyed and Keyless	Clos	Closed End Keyless	SSe	Clo	Closed End Keyed	ed
Part Number	Grip Range	Ident Mark	A ±0.015	M Nom	L ±0.015	J Nom	K Nom	L ±0.015	L Nom	K Nom
NAS1330- 04-81	.050081	BLANK	.370	.235	.525	.390	.235	.525	.390	.235
NAS1330- 04-106	.081106	1 RAD	.395	.235	.550	.390	.235	.550	.390	.235
NAS1330- 04-131	.106131	2 RAD	.420	.235	.575	.390	.235	.575	.390	.235
NAS1330- 04-156	.131156	3 RAD	.450	.235	009.	.390	.235	009.	.390	.235
NAS1330- 04-181	.156181	4 RAD	.475	.235	.625	.390	.235	.625	.390	.235
NAS1330- 06-106	.065106	BLANK	.500	.325	789.	.510	.325	.812	.635	.425
NAS1330- 06-161	.106161	2 RAD	.500	.280	.687	.465	.280	.812	.590	.380
NAS1330- 06-201	.161201	4 RAD	.562	.295	.687	.420	.260	.812	.545	.335
NAS1330- 06-241	.201241	1 CIRC	.625	.315	.812	.505	.295	.812	.505	.295
NAS1330- 06-281	.241281	2 CIRC	.625	.270	.812	.465	.265	.812	.465	.265
NAS1330- 08-106	.065106	BLANK	.500	.325	789.	.510	.325	.812	.635	.425
NAS1330- 08-161	.106161	2 RAD	.500	.280	.687	.465	.280	.812	.590	.380
NAS1330- 08-201	.161201	4 RAD	.562	.290	.687	.415	.255	.812	.540	.330
NAS1330- 08-241	.201241	1 CIRC	.625	.310	.875	.560	.290	.875	.560	.290
NAS1330- 08-281	.241281	2 CIRC	.687	.325	.875	.515	.290	.875	.515	.290
NAS1330- 3-116	.065116	BLANK	.578	.395	.828	.645	.395	.828	.645	.395


Table 1-46. Nut, Blind Rivet - Countersunk Head, Internal Thread, Non-Locking (Free Running) or Self-Locking (Prevailing Torque) - Continued

			Open End Keyo Keyless	n End Keyed and Keyless	Clos	Closed End Keyless	ess	Clo	Closed End Keyed	/ed
Part Number	Grip Range	ldent Mark	A ±0.015	M Nom	L ±0.015	J Nom	K Nom	L ±0.015	J Nom	moN X
NAS1330- 3-166	.116166	1 RAD	.625	.385	.875	.635	.385	875.	.635	586.
NAS1330- 3-216	.166216	2 RAD	.687	.400	.938	.650	.400	.938	.650	.400
NAS1330- 3-266	.216266	3 RAD	.734	.390	.984	.640	.390	.984	.640	.390
NAS1330- 3-316	.266316	4 RAD	.781	.385	1.031	.635	.385	1.031	.635	.385
NAS1330- 4-151	.089151	BLANK	.687	.440	1.000	.750	.435	1.000	.750	.435
NAS1330- 4-211	.151211	1 RAD	.750	.440	1.062	.750	.435	1.062	.750	.435
NAS1330- 4-271	.211271	2 RAD	.812	.440	1.125	.750	.435	1.125	.750	.435
NAS1330- 4-331	.271331	3 RAD	.875	.435	1.187	.750	.435	1.187	.750	.435
NAS1330- 4-391	.331391	4 RAD	.937	.435	1.250	.750	.435	1.250	.750	.435
NAS1330- 5-181	.106181	BLANK	.844	.540	1.218	.915	.540	1.218	.915	.540
NAS1330- 5-256	.181256	1 RAD	.937	.560	1.312	.935	.560	1.312	.935	.560
NAS1330- 5-331	.256331	2 RAD	1.000	.550	1.406	.955	.550	1.406	.955	.550
NAS1330- 5-406	.331406	3 RAD	1.093	.565	1.468	.940	.565	1.458	.940	.565
NAS1330- 6-211	.125211	BLANK	938	.580	1.375	1.020	.655	1.375	1.020	559:
NAS1330- 6-296	.211296	1 RAD	1.031	.590	1.468	1.030	.655	1.468	1.030	.655
NAS1330- 6-381	.296381	2 RAD	1.125	009.	1.562	1.040	.675	1.562	1.040	.675
NAS1330- 6-466	.381466	3 RAD	1.219	.615	1.656	1.050	069.	1.656	1.050	069.

Table 1-46. Nut, Blind Rivet - Countersunk Head, Internal Thread, Non-Locking (Free Running) or Self-Locking (Prevailing Torque) - Continued

			Open End Keyo Keyless	End Keyed and Keyless	Clos	Closed End Keyless	ess	Clo	Closed End Keyed	yed
Part Number	Grip Range	Ident Mark	A ±0.015	M Nom	L ±0.015	J Nom	M Nom	L ±0.015	J Nom	K Nom
NAS1330- 8-276	.156276	BLANK	1.188	.725	1.781	1.320	058.	1.781	1.320	.850
NAS1330- 8-396	.276396	1 RAD	1.312	.730	1.906	1.325	.865	1.906	1.325	.865
NAS1330- 8-516	.396516	2 RAD	1.438	.735	2.031	1.330	088.	2.031	1.330	.880
NAS1330- 8-636	.516636	3 RAD	1.578	.750	2.172	1.350	068.	2.172	1.350	.890

Table 1-47. NAS453 Flathead, Rivnut Rivet

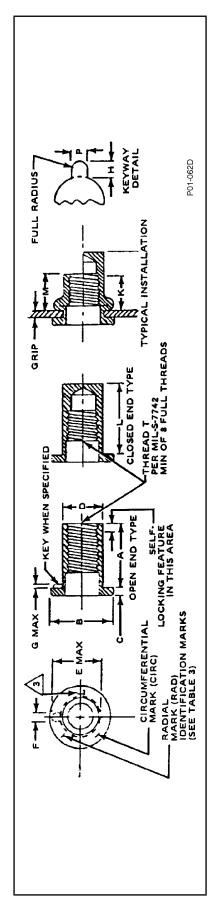
Dash Number Grip Range Attachment **Keyless** With Key **Shank Diameter Screw Size** Min Max -22 -12 .010 .075 -24 -14 .075 .120 -26 -16 .120 .160 .200 -62 -63 .160 -66 -67 .189 6-32 NC-2 .200 .240 -70 -71 .240 .280 -74 -75 .280 .320 -79 -80 .320 .360 -83 -84 .360 .400 -87 -88 .400 .440 -34 -28 .010 .075 8-32 NC-2 -30 .221 -36 .075 .120 -39 -40 .120 .180 -10-75 -10K-75 .020 .075 -10-140 -10K-140 .251 10-32 NC-2 .075 .140 -10-190 -10K-190 .190 .140

Code:

S after dash number indicates steel, rivnut rivet.

If attachment screws are not used with rivnut rivets, they may be filled with plug screws.

Example of part number:


NAS453-12S = rivnut rivet, steel.

Material:

6063W aluminum alloy.

AISI 1108 steel.

Table 1-48. Nut, Blind Rivet - Flathead, Internal Thread, Non-Locking (Free Running) and Self-Locking (Prevailing Torque)

	Keyway Dimensions	н	.046 - .048	- 950. - 058	- 950. - 058	- 950. - 058	- 950. - 058	.097 - .102	.110 -	.135140
	Keyway Dimensio	P +.003/ 000	790	790	790	.062	790	.128	.128	.159
	Install Hole Size	Max	.157	.193	.226	.256	.338	.423	.500	059.
	Install H	Min	.155	681.	122.	.250	332	.413	764	.640
		Install Drill Size (Ref)	28/3	NO 12	NO 2	Ε	ð	Z	12.5MM	41/64
	5	Мах	.023	.023	.023	.023	.035	.040	.040	.040
Table 1	ш	+.005/	.054	.054	.054	.054	.054	.120	.120	.151
	В	Мах	.198	.240	.271	.302	.382	.505	.597	.772
	a	+.000/	.155	681.	.221	.250	.332	.413	.490	.640
	၁	Nom	.025	.032	.032	.038	.058	.062	.088	.125
	8	+.015	.270	.325	758.	.406	.475	599:	.781	1.000
		Thread Size	.1120-40 UNC-3B	.1380-32 UNC-3B	.1640-32 UNC-3B	.1900-32 UNF-3B	.2500-28 UNF-3B	.3125-24 UNF-3B	.3750-24 UNF-3B	.5000-20 UNF-3B
		First Dash No	-04	90-	80-	-3	7 -	-5	9-	8-

Nut, Blind Rivet - Flathead, Internal Thread, Non-Locking (Free Running) and Self-Locking (Prevailing Torque) - Continued Table 1-48.

		Table 2		
		Axial Tensile Strength Lb Min	Min	
Dash No.	AL	Carbon Steel	Cres	Alloy Steel
-04	510	910	1270	1170
90-	650	1330	1670	1590
80-	008	1660	1950	2570
-3	1070	1850	3150	4130
4-	1820	3500	4760	0659
ځ-	2290	4330	0840	9040
9-	3340	6840	8450	12700
8-	5550	12590	*	*
* Not Available				

	ALUMINUM ALLOY-6053-14 PER MIL-R-1150 (EXCEPT TEMPER) (NON-LOCKING NUTS ONLY))
	STEEL-CARBON PER QQ-W-405 STEEL NO. 1108 OR 1110 (NON-LOCKING NUTS ONLY
	ALLOY STEEL PER QQ-W-405 STEEL NO. 4037 (SEAM FREE)
	CRES - PER QQ-W-423 FORM 1 COMP. 430 (NON-LOCKING NUTS ONLY)
FINISH:	ALUMINUM ALLOY - ANODIZE PER MIL-A-8625, TYPE II.
	STEEL - CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 2
	PARTS WITH CLASS 3 PLATING MAY BE FURNISHED FROM SUPPLIER'S STOCK UNTIL 15 SEPT. 1977
	CRES - PICKLED AND PASSIVATED, QQ-P-35 TYPE II
CODE:	DIAMETER AND GRIP RANGE AS TABULATED. LETTER BETWEEN BASIC NUMBER AND DASH NUMBER INDI-
	CATES MATERIAL AND FINISH; "A" FOR ALUMINUM ALLOY, "S" FOR CARBON STEEL, "H" FOR ALLOY STEEL,
	AND "C" FOR CORROSION RESISTANT STEEL. LETTER BETWEEN DASH NUMBERS INDICATES TYPE: "-" FOR
	NETLESS OFEN END, N. FOR NETED OFEN END, B. FOR NETLESS CLOSED END, NB. FOR NETED CLOSED END. ADD "L" TO PART NUMBER TO INDICATE THREAD LOCKING PER MIL-N-25027 ON OPEN END. KEYED.
	ALLOY STEEL NUTS ONLY.
EXAMPLE OF PART	NAS1329A3K130 = ALUMINUM ALLOY KEYED OPEN END 10-32 INTERNAL THREAD 0.080 TO 0.130 GRIP RANGE.
i Cividian.	NAS1230C6VH300 - CBES VEXED CLOSED END 3/8 2/1 INTERNAL THREAD 0 115 TO 0 300 CRIB BANCE
	INASI329CONH200 = CRES REIED CEOSED EIND 3/8-24 INIERNAL IHREAD 0.113 IO 0.200 GRIF RAINGE.
	NAS1329H3K130L = ALLOY STEEL KEYED, OPEN END 10-32 INTERNAL THREAD 0.080 - 0.130 GRIP RANGE, THREAD
	LOCKING FEATURE.
NOTES:	1. DIMENSIONS IN INCHES.
	2. THREAD LOCKING TYPE MUST BE INSTALLED WITH A MODIFIED STUD (REDUCED PITCH DIAMETER AND O.D. ON FIRST FEW THREADS)
	△ IDENTIFY SELF-LOCKING TYPE NUT WITH "L" DEPRESSED 0.010 MAX. (LOCATION OPTIONAL)

Table 1-48. Nut, Blind Rivet - Flathead, Internal Thread, Non-Locking (Free Running) and Self-Locking (Prevailing Torque) - Continued

PROCUREMENT SPECIFICATION:	MIL-N-25027 FOR SELF-LOCKING NUTS APPLICABLE.
4.	

			Open End Key	en End Keyed and Keyless	Clos	Closed End Keyless	ess	<u></u> පි	Closed End Keyed	þə/
			۷	M	7	ſ	У	7	ſ	У
Part Number	Grip Range	ldent Mark	±.015	Nom	±.015	moN	MoM	±.015	woN	MoM
NAS1329- 04-60	.010 - 0.060	BLANK	.345	.230	.500	385	.230	.500	385	.230
NAS1329- 04-85	.060 -0.085	1 RAD	.370	.230	.525	.385	.230	.525	.385	.230
NAS1329- 04-110	.085 -0.110	2 RAD	.400	.230	.555	.390	.230	.555	.390	.230
NAS1329- 04-135	.110 -0.135	3 RAD	.425	.230	.580	.385	.230	.580	.385	.230
NAS1329- 04-160	.133 -0.160	4 RAD	.450	.230	.605	.385	.230	909:	.385	.230
NAS1329- 06-75	.010 -0.075	1 RAD	.438	.300	.625	.490	305	.750	.615	.405
NAS1329- 06-120	.075 -0.120	3 RAD	.500	.315	.625	.440	.255	.750	.565	.355
NAS1329- 06-160	.120 -0.160	5 RAD	.500	.270	.750	.520	.260	.750	.520	.310
NAS1329- 06-200	.160 -0.200	1 CIRC	.562	.290	.750	.480	.260	.750	.480	.260
NAS1329- 06-240	.200 -0.240	2 CIRC	.625	.310	.750	.435	.260	.750	.435	.260
NAS1329- 08-75	.010 -0.075	1 RAD	.438	.300	.625	.490	305	.750	.615	.405
NAS1329- 08-120	.075 -0.120	3 RAD	.500	.315	.625	.440	.255	.750	.565	.355
NAS1329- 08-160	.120 -0.160	5 RAD	.500	.270	.750	.520	.260	.750	.520	.310
NAS1329- 08-200	.160 -0.200	1 CIRC	.625	.350	.750	.475	.265	.750	.475	.265
NAS1329- 08-240	.200 -0.240	2 CIRC	.625	.305	.875	.555	.310	.875	.555	.310

Table 1-48. Nut, Blind Rivet - Flathead, Internal Thread, Non-Locking (Free Running) and Self-Locking (Prevailing Torque) - Continued

			Open End Keyed and Keyless	End Keyed and Keyless	Clos	Closed End Keyless	ess	Clo	Closed End Keyed	/ed
			4	M	٦	ſ	¥	٦	Ŋ	X
Part Number	Grip Range	ldent Mark	±.015	Nom	±.015	Nom	Nom	±.015	Nom	Nom
NAS1329-3- 80	.010 -0.080	BLANK	.531	.380	.781	.630	08£.	.781	.630	.380
NAS1329-3- 130	.080 -0.130	1 RAD	.594	.390	.843	.640	.390	.843	.640	.390
NAS1329-3- 180	.130 -0.180	2 RAD	.641	.390	.891	.640	.390	.891	.640	.390
NAS1329-3- 230	.180 -0.230	3 RAD	.703	.395	.953	.645	.395	.953	.645	.395
NAS1329-3- 280	.230 -0.280	4 RAD	.750	.395	1.000	.645	.395	1.000	.645	.395
NAS1329-4- 80	.020 -0.080	BLANK	.625	.450	.937	092.	.440	.937	092.	.440
NAS1329-4- 140	.080 -0.140	1 RAD	.687	.450	1.000	.760	.440	1.000	.760	.440
NAS1329-4- 200	.140 -0.200	2 RAD	.750	.450	1.062	.760	.440	1.062	.760	.440
NAS1329-4- 260	.200 -0.260	3 RAD	.812	.445	1.125	.755	.445	1.125	.755	.445
NAS1329-4- 320	.260 -0.320	4 RAD	.875	.445	1.187	.755	.445	1.187	.755	445
NAS1329-5- 125	.050 -0.125	BLANK	.750	.505	1.187	.940	.550	1.187	.940	.550
NAS1329-5- 200	.125 -0.200	1 RAD	.875	.555	1.281	096.	.555	1.281	096.	.555
NAS1329-5- 275	.200 -0.275	2 RAD	.937	.540	1.343	.950	.560	1.343	.950	.560
NAS1329-5- 350	.275 -0.350	3 RAD	1.032	.560	1.437	.965	.570	1.437	.965	.570
NAS1329-6- 115	.030 -0.115	BLANK	.844	.585	1.281	1.020	099:	1.281	1.020	099:
NAS1329-6- 200	.115 -0.200	1 RAD	.938	.595	1.375	1.030	029.	1.375	1.030	029.

Table 1-48. Nut, Blind Rivet - Flathead, Internal Thread, Non-Locking (Free Running) and Self-Locking (Prevailing Torque) - Continued

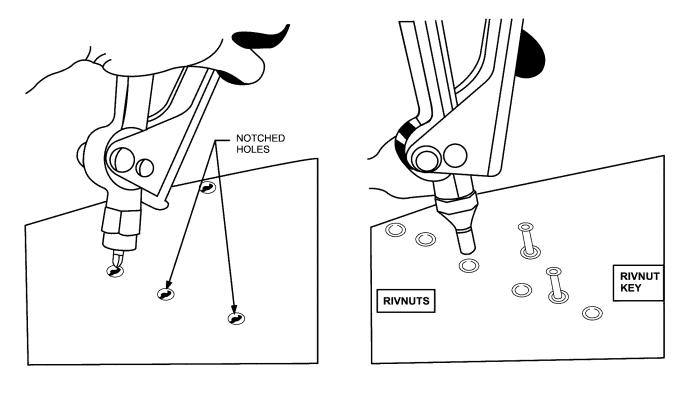
		Open End Keye Kevless	End Keyed and Keyless	Clos	Closed End Kevless	SS) 	Closed End Keved	Ved
		A	Σ	7		<u>×</u>	7	7	¥
	ldent Mark	+.015	E ON	+.015	E O N	Nom	+.015	Nom	Nom
7	2 RAD	1.031	.605	1.468	1.040	089.	1.468	1.040	089.
3 I	3 RAD	1.125	.615	1.562	1.050	069.	1.562	1.050	069.
BL	BLANK	1.062	.730	1.656	1.325	.855	1.656	1.325	.855
—	1 RAD	1.188	.735	1.781	1.330	.865	1.781	1.330	.865
2	2 RAD	1.312	.740	1.906	1.335	.875	1.906	1.335	.875
8	3 RAD	1.453	.765	2.156	1.465	895	2.156	1.465	895

Figure 1-39. Rivnut Grip Length

1.3.47 Installation of Rivnuts. (See Figure 1-40.)

- a. Thread the proper rivnut on the mandrel of the tool until the head is against the anvil of the heading tool.
- b. If using a keyed rivnut, place in hole so that key fits into keyway.
- c. Hold tool so that mandrel is at 90 degrees to work, and actuate heading tool. If using a hand tool, retract the mandrel until solid resistance is felt.
- d. Unthread mandrel and remove tool.
- 1.3.48 MS20450 Tubular Rivet. (Refer to Table 1-50.) The MS20450 tubular rivet is a partially hollow, shank rivet made in three styles. Style A is a deep-drilled, shank rivet used for fastening leather, heavy fabric, and copper; style C is an oval head rivet; and style D is a countersunk head rivet. The last two styles are shallow drilled and used on metals other than copper. Tubular rivets are not used in structural applications and their use on aircraft is limited.

1.4 NONSTANDARD RIVETS.


1.4.1 <u>Jo-Bolts</u>. Jo-Bolt fasteners are used on difficult riveting jobs when access to one side of the work is

impossible. The fastener consists of three parts: an aluminum alloy or alloy steel nut, a threaded alloy steel bolt, and a corrosion resistant steel sleeve, which are factory preassembled. As the Jo-Bolt is installed, the bolt is turned while the nut is held, causing the sleeve to expand over the end of the nut, forming the blind head and clamping against the work. When driving is complete, the bolt wrenching end breaks off from flush to below the head. The head styles available for Jo-Bolts are the 100° flush head, hexagon protruding head, and the 100° flush millable head.

- 1.4.2 Identification. Each Jo-Bolt is identified by a standard code number which represents the type and style of rivet, the nominal diameter, and the grip range of the fastener. The type of Jo-Bolt and nominal diameter, in thousandths of an inch, is represented by the basic code number; the dash number represents the grip range. Figure 1-41 shows the basic code number for standard size and 1/64 inch oversize repair fasteners. The dash number can be obtained from the chart giving the grip length ranges. An example of the standard code number would be NAS1670-3-5. This represents an alloy steel 100° flush head Jo-Bolt. The nominal diameter would be 3/16 and the fastener could be used in material ranging in thickness from 0.282 to 0.344. The 1987 National Aerospace Standards (NAS) revision has added a D prefix to the L code to identify those Jo-Bolt fasteners that drive nuts. The DL and L coded fasteners are functionally equivalent.
- 1.4.3 <u>Fastener Layout</u>. The following will outline the requirements and procedures for correct fastener location.
- 1.4.4 Edge Distance. Fastener edge distance is measured from the centerline of the fastener to the nearest edge of the part through which it passes. The recommended minimum edge distance for flush and protruding head Jo-Bolts is two times the nominal diameter plus 0.06. This minimum edge distance may be used except when specified differently on a repair procedure or when replacing Jo-Bolts.
- 1.4.5 <u>Spacing</u>. Spacing for Jo-Bolts is measured between the centerlines of adjacent fasteners. The minimum spacing between protruding, hex head Jo-Bolts shall not be less than three and one-half times the nominal fastener diameter. The minimum spacing between flush head and millable head Jo-Bolts shall not be less than four times the nominal diameter of the fastener. These dimensions shall be used as the minimum spacing except when specified differently in a specific repair procedure or when replacing existing Jo-Bolts.

Table 1-49. Rivnut Data

	HEA	D TY	PES	Grip	Range	Identifie	d by M	larks on	Head
	SIZE	SIZE	SIZE						
	6-32	8-32	10-32						
				MINIM	MUM GRIP-	is the same	as waxiwnw as waxiwnw	arib of bases	dths of an inch. ding side.
. .	1					0.32 HEAD 1	THICKNESS		
OPEN END	+ +	11	-11-	6-45	6-75	6-100	6-120	6-140	6-160
KEYLESS			u	8-45	8-75	8-100	8-120	8-140	8-160
,	4000	السنة	-	10-45	10-75	10-100	10-120	10-140	10-160
CLOSED END				6B45	6B75	6B100	6B120	6B140	6B160
KEYLESS				8B45	8B75	8B100	8B120	8B140	8B160
,			-	10B45	10 B 75	10B100	10B120	10B140	10B160
OPEN END	T	T	T	6K45	6 K 75	6K100	6K120	6K140	6K 160
WITH KEY			l I	8K45	8K75	8K100	8K120	8K140	8K160
Y				10K45	10K75	10K100	10K120	10K140	10K160
(T	T	Y	6KB45	6KB75	6KB100	6KB120	6KB140	6KB160
CLOSED END WITH KEY	H			8KB45	8KB75	8KB100	8KB120	8KB140	8KB160
	2.2			10KB45	10KB75	10KB100	10KB120	10KB140	10KB160
N :				ļ	100	0° – 0.48 H	EAD THIC	KNESS	
OPEN END	-		-11-	6-91	6-121	6-146	6-166	6-186	6-206
	##	1.2	L.	8-91	8-121	8-146	8-166	8-196	8-206
	w	77		10-91	10-121	10-146	10-166	10-186	10-206
CLOSED END	- 11			6B91	6B121	6B146	6B166	6B186	6B206
KEYLESS	u	u		8B91	8B121	8B146	8B166	8B186	8B206
	•			10B91	10B121	10B146	10B166	l 10B186	10B206
OPEN END	7	T	11	İ	100	-0.63 HEA	D THICKNE	:55	
KEYLESS	11		11	6-106	6-136	6-161	6-181	6-201	6-221
,	_			8-106 10-106	8-136 10-136	8-161 10-161	8-181 10-181	8-201 10-201	8-221 10-221
CLOSED END	T	T	W	1	1			}	
KEYLESS			H	6B106	6B136	6B161	6B181	6B201	6B221
γ		11	Ц	8B106 10B106	8B136 10B136	8B161 10B161	8B181 10B181	8B201 10B201	8B221 10B221
(T	77	77	l	1]			•
OPEN END WITH KEY	•		H	6K106 8K106	6K136 8K136	6K161 8K161	6K181 8K181	6K201 8K201	6K221 8K221
	1.5		M.35	10K106	10K136	10K161	10K181	10K201	10K221
	TT	**	77						
CLOSED END		- 11		6KB106 8KB106	6KB136 8KB136	6KB161 8KB161	6KB181 8KB181	6KB201 8KB201	6KB221 8KB221
/		u		10KB106	10KB136	1	10KB181	10KB201	10KB221
\:			_		ns	5-0.63 HEA			
OPEN END KEYLESS	7			6-107	6-137	6-162	6-182	6-202	6-222
	13			8-107	8-137	8-162	8-182	8-202	8-222
Α.				10-107	10-137	10-162	10-182	10-202	10-222
CLOSED END				6B107	6B137	6B162	6B182	6B202	6B222
				8B107	8B137	8B162	8B182	8B202	8B222
,				10B107	10B137	10B162	10B182	10B202	10B222
OPEN END	T	77	77	6K107	6K137	6K162	6K182	6K202	6K222
WITH KEY		U	M	8K107	8K137	8K162	8K182	8K202	8K222
	-	-	· ·	10K107	10K137	10K162	10K182	10K202	10K222
CLOSED END	11	77	11	6KB107	6KB137	6KB162	6KB182	6KB202	6KB222
WITH KEY	, 11		# 8	8KB107	8KB137	8KB162	8KB182	8KB202	8KB222
•			14.35	10KB107	10KB137	10KB162	10KB182	10KB202	10KB222 P01-064
									1 01-004

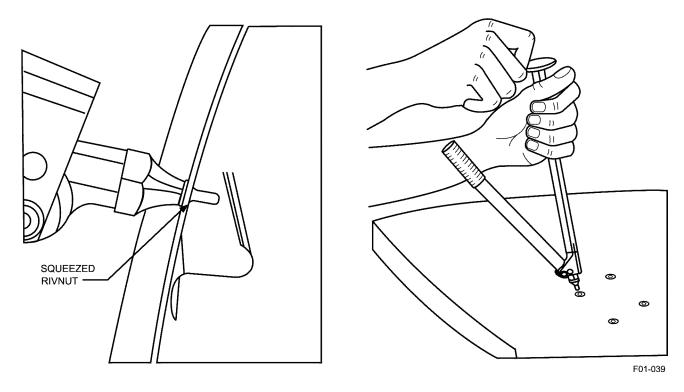
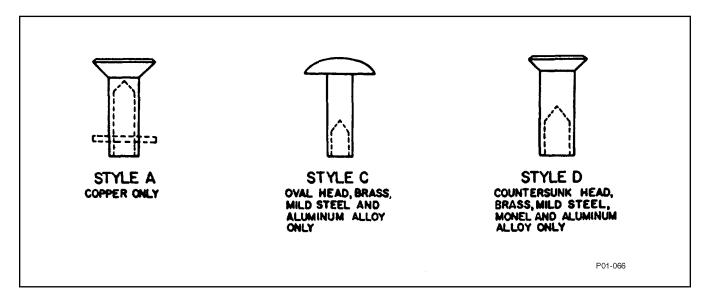



Figure 1-40. Installation of Rivnuts

1.4.6 Hole Preparation. The size hole and countersink diameter used when installing Jo-Bolts are given in Table 1-51. Exceptions to this are, where specified differently in repair procedures, or when replacing existing fasteners. For the installation of flush head Jo-Bolts, the sheet shall be dimpled or machine countersunk. Machine countersinks and dimples that receive the head of the Jo-Bolt shall have a 100° included angle and shall be deep enough so the head fits flush with the surrounding surface. Countersinks in material that fall within the limits given in Table 1-51 will permit the flush head fasteners to seat flush with plus or minus 0.005. The dimensions of flush head, nonmillable Jo-Bolts are approximately the same as the AN509 screw and the same dimpling tools may be used. Dimpled parts that receive flush head Jo-Bolts shall have undersize pilot holes for the dimpling operation. The holes shall be redrilled and reamed to bring them to final size. Extreme care shall be exercised in the preparation of the holes for Jo-Bolts. It is recommended the holes be drilled undersize and then brought up to final size by reaming.

1.4.7 Tools and Equipment. See Figure 1-43. Special tools are required for the installation of Jo-Bolts. In no case shall power screwdrivers or drill tools used in conjunction with a 1/4 inch socket and ratchet wrench be used for installing Jo-Bolt fasteners. The hand tool consists of a tool body, nose adapter, and wrench adapter. The nose adapter is secured in the tool body and prevents the nut portion of the Jo-Bolt from turning during installation. The wrench adapter rides free inside the nose adapter and gets turning action from the ratchet wrench. Millable head Jo-Bolts may be shaved flush using a standard rivet shaver equipment with a carbide cutter turning at least 10,000 rpm. The diameter of the cutter must be large enough to permit the steel core of the bolt to be at least 3/16 of an inch from the center of the cutter. A one-inch diameter cutter is required for most fasteners.

Table 1-50. MS20450 Tubular Rivet

			Head Diameter	
First Dash Number	Shank Diameter ±.005	Style A ±.016	Style C ±.016	Style D ±.016
-6	.088		.141	
-8	.121		.219	.250
-9	.146	.312		.312
-12	.186	.359	.312	.359

Code:

First dash number indicates nominal diameter in 1/64 inch.

Second dash number indicates length in 1/32 inch.

A after basic part number indicates style A.

C after basic part number indicates style C.

D after basic part number indicates style D.

Table 1-50. MS20450 Tubular Rivet - Continued

C after first dash number indicates copper rivet.

B after first dash number indicates brass rivet.

AD after first dash number indicates aluminum alloy rivet.

M after first dash number indicates Monel rivet.

No letter after first dash number indicates mild steel rivet.

Example of part number:

MS20450C12-8 = mild steel rivet, style C, 3/16-inch nominal diameter, 1/4-inch long.

Material:

Brass, Federal Specification QQ-W-321, grade B.

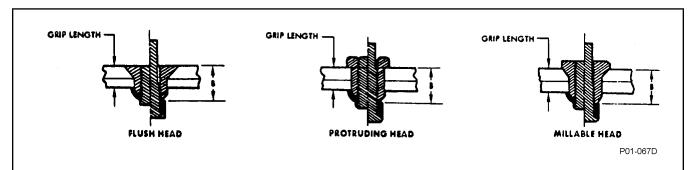
Monel, Federal Specification QQ-N-281.

1010 or 1015 mild steel, Federal Specification QQ-W-409.

Copper, Federal Specification QQ-W-341.

Aluminum alloy.

Finish:


Cadmium plating, Federal Specification QQ-P-416 or zinc plating, Federal Specification QQ-Z-325 (applicable to mild steel rivets only).

Style	Description	Temperature Limitations (Degree Fahrenheit)	Nominal Diameter	Basic Code Number (Standard Size)	Basic Code Number (1/64 Oversize)
	ALLOY STEEL 100° FLUSH HEAD	450 MAX	5/32	NAS1670-08L() PLT 110-5-()	NAS1750-08L()
		3/16	NAS1670-3L() PLT 110-6-()	NAS1750-3L()	
PLUSH HEAD		1/4	NAS1670-4L() PLT 110-8-()	NAS1750-4L()	
			5/16	NAS1670-5L() PLT 110-10-()	NAS1750-5L()
			3/8	NAS1670-6L()	NAS1750-6L()
	HIGH TEMPERA- TURE 100° FLUSH HEAD	1200 MAX	5/32	NAS1672-08L() PLT 120-5-()	NAS1752-08L()
			3/16	NAS1672-3L() PLT 120-6-()	NAS1752-3L()
			1/4	NAS1672-4L() PLT 120-8-()	NAS1752-4L()
			5/16	NAS1672-5L() PLT 120-10-()	NAS1752-5L()
			3/8	NAS1672-6L() PLT 120-12-()	NAS1752-6L()

Figure 1-41. Jo-Bolt Identification (Sheet 1 of 3)

Style	Description	Temperature Limitations (Degree Fahrenheit)	Nominal Diameter	Basic Code Number (Stan- dard Size)	Basic Code Number (1/64 Oversize)
	ALUMINUM AL- LOY 100° MIL- LABLE HEAD	250 MAX	5/32	NAS1674-08L() PLT 130-5-()	NAS1754-08L()
MILABLE		3/16	ST3M687- 08L() PLT 130-5-1.5	NAS1754-3L()	
MEAD (FLUSH)		1/4	NAS1674- 3L() PLT 130-6-()	NAS1754-4L()	
				NAS1674-4L() PLT 130-8-()	
	ALLOY STEEL HEX HEAD	450 MAX	5/32	NAS1669-08L() PLT 210-5-()	NAS1751-08L()
		3/16	NAS1669- 3L() PLT 210-6-()	NAS1751-3L()	
HEX HEAD (PROTRUDING)		1/4	NAS1669- 4L() PLT 210-8-()	NAS1751-4L()	
			5/16	NAS1669-5L() PLT 210-10-()	NAS1751-5L()
			3/8	NAS1669-6L() PLT 210-12-()	NASI751-6L()
	HIGH TEMPERA- TURE HEX HEAD	1200 MAX	5/32	NAS1671-08L() PLT 220-5-()	NAS1753-08L()
			3/16	NAS1671-3L() PLT 220-6-()	NAS1753-3L()
			1/4	NAS1671-4L() PLT 220-8-()	NAS1753-4L()
			5/16	NAS1671-5L() PLT 220-10-()	NAS1753-5L()
			3/8	NAS1671-6L() PLT 220-12-()	NAS1753-6L()
	ALUMINUM AL- LOY HEX HEAD	250 MAX	5/32	NAS1673-08L() PLT 230-5-()	NAS1755-08L()
			3/16	NAS1673-3L() PLT 230-6-()	NAS1755-3L()
			1/4	NAS1673-4L() PLT 230-8-()	NAS1755-4L()

Figure 1-41. Jo-Bolt Identification (Sheet 2)

			J	o-Bolt Grip	Lengths				
		Dimen	sion "B" l	Non-Millab	le Head Jo	-Bolts		sion "B" N ead Jo-Bol	
Length Dash No	Grip Length Range	NAS1670 NAS1671 NAS1672 NAS1673 NAS1669	}		NAS1670 NAS1669 NAS1671 NAS1672	1	NAS1674 ST3M687		
		5/32	3/16	1/4	5/16	3/8	5/32	3/16	1/4
1	0.031 -0.093	0.17							
2	0.094 -0.156	0.23	0.23	0.26			0.31	0.31	0.34
3	0.157 -0.219	0.29	0.29	0.32	0.34	0.42	0.37	0.37	0.40
4	0.219 -0.281	0.36	0.35	0.38	0.41	0.48	0.43	0.43	0.46
5	0.281 -0.344	0.42	0.42	0.44	0.47	0.54	0.49	0.50	0.52
6	0.344 -0.406	0.48	0.48	0.51	0.53	0.60	0.56	0.56	0.59
7	0.406 -0.469	0.54	0.54	0.57	0.59	0.67	0.62	0.62	0.65
8	0.469 -0.531	0.61	0.60	0.63	0.66	0.73	0.68	0.68	0.71
9	0.531 -0.594	0.67	0.67	0.69	0.72	0.79	0.74	0.75	0.77
10	0.594 -0.656	0.73	0.73	0.76	0.78	0.85	0.81	0.81	0.84
11	0.656 -0.719	0.79	0.79	0.82	0.84	0.92	0.87	0.87	0.90
12	0.719 -0.781	0.86	0.85	0.88	0.91	0.98	0.93	0.93	0.96
13	0.781 -0.844	0.92	0.92	0.94	0.97	1.04	0.99	1.00	1.02
14	0.844 -0.906	0.98	0.98	1.01	1.03	1.10	1.06	1.06	1.09
15	0.906 -0.969	1.04	1.04	1.07	1.09	1.17	1.12	1.12	1.15
16	0.969 - 1.031	1.11	1.10	1.13	1.16	1.23	1.18	1.18	1 21

NOTE

Dimension B and grip length are measured from bearing surface of head for protruding head types.

Figure 1-41. Jo-Bolt Identification (Sheet 3)

Nominal Diameter	Standard Hole Size	1/64 Oversize	Countersink Diameter Nonmillable Head	Countersink Diameter Millable Head
5/32	0.165 +.003/000	0.180 +.002/000	0.323 - 0.333	0.270 - 0.280
3/16	0.199 +.003/000	0.215 +.002/000	0.376 - 0.386	0.325 - 0.335
1/4	0.230 +.003/000	0.276 +.002/000	0.498 - 0.508	0.450 - 0.460
5/16	0.312 +.003/000	0.327 +.002/000	0.626 - 0.636	
3/8	0.375 +.003/000	0.390 +.002/000	0.752 - 0.762	

Table 1-51. Jo-Bolt Hole Sizes and Countersink Diameters

- 1.4.8 <u>Installation</u>. After holes are brought up to size, see Figure 1-42 and the following steps to install Jo-Bolts.
 - Material to be joined must be secured firmly in position. Sheet metal holders, C-clamp, or temporary fasteners may be used.
 - Using a hook gauge, measure the thickness of the material and select a Jo-Bolt having the correct grip range.

NOTE

When fasteners are installed with wet sealant in the faying surface or under the fastener head, the requirements of paragraph 1.4.9 will apply, except that 5/32 inch diameter fasteners are required to withstand only 2 inch-pounds of torque. Refer to T.O. 1F-4C-3-1-6 for sealant application.

- c. Insert Jo-Bolt in the hole. The fastener can be pushed easily into a properly prepared hole and in no case shall fastener be driven forcibly into the hole. A very light tap fit is permissible in aluminum alloy parts but not in steel.
- d. Use hand or power gun.
 - (1) Hand gun. Select the correct nose and wrench adapter for the fastener and secure them in the hand tool body.
 - (2) Power gun. Select the correct nose and wrench adapter for the fastener and secure them in the

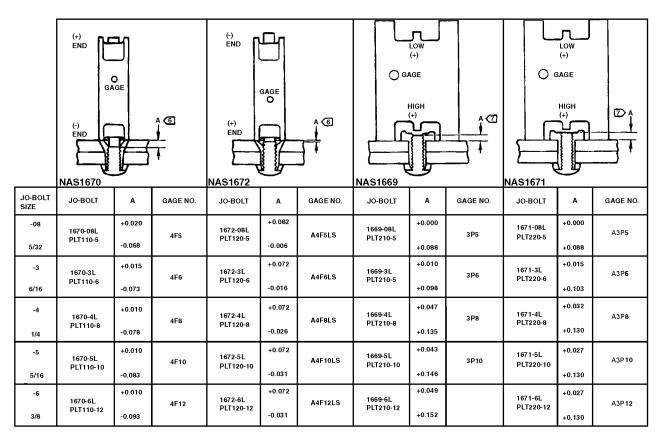
power tool body. Power gun and hand gun nose and wrench adapters are not interchangeable. Use applicable adapter for DL coded fasteners.

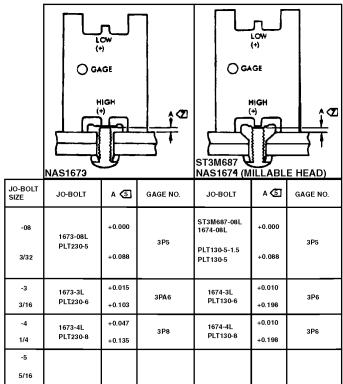
 e. Place the nose adapter of the driving tool over the slabbed portion of the bolt shank so that it engages the head of the Jo-Bolt.

NOTE

On flush head Jo-Bolts, the dogs on the nose adapter shall fit into the slots of the fastener heads. On protruding and millable head fasteners, the nose adapter will fit over the fastener head.

- f. Hold the tool firmly against the Jo-Bolt head and perpendicular to the surface of the work. Failure to hold the tool perpendicular may result in stem break off before the Jo-Bolt is tight.
- g. If the hand gun is used, hold the handle of the tool stationary and turn the ratchet handle. As power is applied, the bolt is turned while the nut is held. The sleeve, compressed between the bolt head and tapered end of the nut, is drawn over the end of the nut and is expanded forming the blind head against the inner surface of the part. When the sleeve is drawing up tight, the slabbed portion of the stem is snapped off completing the driving operation.
- h. Jo-Bolts shall be inspected for looseness per paragraph 1.4.9. Millable head Jo-Bolts shall be inspected before they are shaved.


T.O. 1-1A-8


CONDITION	PROBABLE CAUSE	CONDITION
SLEEVE NOT PULLED UP TO MATERIAL	GRIP LENGTH OF FASTENER TOO.LONG. <u>DISPOSITION</u> : REJECT	SPLI
STEM BREAK OFF LOW OR WITHIN TABLE 2 REQUIREMENTS SLEEVE NOT PULLED UP TO MATERIAL	PREMATURE STEM BREAK-OFF RESULTING FROM DIRTY OR IMPROPERLY LUBRICATED FASTENER. DISPOSITION: REJECT	
LOW STEM BREAK OFF	GRIP LENGTH OF FASTENER TOO SHORT. <u>DISPOSITION</u> : REJECT	INTERNAL SC HEAD PULLEI
BUCKLED SLEEVE	FAULTY FASTENER, SLEEVES TOO SOFT. <u>DISPOSITION</u> : REJECT	NUT HEA BROKEN
FLARED SLEEVE	FAULTY FASTENER, SLEEVES TOO SOFT. DISPOSITION: REJECT OF DIMENSION A EXCEEDS THE FOLLOWING: 5/32 - 0.244 5/16 - 0.427 3/16 - 0.300 3/8 - 0.516 1/4 - 0.384	

CONDITION	PROBABLE CAUSE
SPLIT SLEEVE	POOR SLEEVE MATERIAL OR SLEEVES SCRATCHED OR NICKED. <u>DISPOSITION</u> : REJECT
void 4	DISPOSITION: ACCEPTABLE WHEN PRODUCED BY A DIMENSIONALLY ACCEPT- ABLE FASTENER INSTALLED WITHIN SPECIFIED FLUSH- NESS LIMITS. NOTE: THIS VOID WILL NOT BE CONCENTRIC WHEN THE FASTENERS ARE IN- STALLED ON A CONTOURED SURFACE.
INTERNAL SCREW HEAD PULLED OFF	FAULTY FASTENER <u>DISPOSITION</u> : REJECT
NUT HEAD BROKEN OFF	FAULTY FASTENER <u>DISPOSITION</u> : REJECT

F01-041S01

Figure 1-42. Jo-Bolt Installation and Inspection (Sheet 1 of 2)

NOTE

- IN THESE AREAS WHERE FASTENER COLLARS CAN BE SEEN, THEY SHALL
- BE INSPECTED PER TABLE 1.
 WHEN TESTED WITH DRIVING TOOL (NOSE ADAPTED TO A TORQUE WRENCH) THE FASTENERS SHALL BE CAPABLE OF WITHSTANDING THE FOLLOWING TORQUE WITHOUT ROTATION: 5/32 FASTENER 4 IN-LB; 3/16 FASTENERS, 6 IN-LB, 1/4 FASTENERS, 10 IN-LB 5/16 FASTENERS, 20 IN-LB, 3/8 FASTENERS, 30 IN-LB EXCEPTION, 5/32 FASTENER, WHEN INSTALLED WITH SEALING COMPOUND, MAXIMUM TORQUE REQUIREMENT IS 2 IN-LB.

DO NOT APPLY TORQUE IN EXCESS OF THE ABOVE VALUES.

- 3. IN ALL CASES, PLUS (+) INDICATES STEM PROTRUSION ABOVE THE REFERENCE SURFACE AND MINUS (-) INDICATES STEM RELEASE BELOW THE REFERENCE SURFACE.

 [5] PROTRUDING HEAD AND FLUSH HEAD FASTENERS HAVING A GAP UNDER ONE SIDE OF THE HEAD WHICH WILL PERMIT INSERTION OF A 0.005 FEELER GAGE TO THE SHANK SHALL BE REJECTED. GAPS WHICH WILL PERMIT INSERTION OF A 0.004 FEELER ARE ACCEPTABLE PROVIDED NO MADDE TAMAN 40 DEPORTN TO ETHE CIPCUME MEDICENCE MAS A GAD. MORE THAN 40 PERCENT OF THE CIRCUMFERENCE HAS A GAP
- INSTALLED BOLTS SHALL BE REJECTED IF STEM BREAK-OFF IS NOT WITHIN
- LIMITS OF TABLE II.

 MEASURED FROM TOP OF HEAD OF NUT.

 MEASURED FROM SKIN SURFACE.

F01-041S02

Figure 1-42. Jo-Bolt Installation and Inspection (Sheet 2)

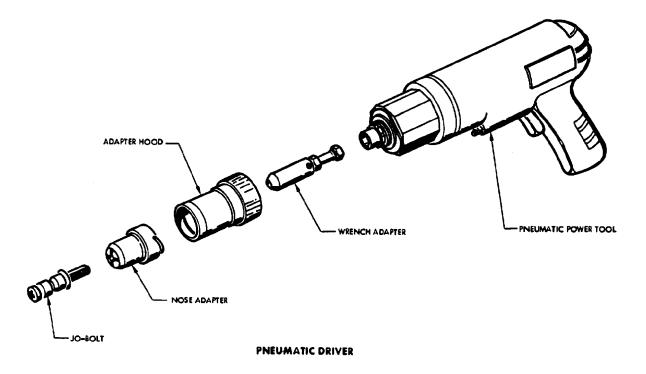
1.4.9 Inspection. See Figure 1-42. Before installation of new or replacement fasteners, check for proper grip length. Refer to paragraph 1.4.8. In areas where the Jo- Bolt collars can be seen after installation, they shall be visually inspected. Fasteners having split or buckled collars shall be rejected. (Check stem break-off per limitations in Table 2, Figure 1-42.) If the stem breaks off outside the limits shown, the fastener is out of grip range or not drive properly. If stem breaks above limits shown, the fastener is either too long or loose. If the stem breaks off below the limits shown, the grip is too short. The fastener shall be removed and replaced if limitations are not met. On Flush Head Jo-Bolts the protrusion of the fastener head above the skin surface shall not be greater than allowed by applicable system technical data and in no case shall it be greater than 0.010. The maximum that Flush Heads can fall below flush is 0.006. Protrusion Head and Flush Head fasteners having a gap under one side of the head which permits the insertion of a 0.005 feeler gage to the shank shall be rejected. Gaps which permit insertion of a 0.004 feeler gage are acceptable provided not more than 40 percent of the circumference has the gap. Jo-Bolts shall be individually checked for looseness. Use of the driving tool nose adapter between the thumb and the forefinger or with a torque wrench, the fastener shall be capable of withstanding the light torque requirements per the following and in no case shall torque values tested be exceeded.

NOTE

Apply torque in a counterclockwise direction only. When fasteners are installed wet with sealant, the resistance to rotation values specified must be met whether tested on wet or cured sealant, except that 5/32 inch fasteners are required to withstand only 2 inch pounds maximum torque. If the Jo-Bolt turns when the light torque load is applied, it shall be removed and replaced.

Jo-Bolt Series	Nominal Diameter	Torque Limits (inch-pounds)
164	5/32	4
200	3/16	6
260	1/4	10
312	5/16	20
375	3/8	30

1.4.10 <u>Removal</u>. See Figure 1-44. The procedure for the removal of Jo-Bolt depends on whether the fastener is clamped up tight or is loose. If the Jo-Bolt is clamped up tight in the hole, it can be removed by drilling just through the fastener head and then driving out the shank portion with a hammer and punch. If the Jo-Bolt is loose in the hole, it must be prevented from turning by using a drill bushing which has dogs to engage the head slots and a handle or other device to hold it. While holding the Jo-Bolt to prevent from turning, drill the bolt portion of the fastener completely out, removing the bolt head and fastener sleeve. After the bolt head and sleeve are removed, pick out the nut portion of the fastener. For all drilling operations on Jo-Bolts, select a drill motor that does not turn over 500 rpm.


1.4.11 <u>Special Handling of Jo-Bolts</u>. Jo-Bolts are prelubricated unless specified on a specific repair procedure. No paint or primer shall be applied to Jo-Bolts before they are installed unless called out in a specific repair procedure.

1.4.12 Internally Threaded Rivets (Three Piece). (See Figure 1-45.) The internally threaded rivets (three piece) have not had a military designation assigned to them. These rivets are installed blind and can be driven with standard pneumatic drivers. (See Figure 1-46.) Internally threaded rivets (three piece) are available in flush, millable, and protruding hex head types. The shear strength for steel, internally threaded rivets (three piece) is 95,000 PSI minimum; 57,000 PSI minimum for aluminum rivets. Use of internally threaded rivets (three piece) saves weight by eliminating nuts.

1.5 <u>SWAGE LOCKED PIN AND COLLAR</u> FASTENERS.

Each unit consists of a headed pin (bolt) secured by a swaged collar. (See Figure 1-47.) The headed pin or collar cannot be reused. Replace a swage lock fastener with unit of comparable size, type and material. Special tools are required for the replacement or installation operation. In the removal operation, take care not to damage or enlarge the hole.

1.5.1 <u>Installation of Pull Type Fasteners</u> (Figure 1-47). Installation of pull type fasteners requires the use of special tools as specified in Table 1-58. The mechanical procedure for installing pull type Huckbolt fasteners is shown in Figure 1-47.

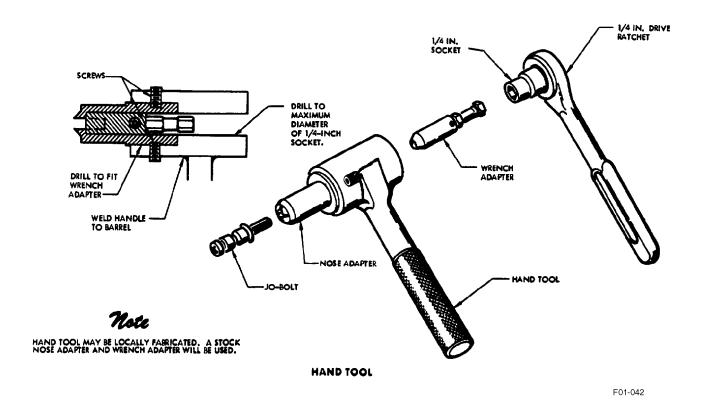
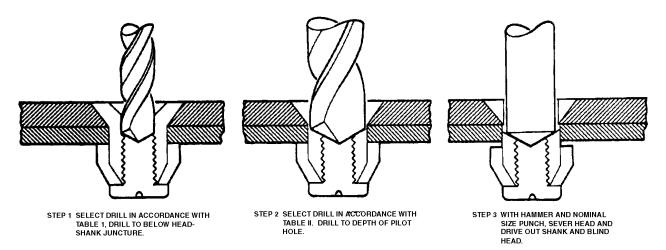
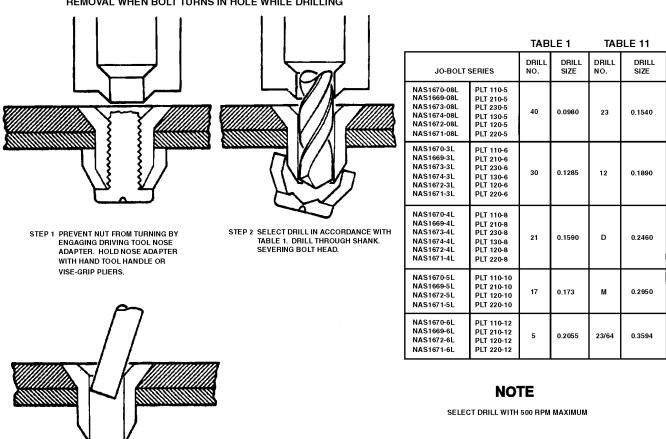
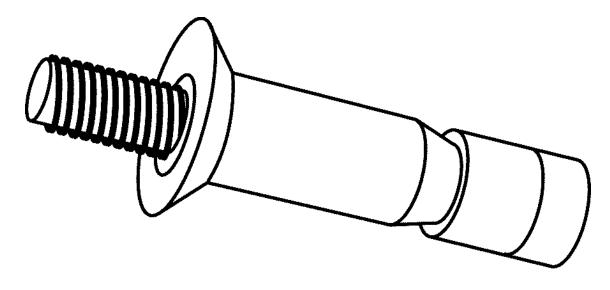




Figure 1-43. Jo-Bolt Installation Tools

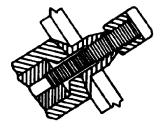
REMOVAL WHEN BOLT IS CLAMPED UP TIGHT


REMOVAL WHEN BOLT TURNS IN HOLE WHILE DRILLING

STEP 3 PICK NUT OUT OF HOLE WITH PUNCH.

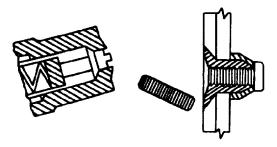
Figure 1-44. Jo-Bolt Removal

F01-043



F01-044

Figure 1-45. Internally Threaded Rivet (Three Piece)


COMPLETE INTERNALLY THREADED (THREE PIECE) RIVET OF PROPER GRIP LENGTH IS INSERTED IN HOLE DRILLED THROUGH MEMBERS TO BE JOINED. THE RIVET HEAD, SLEEVE AND SHANK OUTSIDE DIAMETER PERMIT INSERTION IN PROPERLY PREPARED HOLES WITHOUT INTERFERENCE.

POWER OR HAND DRIVER IS APPLIED TO RIVET WITH WRENCHING PART ENGAGING NUT, AS WELL AS SLABBED PORTION OF BOLT SHANK. ALTERNATE METHOD FOR OVERHEAD WORK: ASSEMBLE RIVET ON NOSE OF DRIVER, THEN INSERT RIVET IN HOLE BY UPWARD MOVEMENT OF POWER OR HAND DRIVER.

POWER IS TURNED ON. BOLT IS WRENCHED WHILE NUT IS HELD. SLEEVE, COMPRESSED BETWEEN BOLT HEAD AND CONICAL END OF NUT, IS DRAWN OVER THE TAPER. SLEEVE IS EXPANDED, FORMS A HEAD THAT GRIPS THE MATING SURFACE OF THE MEMBER BEING JOINED. POSITIVE SHEET CLAMP-UP IS SIMULTANEOUSLY EFFECTED. SLABBED PORTION OF BOLT SHANK IS SNAPPED OFF AS SOON AS THE RIVET IS FULLY DRIVEN, LEAVING THE NUT FLUSH WITH THE SURFACE OF THE WORK WHEN EMPLOYING THE FLUSH HEAD TYPES.

F01-045

Figure 1-46. Installation of Internally Threaded Rivet (Three Piece)

- 1.5.2 <u>Installation of Stump Type Fasteners</u>. (See Figure 1-47.) Stump type of fasteners are installed with a conventional rivet hammer and a special swaging set. The swaging set is required for installing the collar. The mechanical procedure for installing stump type fasteners is shown in Figure 1-47.
- 1.5.3 <u>Inspection</u>. Normally, visual inspection of the swaged collar is adequate. However, if in doubt or if a controversy arises, use the appropriate gage shown in Table 1-57.
- 1.5.4 <u>Removal</u>. (See Figure 1-47.) One of the better methods to remove a swage locked fastener is to split the swaged collar with a collar splitter tool as illustrated in Figure 1-47. An alternate method is to split the collar lengthwise with a narrow chisel. When using this method, extreme care must be used to prevent damage to the hole and surrounding structure.

CAUTION

When splitting a collar with a chisel, always support, with a heavy bucking bar, the collar on the side opposite the chisel. Never try to use a chisel on the manufactured head.

- 1.5.5 Remove pull type and stump type Huckbolt fasteners as follows:
 - a. Remove collar by splitting it shankwise with a collar splitter. (See Figure 1-47.) Be sure to use the tool in the correct size for the collar being split.
 - b. Drive out the pin with a punch. Be sure the diameter of punch is smaller than the hole.

1.6 MILITARY STANDARD BLIND BOLTS.

- M.S. blind bolts are high strength, positive lock fasteners for use in areas where access is available to only one side of the work.
- 1.6.1 <u>Installation</u>. (See Figure 1-51.) Driving of the fastener shall be accomplished by the action of the spindle being pulled into the sleeve forming a large bulbed blind head on the back side of the assembly, installing the positive mechanical lock and removing the pulling portion of the spindle. (For selection of installation tools required see Table 1-60.)
- 1.6.2 <u>Inspection</u>. MIL-F-8975 and MIL-F-81177 blind fasteners are self-inspecting since they will meet full specification requirements when spindle and collar protrusion are within the limits shown in Figure 1-51. Locking collar and spindle position within limits shown assure proper blind head formation.
- 1.6.3 <u>Removal</u>. M.S. blind fasteners are removed by drilling. (See <u>Table 1-61</u> for proper tools and method.)
- 1.6.4 Substitution Charts for Blind Fasteners.

CAUTION

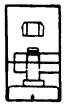
The blind fasteners listed in the substitution charts of Table 1-62 and Table 1-63 must be used, exclusively, to replace those blind fasteners which succeed the listed item.

(ALLOY STEEL AND A-286 STAINLESS STEEL.) The substitution of alloy steel and A-286 stainless steel blind fasteners, which are used in structural applications, depends on these items design considerations. The replacement of these blind fasteners therefore must follow the requirements given in Table 1-62 and Table 1-63.

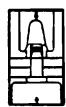
PULL TYPE FASTENER INSTALLATION SEQUENCE

PIN IS INSERTED FROM ONE SIDE OF WORK THROUGH PREPARED HOLE. METAL COLLAR IS THEN PLACED OVER THE PINTAIL. WHEN TOOL NOSE IS APPLIED, CHUCK JAWS GRIP PULL. GROOVES.

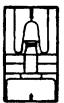
TOOL PULLS ON PIN AND STARTS DRAWING SHEETS TOGETHER.

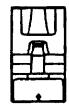


AS THE PULL ON THE PIN INCREASES, TOOL ANVIL SWAGES COLLAR INTO LOCKING GROOVES AND. A PERMANENT LOCK IS FORMED.



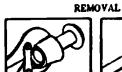
TOOL CONTINUES TO PULL UNTIL PIN BREAKS AT THE BREAKNECK GROOVE AND IS EJECTED. TOOL ANVIL DISENGAGES FROM SWAGED COLLAR.


STUMP TYPE FASTENER INSTALLATION SEQUENCE


STUMP IS FIRST IN.
SERTED THROUGH PREPARED HOLES, FUR
INTERFERENCE FIT
STUMP IS DRIVEN IN
WITH HAMMER OR AIR
HAMMER.

COLLAR IS APPLIED OVER END OF STUMP. A BUCK-ING BAR IS USED AGAINST HEAD OF STUMP WHILE SWAGING SET IS ACTUATED BY AIR HAMMER.

SWAGING SET IS FORCED OVER COLLAR, SWAGING METAL MATERIAL INTO FASTENER LOCKING GROOVES.


SWAGING SET IS RE-MOVED LEAVING HUCK-BOLT COLLAR AND STUM LOCKED IN A PERMANENT INTEGRAL UNIT.

NOTE:

- PULL TYPE AND STUMP TYPE FASTENERS ARE INTERCHANGEABLE.
- WASHERS MAY BE USED UNDER HEAD WHEN CORRECT BOLT LENGTH IS UNAVAILABLE.
- DO NOT RE-USE PINS THAT HAVE BEEN DRIVEN OUT.

REMOVAL OF PULL TYPE OR STUMP-TYPE FASTENER

COLLAR	REMOVAL TOOLS
DIAMETER	TOOL PART NUMBER
3/16	105-6
1/4	105-8
5/16	105-10
3/8	105-12

REMOVE COLLAR

DRIVE PIN OUT

F01-046

Figure 1-47. Installation Sequence of Pull and Stump Type Fastener

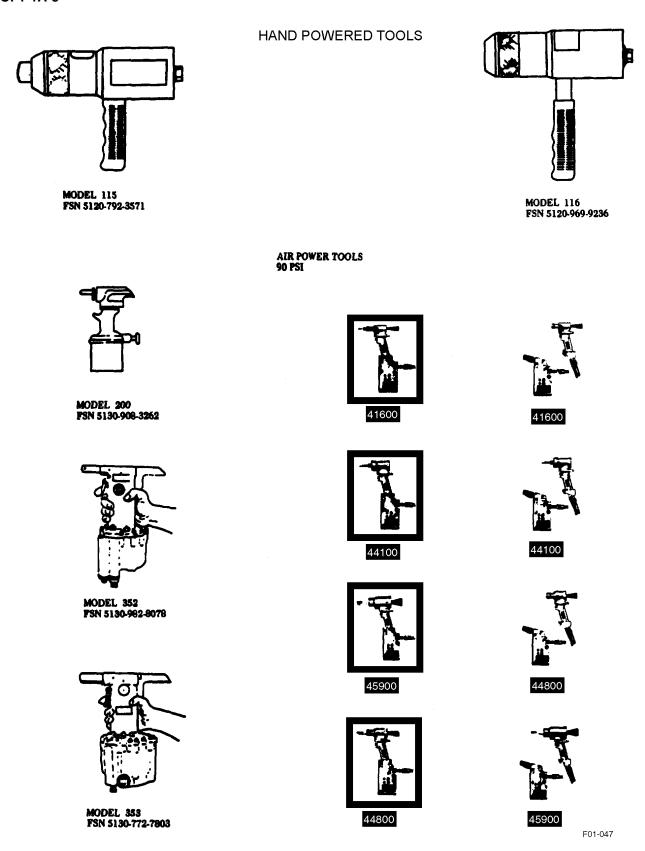


Figure 1-48. Hand and Air Powered Tools

HYDRAULIC POWERED TOOLS MODEL 609 USE POWERIG MODEL: FSN 5130-705-2328 906-51 FSN 5130-958-7779 MODEL 610 MODEL 612 FSN 5130-705-2330 FSN 5130-705-7020 910-51 MODEL 611 FSN 5130-705-2331 MODEL 613 911-51 FSN 5130-705-7021 MODEL 614 FSN 5130-972-7524 970-4-10 FSN 5130-406-4474 USE POWERIG MODEL: 906-51 FSN 5130-953-7779 MODEL 206-51 910-51 MODEL 207-51 911-51 970-3-10 USE POWERIG MODEL: 906-51 MODEL 504 FSN 5130-403-7681 FSN 5130-953-7779 910-51 911-51 24800 USE POWERIG MODEL: 906-51 FSN 5130-953-7779 910-51 911-51 F01-048S01

Figure 1-49. Hydraulic Powered Tools (Sheet 1 of 2)

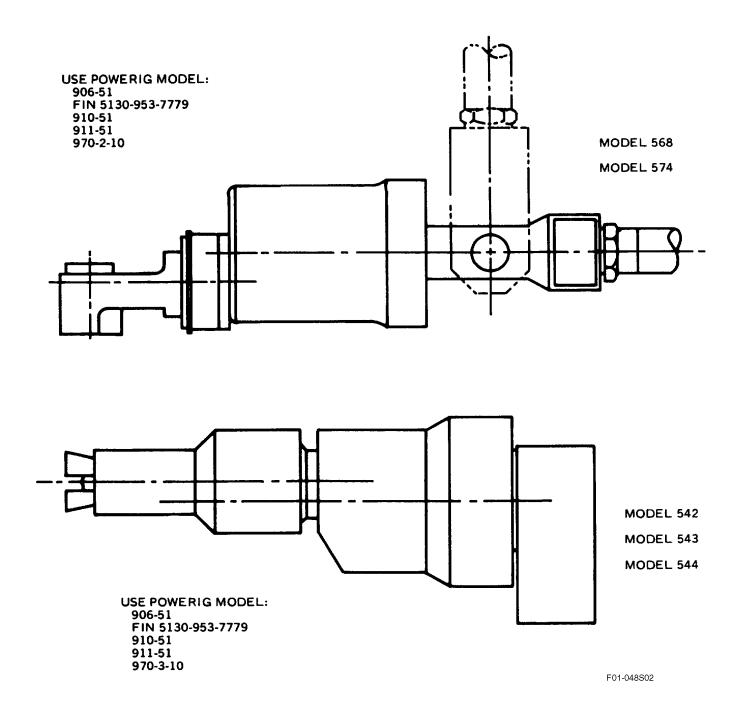
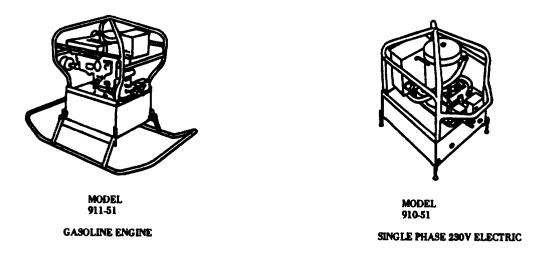
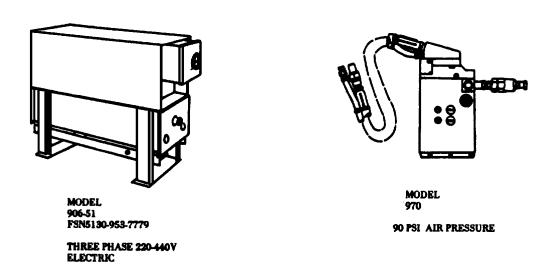




Figure 1-49. Hydraulic Powered Tools (Sheet 2)

HYDRAULIC POWERIGS

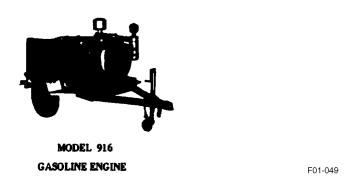
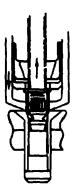
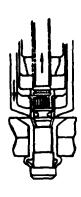
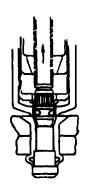
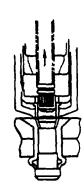




Figure 1-50. Hydraulic Powerigs


DRIVING OF THE FASTENER SHALL BE ACCOMPLISHED BY THE ACTION OF THE SPINDLE BEING PULLED INTO THE SLEEVE, FORMING A BLIND HEAD ON THE BACK SIDE OF THE ASSEMBLY, AND REMOVING THE PULLING PORTION OF THE SPINDLE.


BLIND HEAD FORMATION-DURING THE INITIAL PART OF THE DRIVING OPERA-TION, THE SLEEVE IS SQUEEZED BETWEEN THE HEAD OF THE PIN AND THE NOSE OF THE RIVET TOOL. THE HEAD OF THE PIN UPSETS THE SLEEVE TO FORM A STRONG, BULBED HEAD ON THE BLIND SIDE.

POSITIVE MECHANICAL
LOCK-WHEN THE BLIND
HEAD HAS BEEN FORMED,
THE TOOL AUTOMATICALLY
FORCES THE LOCKING
COLLAR (AT THE PINTAIL
END OF THE SLEEVE) INTO
THE CONICAL SPACE
BETWEEN THE RECESS IN
THE HEAD AND THE LOCKING GROOVE IN THE PIN.
THIS LOCKS THE PARTS TOGETHER PERMANENTLY.

PIN BREAK-PIN IS BRO-KEN OFF IN TENSION AT THE BREAKNECT GROOVE, SUBSTANTIALLY FLUSH WITH THE HEAD OF THE SLEEVE. THERE IS NO PROJECTING PIN LEFT TO BE CUT OFF IN A SEPERATE OPERATION.

INSTALLED FASTENER

F01-050

Figure 1-51. Driving Cycle

Substitution Chart for Hole-Filling, Aluminum and Aluminum-Alloy-Type Rivets Maximum Recommended Temperature 250°F **Table 1-52.**

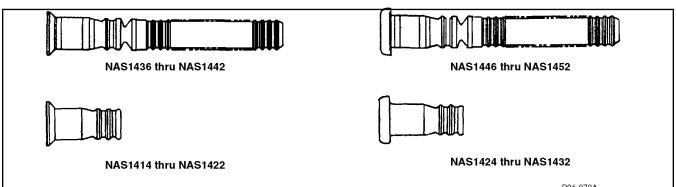

				Σ	S33522 Blind	MS33522 Blind Rivet Hole Sizes	Sé	
			.129 inch1 1/8 inc	.129 inch132 inch Dia. 1/8 inch Dia.	.160 inch1 5/32 in	.160 inch164 inch Dia. 5/32 inch Dia.	.192 inch 3/16 ir	.192 inch196 inch Dia. 3/16 inch Dia.
Type Rivet	Applicable Specification	Type Material	Shear (Pounds)	Tensile (Pounds)	Shear (Pounds)	Tensile (Pounds)	Shear (Pounds)	Tensile (Pounds)
MS20426DD*	MIL-R-5674C	2024	531		815		1180	
MS20470DD								
NAS1919B#	NAS1900	5056						
NAS1921B#			495	325	755	490	1090	715
NAS1399D#	NAS1400	2017	494	230	755	375	1090	540
NAS1398D#								
MS20426DF*	MIL-R-5674	2017	442		675		7.26	
MS20470DC*								
NAS1399B#	NAS1400	5056	388	230	969	375	862	540
NAS1398B#								
MS20426AD*	MIL-R-5674	2117	388		969		862	
MS20600ADE#	MIL-R-7885B	2117	370	227	580	375	840	537
MS20601ADE#								
MS20602D#	MIL-R-7885	2017	370	227	580	375	840	537
MS20603D#								
MS20426B*	MIL-R-5674	5056	363		556		802	
MS20470B*								
MS20600B#	MIL-R-7885	5056	360	227	260	375	810	537
MS20601B#								
MS20602B#	MIL-R-7885	5056	360	227	260	375	810	537
MS20603B#								
MS20426A*	MIL-R-5674	1100	129		201		290	
MS20470AC*								
*Solid Rivet								
#Blind Rivet								

Table 1-53. Substitution Chart for Hole-Filling Stainless Steel and Monel-Type Rivets

Type Rivet Specification NAS1910C# NAS1398C# NAS1398C# NAS1398M# NAS1398M# Applicable Acase (Lbs)				.129 inch132 inch Dia. 1/8 inch Dia.	th132 lia. 1/8 Dia.	.160 inch164 inch Dia. 5/32 inch Dia.	h164 a. 5/32 Dia.	.192 inch196 inch Dia. 3/16 inch Dia.	า196 เ. 3/16 Dia.	.256 inch261 inch Dia. 1/4 inch Dia.	th261 ia. 1/4 Dia.	
NAS1900 A-286 1090 675 1670 1050 2400 1500 4250 2600 NAS1900 Monel 1020 675 1565 1050 2260 1500 4000 2600 NAS1400 A-286 970 640 1490 1000 2150 1500 3890 2700 * None FS304 710 340 1090 550 1580 780 2840 1450 * MAS1400 Monel 670 227 1050 375 1520 537 2710 985 * None Monel 603 941 1352 2406 2406 7406	Type Rivet	Applicable Specification	Type Material	Shear (Lbs)	Ten- sile (Lbs)	Shear (Lbs)	Ten- sile (Lbs)	Shear (Lbs)	Ten- sile (Lbs)	Shear (Lbs)	Ten- sile (Lbs)	Temperature Max. Operation °F
NAS1900 Monel 1020 675 1565 1050 2260 1500 4000 2600 2600 381400 A-286 970 640 1490 1000 2150 1500 3890 270	NAS1919C#	NAS1900	A-286	1090	675	1670	1050	2400	1500	4250	2600	1200
NAS1900 Monel 1020 675 1565 1050 2260 1500 4000 2600 * NAS1400 A-286 970 640 1490 1000 2150 1500 3890 2700 * None FS304 710 340 1090 550 1580 780 800 # MIL-R-7885 Monel 670 227 1050 375 1520 537 2710 985 # None Monel 603 941 1352 1352 2406 865	NAS1921C#											
NAS1400 A-286 970 640 1490 1000 2150 1500 3890 2700 P* None FS304 710 340 1090 550 1580 780 880 # Mill-R-7885 Monel 670 227 1050 375 1520 537 2710 985 # None Monel 603 941 1352 2406 2406 985	NAS1919M#	NAS1900	Monel	1020	675	1565	1050	2260	1500	4000	2600	006
NAS1400 A-286 970 640 1490 1000 2150 1500 3890 2700	NAS1921M#											
None FS302 800 1248 1794 3192 800 18304 1704 1704 1704 1704 1704 1800	NAS1398C#	NAS1400	A-286	970	640	1490	1000	2150	1500	3890	2700	1200
* None FS302 800 1248 1794 3192 800 FS304 NAS1400 Monel 710 340 1090 550 1580 780 2840 1450 † MIL-R-7885 Monel 603 941 1352 2406	NAS1399C#											
* NAS1400 Monel 710 340 1090 550 1580 780 2840 1450 # MIL-R-7885 Monel 603 941 1352 2406	MS20427FC*	None	FS302	800		1248		1794		3192	800	800
NAS1400 Monel 710 340 1090 550 1580 780 2840 1450 # MIL-R-7885 Monel 670 227 1050 375 1520 537 2710 985 None Monel 603 941 1352 2406 2406	MS20615MD*		FS304									
MIL-R-7885 Monel 670 227 1050 375 1520 537 2710 985 None Monel 603 941 1352 2406	NAS1398M#	NAS1400	Monel	710	340	1090	550	1580	780	2840	1450	006
MIL-R-7885 Monel 670 227 1050 375 1520 537 2710 985 None Monel 603 941 1352 2406 2406	NAS1399M#											
None Monel 603 941 1352 2406	MS20600ML#	MIL-R-7885	Monel	029	227	1050	375	1520	537	2710	985	006
None Monel 603 941 1352 2406	MS20601ML#											
MS20615M*	MS20427M*	None	Monel	603		941		1352		2406		800
	MS20615M*											

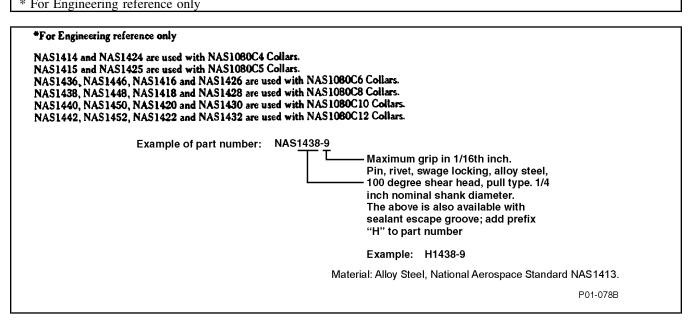
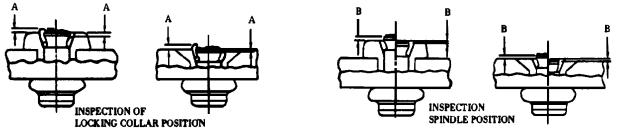

#Blind rivets.

Table 1-54. NAS1414 through NAS1422 Pin, Rivet, Swage Locking, Alloy Steel, 100 Degree Shear Head, Stump Type, Close Tolerance; NAS1424 Through NAS1432 Pin, Rivet, Swage Locking, Alloy Steel, Protruding Head, Shear, Stump Type, Close Tolerance; NAS1436 Through NAS1442 Pin, Rivet, Swage Locking, Alloy Steel, 100 Degree Shear Head, Pull Type, Close Tolerance; NAS1446 Through NAS1452 Pin, Rivet, Swage Locking, Alloy Steel, Protruding Head, Shear, Pull Type, Close Tolerance

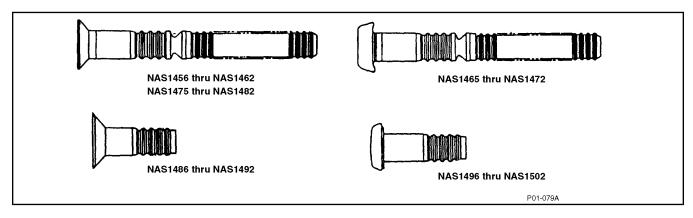
P01-078A


					Head	Diameter	
		Shank I	Diameter	NAS1422	Through NAS1436 NAS1442	NAS1432	4 Through 2 NAS1446 NAS1452
Basic Pa	rt Number	Min.	Max.	Min.*	Max.*	Min.	Max.
NAS1414	NAS1424	.1235	.1250	.180	.211	.181	.195
NAS1415	NAS1425	.1550	.1565	.220	.256	.235	.249
NAS1416	NAS1436	.1880	.1895	.262	.305	.288	.302
NAS1426	NAS1446						
NAS1418	NAS1438	.2480	.2495	.344	.399	.363	.377
NAS1428	NAS1448						
NAS1420	NAS1440	.3105	.3120	.416	.479	.455	.471
NAS1430	NAS1450						
NAS1422	NAS1442	.3730	.3745	.494	.566	.549	.565
* For Engineer	ring reference on	lv	,	.,			

VISUAL INSPECTION TABULATION

RIVET DIAMETER (INCH)	COLLAR POSITION "A" (MAX.) (INCH)	LOCK POSITION "B" (MAX.) (INCH)
5/32	0.017	0.010
3/16	0.022	0.012
1/4	0.029	0.015
5/16	0.037	0.019
3/8	0.045	0.023
7/16	0.050	0.027
1/2	0.056	0.031

VISUAL INSPECTION ILLUSTRATION


A....MAXIMUM ALLOWABLE DISTANCE OF LOCKING COLLAR ABOVE OR BELOW FASTENER HEAD.

B. MAXIMUM ALLOWABLE DISTANCE OF TOP OF LAND ON PIN ABOVE OR BELOW FASTENER HEAD.

F01-051

Figure 1-52. Inspecting Installed Blind Bolt Fastener

Table 1-55. NAS1456 Through NAS1462 and NAS1475 Through NAS1482 Pin, Rivet, Swage Locking, Alloy Steel, 100 Degree Head, Tension, Pull Type, Close Tolerance; NAS1465 Through NAS1472 Pin, Rivet, Swage Locking, Alloy Steel, Protruding Head, Tension, Pull Type, Close Tolerance; NAS1486 Through NAS1492 Pin, Rivet, Swage Locking, Alloy Steel, 100 Degree Head, Tension, Stump Type, Close Tolerance; NAS1486 Through NAS1492 Pin, Rivet, Swage Locking, Alloy Steel, Protruding Head, Tension, Stump Type, Close Tolerance

						Head D	iameter			
		ank neter	Thro NAS NAS Thro	1456 ough 1462 1486 ough 1492	Thro	1475 ough 1482	NAS Thro NAS	ugh	Thro	1496 ough 1502
Basic Part Number	Min	Max	Min*	Max*	Min*	Max*	Min	Max	Min	Max
NAS1465	.1635	.1650			.263	.292	.258	.282		
NAS1475										
NAS1456										
NAS1466	.1880	.1895	.344	.386	.316	.357	.297	.327	.302	.317
NAS1476										
NAS1486										
NAS1496										
NAS1458										
NAS1468	.2480	.2495	.454	.507	.428	.480	.390	.430	.396	.411
NAS1478										
NAS1488										
NAS1498										
NAS1460										
NAS1470	.3105	.3120	.574	.634	.508	.568	.485	.535	.500	.515
NAS1480										
NAS1490										
NAS1500										
NAS1462										
NAS1472	.3730	.3745	.693	.762	.629	.698	.595	.655	.613	.628
NAS1482										
NAS1492										
NAS1502										

Table 1-55. NAS1456 Through NAS1462 and NAS1475 Through NAS1482 Pin, Rivet, Swage Locking, Alloy Steel, 100 Degree Head, Tension, Pull Type, Close Tolerance; NAS1465 Through NAS1472 Pin, Rivet, Swage Locking, Alloy Steel, Protruding Head, Tension, Pull Type, Close Tolerance; NAS1486 Through NAS1492 Pin, Rivet, Swage Locking, Alloy Steel, 100 Degree Head, Tension, Stump Type, Close Tolerance; NAS1486 Through NAS1492 Pin, Rivet, Swage Locking, Alloy Steel, Protruding Head, Tension, Stump Type, Close Tolerance - Continued

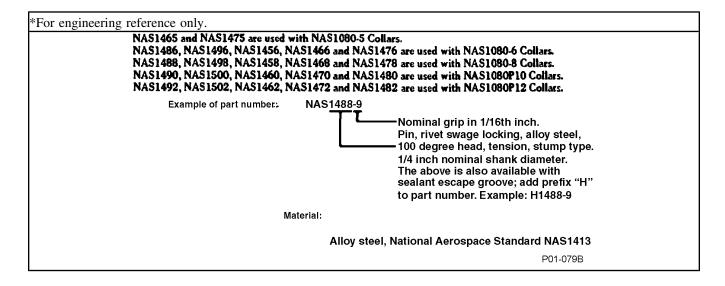
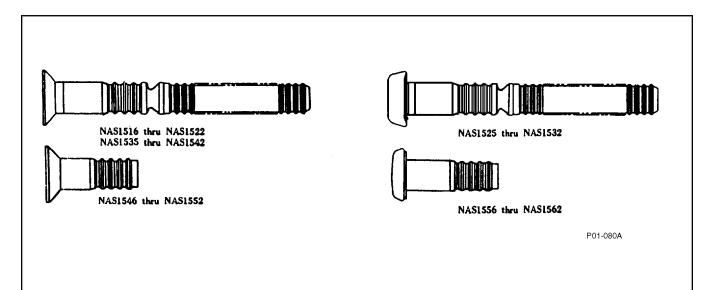



Table 1-56. NAS1516 Through NAS1522 and NAS1535 Through NAS1542 Pin, Rivet, Swage Locking, Aluminum Alloy, 100 Degree Head, Tension Pull Type, Close Tolerance; NAS1525 Through NAS1532 Pin, Rivet, Swage Locking, Aluminum Alloy, Protruding Head, Tension, Pull Type, Close Tolerance; NAS1546 Through NAS1552 Pin, Rivet, Swage Locking, Aluminum Alloy, 100 Degree Head, Tension, Stump Type, Close Tolerance; NAS1556 Through NAS1562 Pin, Rivet, Swage Locking, Aluminum Alloy, Protruding Head, Tension, Stump Type, Close Tolerance

						Head D	iameter			
	_	ank neter	Thro NAS NAS Thro	1516 ough 1522 1546 ough 1552	Thro	1535 ough 1542	Thro	1525 ough 1532	Thro	1556 ough 1562
Basic Part Number	Min	Max	Min*	Max*	Min*	Max*	Min	Max	Min	Max
NAS1525	.1630	.1640			.263	.292	.258	.282		
NAS1535										
NAS1516										
NAS1526	.1880	.1895	.344	.386	.316	.357	.297	.327	.302	.317
NAS1536										
NAS1546										
NAS1556										
NAS1518										
NAS1528	.2480	.2495	.454	.507	.428	.480	.390	.430	.396	.411
NAS1538										
NAS1548										
NAS1558										
NAS1520										
NAS1530	.3105	.3120	.574	.634	.508	.568	.485	.535	.500	.515
NAS1540										
NAS1550										
NAS1560										
NAS1522				1						

Table 1-56. NAS1516 Through NAS1522 and NAS1535 Through NAS1542 Pin, Rivet, Swage Locking, Aluminum Alloy, 100 Degree Head, Tension Pull Type, Close Tolerance; NAS1525 Through NAS1532 Pin, Rivet, Swage Locking, Aluminum Alloy, Protruding Head, Tension, Pull Type, Close Tolerance; NAS1546 Through NAS1552 Pin, Rivet, Swage Locking, Aluminum Alloy, 100 Degree Head, Tension, Stump Type, Close Tolerance; NAS1556 Through NAS1562 Pin, Rivet, Swage Locking, Aluminum Alloy, Protruding Head, Tension, Stump Type, Close Tolerance - Continued

1						Head D	iameter			
		ank neter	Thro NAS NAS Thro	1516 ough 1522 1546 ough 1552	Thro	1535 ough 1542	Thro	1525 ough 1532	Thro	1556 ough 1562
Basic Part Number	Min	Max	Min*	Max*	Min*	Max*	Min	Max	Min	Max
NAS1532	.3730	.3745	.693	.762	.629	.698	.595	.655	.613	.628
NAS1542										
NAS1552										
NAS1562										
	·	·	*Fo	or engineer	ing referen	ce only.	·		·	

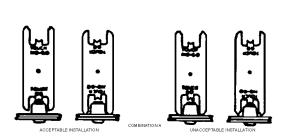
NAS1525 and NAS1535 are used with NAS1080D5.
NAS1546, NAS1556, NAS1516, NAS1526 and NAS1536 are used with NAS1080D6 Collars.
NAS1548, NAS1538, NAS1520, NAS1530 and NAS1540 are used with NAS1080D10 Collars.
NAS1550, NAS1560, NAS1520, NAS1532 and NAS1540 are used with NAS1080D12 Collars.
NAS1552, NAS1562, NAS1522, NAS1532 and NAS1542 are used with NAS1080D12 Collars.

Example of part number:

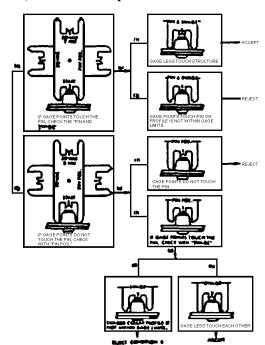
NAS1548-9

Nominal grip in 1/16th inch.

Pin, rivet, swage locking, aluminum alloy,


1/0 degree head, tension, stump type.

1/4 inch nominal shank diameter.


The above is also available with sealant escape groove; add prefix

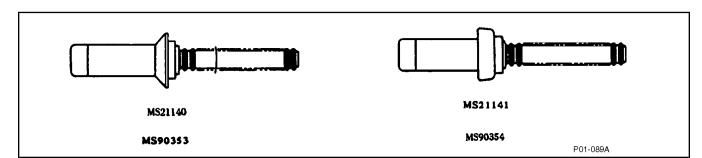
"H" to part number. Example: H1548-9

Table 1-57. Gages, Pins, and Collar Inspection

NORMAL	PINS	COLLAR TO BE USED IN IN COMBINATION WITH PINS	GAGES TO BE USED FOR CHECKING INSTALLATION
DIAMETER 1/8	NAS BASIC PART NO. NAS1414 NAS1424	NAS PART NO. NAS1080C4 NAS1080E4	HUCK GAGE NO. HG75-6
5/32	NAS1415 NAS1425	NAS1080C5 NAS1080E5	HG75-5
	NAS1465 NAS1475 NAS2005V NAS2105V	NAS1080R5 NAS1080-5	HG85-12
	NAS1525 NAS1535	NAS1080D5	HG85-7
3/16	NAS1416 NAS1426 NAS2606V NAS2706V	NAS1080C6	HG75-1
	NAS1436 NAS1446 NAS2406V NAS2506V	NAS1080C6 NAS1080E6	HG76-1
	NAS1456 NAS1466 NAS1476 NAS2006V NAS2106V	NAS1080-6	HG85-10
	NAS1486 NAS1496 NAS2206V NAS2306V	NAS1080R6 NAS1080-6	HG34D-3
	NAS1516 NAS1526 NAS1536	NAS1080D6	HG85-10
	NAS1546 NAS1556	NAS1080D6	HG34D-1
1/4	NAS1418 NAS1428 NAS2608V NAS2708V	NAS1080C8	HG75-2
	NAS1438 NAS1448	NAS1080E8	HG76-2
	NAS2408V NAS2508V NAS1458	NAS1080C8	11070-2
	NAS1458 NAS1468 NAS1478	NAS1080-8	HG85-2
	NAS1488 NAS1498	NAS1080R8	HG34D-4
	NAS2208V NAS2308V	NAS1080-8	
	NAS1518 NAS1528 NAS1538	NAS1080D8	HG85-2
	NAS1548 NAS1558	NAS1080D8	HG34D-3
	NAS2008V NAS2108V	NAS1080-8	HG85-18

	PINS	GAGES TO BE USED IN COMBINATION WITH PINS	COLLAR TO BE USED FOR CHECKING INSTALLATION
NORMAL DIAMETER	NAS BASIC PART NO.	NAS PART NO.	HUCK GAGE NO.
5/16	NAS1420 NAS1430 NAS2610V NAS2710V	NAS1080C10	HC75-3
	NAS1440 NAS1450	NAS1080E10	HG76-3
	NAS2410V NAS2510V	NAS1080C10	110100
	NAS1460 NAS1470 NAS1480 NAS2010V NAS2110V	NAS1080P10 NAS1080R10	HG85-8
	NAS1490 NAS1500 NAS2210V NAS2310V	NAS1080-10	HG34D-6
	NAS1520 NAS1530 NAS1540	NAS1080D10	HG85-3
	NAS1550 NAS1560	NAS1080D10	HG34D-5
3/8	NAS1422 NAS1432 NAS2612 NAS2712	NAS1080C12	HG75-4
	NAS1442 NAS1452	NAS1080E12	HG76-4
	NAS2412 NAS2512	NAS1080C12	HG70-4
	NAS1462 NAS1472 NAS1482 NAS2012 NAS2112	NAS1080P12 NAS1080R12	HG85-9
	NAS1492 NAS1502	NAS1080-12	HG34D-8
	NAS1522 NAS1532 NAS1542	NAS1080D12	HG85-4
	NAS1552 NAS1562	NAS1080D12	HG34D-7

P01-081


Table 1-58. Pull Type Installation Tools and Nose Assembly Section

						Tool Model Numbers	"			
									115	116
							200		353	504
			,				352	14100	14800	15900
								24100	24800	25900
	609	610	611	614	206	207	21600	44100	44800	45900
		613	612				41600	54100	54800	55900
							51600			
Dia.		Z	lose Assem	nbly Num	bers (Use	Nose Assembly Numbers (Use With Tools In	n Same Co	Same Column Above)	(e)	
1/8							99-614			
5/32	7				028-66		99-650	99-642		
3/16		99-395	99-156		99-871		809-66	969-66	92231	
	99-215	99-116	99-158				999-66			
	99-84	99-118	99-215				686-66		69-66	
	99-179	99-225	99-225				96-65			
		99-226	99-226				99-955			
			99-157				96-66			
			99-255				92221			
							92224			
1/4		99-126	99-165			99-891		99-637	609-66	
		99-129	99-167						299-66	
		99-227	99-257						92234	
		99-228	99-258						92235	
									95776	
5/16	- 2		99-135					99-638	99-625	H99-664
			99-137						899-66	99-664
			99-265						79584	
			99-566						92230	
									99-99	
									756-66	
									90.00	

Table 1-58. Pull Type Installation Tools and Nose Assembly Section - Continued

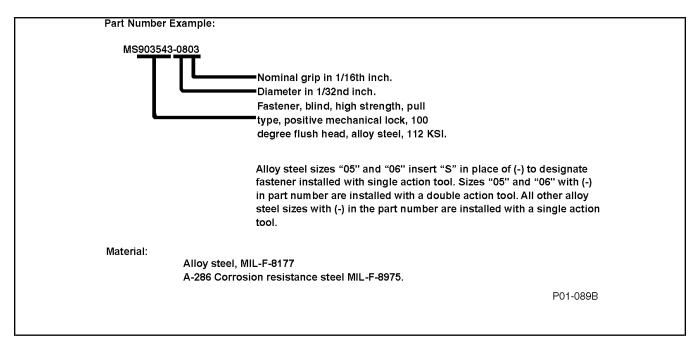

					Tool Model Numbers	nbers			
3/8	3		99-138	99-			68-636	99-613	
			99-145					99-100	
			99-267						
			99-269					92386	
		Stur	np Type Co	ollar Swag	Stump Type Collar Swage Tool Selection				
						Swage Tool			
Fastener	Dia.		Squeeze Type	Туре		Ham	Hammer		
NAS									
1414 thru 1422	1/8		915-5-4	4	915-1-4	4-	915	915-1-4C (LONG)	
			.401 Shank Dia.	k Dia.	.401 Shank Dia.	ık Dia.	4.	.401 Shank Dia.	
1424 thru 1432	5/32		915-5-5	ځ.	915-1-5	-5	915	915-1-5C (LONG)	
			.187 Shank Dia.	k Dia.	.401 Shank Dia	ık Dia.	4.	.401 Shank Dia.	
1486 thru 1492	3/16		915-5-6A	5A	915-1-6A	-6A	915	915-1-6F (LONG)	
1496 thru 1502			249 Shank Dia.	c Dia.	.401 Shank Dia	ık Dia.	4.	.401 Shank Dia	
1546 thru 1562	1/4		915-5-8A	8A	915-1-8A	-8A	915	915-1-8E (LONG)	
			.249 Shank Dia.	k Dia.	.498 Shank Dia.	ık Dia.	4.	.498 Shank Dia.	
2206 thru 2210									
2306 thru 2310									
2606 thru 2712									
115 And 353 Tool Will Not Install These Diameter	Install These Diame	ters							
116 and 504 Only									
NOTE: For Tool Identification See Figure 1-48 and Figure 1-49.	ion See Figure 1-48	and Figure	1-49.						

Table 1-59. MS90353 Fastener, Blind High Strength, Pull Type, Positive Mechanical Lock, 100 Degree Head Alloy Steel; MS90354 Fastener, Blind, High Strength, Pull Type, Positive Mechanical Lock, Protruding Head Alloy Steel; MS21140 Fastener, Blind, High Strength, Pull Type, Positive Mechanical Lock, 100 Degree Head Corrosion Resisting Steel and MS21141 Fastener, Blind, High Strength, Pull Type, Positive Mechanical Lock, Protruding Head, Corrosion Resisting Steel

				Head Diameter	
	Shank	Diameter	MS21140 and MS90353	MS21141 and	MS90354
Basic Part Number	Min	Max	Max	Min	Max
MS90353S05 and MS90354S05					
MS21140-05 and MS90353- 05	.162	.164	.333	.250	.272
MS21141-05 and MS90354- 05					
MS90353S06 and MS90354S06					
MS21140-06 and MS90353- 06	.197	.199	.386	.305	.332
MS21141-06 and MS90354- 06					
MS21140-08 and MS90353- 08	.258	.260	.507	.400	.432
MS21141-08 and MS90354- 08					
MS21140-10 and MS90353- 10	.310	.312	.634	.480	.522
MS21141-10 and MS90354- 10					
MS21140-12 and MS90353- 12	.372	.374	.762	.580	.627
MS21141-12 and MS90354- 12					
MS90353-14 and MS90354- 14	.435	.437	.890	.675	.727
MS90353-16 and MS90354- 16	.496	.499	1.017	.770	.832

Table 1-59. MS90353 Fastener, Blind High Strength, Pull Type, Positive Mechanical Lock, 100 Degree Head Alloy Steel; MS90354 Fastener, Blind, High Strength, Pull Type, Positive Mechanical Lock, Protruding Head Alloy Steel; MS21140 Fastener, Blind, High Strength, Pull Type, Positive Mechanical Lock, 100 Degree Head Corrosion Resisting Steel and MS21141 Fastener, Blind, High Strength, Pull Type, Positive Mechanical Lock, Protruding Head, Corrosion Resisting Steel - Continued

1.7 HUCKRIMP FASTENERS.

The HUCKRIMP FASTENER is a two piece threaded fastener consisting of a pin (or bolt) having a modified radiused root, fatigue resistant thread form and a cylindrical nut fitted with a wrenching section. The nut, at installation is a free running fit on the thread of the pin.

- 1.7.1 <u>Installation of Huckrimp Fasteners</u>. Special tools are required for the installation of HUCKRIMP fasteners as indicated in Table 1-64. Tools are selected on the basis of nut diameter and material.
 - a. The pin is inserted in a hole through a joint. The free running nut is threaded on the pin. Only sufficient torque need be applied to make up the joint; that is to take out any gap which may exist.
 - b. At this point, the nut is crimped on the pin with a crimping tool. This crimping action displaces a controlled volume of the nut material and induces an axial pull on the pin which results in a predictable, high residual clamping force on the joint.
 - Since each fastener is installed under the same conditions, the clamping force exerted on the joint

- by each fastener will be very close to the same as that of each of the other like fasteners. The fastened joint is more reliable because the possibility is materially reduced of one fastener taking more of the load than the rest and thereby becoming the weakest link in the chain.
- When the crimping jaws of the tool are impressed into the nut, the nut material flows into the locking feature built into the threads of the pin forming a mechanical lock between the crimped nut and the pin. This mechanical lock resists the tendency of the nut to loosen under vibration. The effectiveness of this anti-rotation feature is evidenced by a resulting high break-loose torque. After the mechanical lock is broken, high back-off torque remains to further resist rotation between the nut and the pin. In short, the crimping action has also converted the free-running nut at installation into a prevailing-torque type of lockout Figure 1-53.)

Table 1-60. Blind Bolt Installation Tool and Nose Assembly Selection

				To	Tool Model Numbers	S		
			115					
		200	353		116	610	611	
			14800	15900				
		21600	24800	25900				207-51
		41600	44800	45900	504	613	612	
		51600	54800	55900				
Fastener	Dia.		Nose Asse	mbly Numbers	Nose Assembly Numbers (Use With Tools In Same Column Above)	s In Same Colu	ımn Above)	
MS21140-05								
MS21141-05	5/32	009-66						
MS90353-05								
MS90354-05								
MS21140-06								
MS21141-06								
MS90353-06	3/16	685-66						
MS90354-06								
MS21140-08	1					99-838		
MS21141-08	,							
MS90353-08	1					589-66		
MS90354-08	1/4		99-591	H99-662	69-66	629-66	99-685	906-66
MS21140-10	•							
MS21141-10	5/16			Е99-66Н	699-663			
MS90353-10	1							
MS90354-10								
MS21140-12	,							
MS21141-12	3/8			H99-599	665-66			
MS90353-12								
MS90354-12								

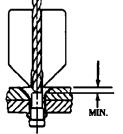
Table 1-60. Blind Bolt Installation Tool and Nose Assembly Selection - Continued

Fastener	Dia.	Nose Assem	bly Numbers ((Use With Tools I	Nose Assembly Numbers (Use With Tools In Same Column Above)	
MS90353-14	7/16		Н99-738	99-738		
MS90354-14						
MS90353-16	1/2		829-66H	829-66		
MS90354-16						

Tool Model Numbers Tool Model Numbers 206-51 609

Fastener	Dia.	Nose Assembly I	Nose Assembly Numbers (Use With Tools In Same Column Above)	me Column Above)
MS90353S05	5/32	99-904	99-853	089-66
MS90354S05				
MS90353S06	3/16	506-66	99-854	99-681
MS90354S06			99-826	
		ON	NOTE	
		For Tool Identification See	For Tool Identification See Figure 1-48 and Figure 1-49.	

Table 1-61. Blind Bolt Fastener Removal

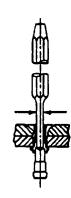

DRILL PIN

NOM. SIZE	PART NO.	SIZE	MIN. DEPTH*	BUSHING
5/32"	502999	.0980	.050	103615
3/16"	503000	.1200	.070	103616
1/4"	503001	.1562	.090	103617
5/16"	503003	.1875	.105	103618
3/8"	503005	.2280	.130	103619
	5/32" 3/16" 1/4" 5/16"	5/32" 502999 3/16" 503000 1/4" 503001 5/16" 503003	5/32" 502999 .0980 8/16" 503000 .1200 1/4" 503001 .1562 5/16" 503003 .1875	5/32" 502999 .0980 .050 8/16" 503000 .1200 .070 1/4" 503001 .1562 .090 5/16" 503003 .1875 .105

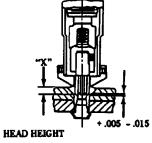
*MAX. DEPTH - .020

PLACE THE DRILL BUSHING OVER THE PIN SO THAT IT RESTS SQUARELY ON THE LOCK COLLAR.

USING A DRILL WITH A MAXIMUM OF 1250 RPM, DRILL TO LOCK COLLAR DEPTH.



KNOCK OUT PIN


NOM. SIZE	PART NO.	SIZE
5/32"	503010	3/32"
3/16"	503010	3/32"
1/4"	503012	5/32"
5/16"	503013	3/16"
3/8"	503014	7/32"

Position Pin Punch on the fastener and drive fastener Pin out.

REMOVE REMAINING PORTION OF PIN AND LOCK COLLAR WITH ANY SHARP POINTED INSTRUMENT.

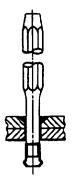
COUNTERBORE SLEEVE

NOM, SIZE	HOLDER	PART NO.	SIZE	ANTI-ROTATION CAP
5/32"	103610	103605	5/32"	103620
3/16"	103611	103606	3/16"	103620
1/4"	103611	103607	1/4"	103621
5/16"	103613	103608	5/16"	103621
3/8"	103613	103609	3/8"	103622

ADJUST MICRO-LIMIT TOOL TO WITHIN .005 TO .015 LESS THAN DIMENSION "X".

PLACE ANTI-ROTATION CAP FIRMLY AGAINST HEAD OF PASTENER.

COUNTERBORE TO DESIRED DEPTH.


H	EAD HEI	GHT	
PROTR HEAD	UDING	C/SUNK HEAD	
5/32" 3/16" 1/4" 5/16" 3/8"	.070 .135 .140 .140 .205	.070 .080 .105 .135 .165	

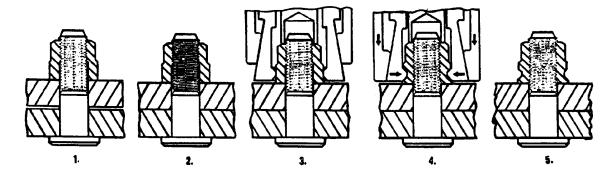
KNOCK OUT SLEEVE

NOM, SIZE	PART NO.	SIZE-
5/32"	503012	5/32"
3/16"	503013	3/16"
1/4"	503015	1/4"
5/16"	503016	5/16"
3/8"	503017	3/8"

POSITION THE SLEEVE PUNCH IN THE SLEEVE AND DRIVE OUT LOWER PORTION OF THE SLEEVE.

TIP THE SLEEVE PUNCH SLIGHTLY AND LIFT OUT THE HEAD OF THE FASTENER.

P01-093


Table 1-62. Substitution Chart for Nonhole Filling Alloy Steel Blind Fasteners

		5/32 in	5/32 inch Dia.	3/16 inc	3/16 inch D1A.	1/4 inc	1/4 inch Dia.	5/16 in	5/16 inch Dia.
Fastener Standard	Applicable Specification	Shear Pounds	Tensile Pounds	Shear Pounds	Tensile Pounds	Shear Pounds	Tensile Pounds	Shear Pounds	Tensile Pounds
MS90353	MIL-F-81177	2340	1350	3450	2100	0069	3650	0058	5200
MS90354	MIL-F-81177	2340	1350	3450	2100	5900	3650	8500	5200
NAS1059P	NAS1058	2005		2690	1900	4650	3630	00£L	4635
NAS1059F	NAS1058	2005		2690	1900	4650	3630	7300	4635
NAS1669	NAS1675	1678	006	2620	1400	4500	2100	0009	3600
NAS1670	NAS1675	1678	900	2620	1400	4500	2100	0009	3600

		3/8 inc	3/8 inch Dia.	7/16 inch Dia.	Dia.	1/2 inch Dia.	th Dia.
Fastener Standard	Applicable Specification	Shear Pounds	Shear Pounds	Shear Pounds	Shear Pounds	Shear Pounds	Shear Pounds
MS90353	MIL-F-81177	12200	7500	16700	10150	21800	13500
MS90354	MIL-F-81177	12200	7500	16700	10150	21800	13500
NAS1059P	NAS1058	10500	0959	14300	8160	18650	11100
NAS1059F	NAS1058	10500	0959	14300	8160	18650	11100
NAS1669	NAS1665	9750	2600				
NAS1670	NAS1665	9750	5600				

Table 1-63. Substitution Chart for Nonhole Filling A-286 Stainless Steel Blind Fasteners

		5/32 in	5/32 inch DIA.	3/16 in	3/16 inchDIA.	1/4 in	1/4 inchDIA.	5/16 inchDIA.	chDIA.	3/8 inchDIA	hDIA.
Fastener Stan- dard	Applicable Specifica- tion	Shear Lbs.	Tensile Lbs.	Shear Lbs.	Tensile Lbs.	Shea Lbs.	Tensile Lbs.	Shear Lbs.	Tensile Lbs.	Shear Lbs.	Tensile Lbs.
MS21140	MIL-F-8975	1980	1150	2925	1690	5005	2900	7215	4170	10380	5970
MS21141	AS21141 MIL-F-8975	1980	1150	2925	1690	5005	2900	7215	4170	10380	5970
NAS1761	NAS1675	1300	820	2265	1400	009€	2100	5175	3600	7875	2600
NAS1672	NAS1675	1300	820	2265	1400	3600	2100	5175	3600	7875	2600

HUCKRIMP fastening system: 1. Pin is inserted in hole, a free-running nut is mated with pin and torqued finger-tight to eliminate gap. 2. Additional light torque is applied to nut, sufficient to draw sheets together and remove looseness from joint. 3. Installation tool is placed on nut, integral stop automatically positions crimp jaws. 4. Installation tool is actuated and crimp jaws are impressed into nut. 5. Installation tool is removed from assembled fastener, completing cycle.

F01-052

Figure 1-53. Huckrimp Fastener Installation Sequence

Table 1-64. Huckrimp Fastener Installation Tool and Nose Assembly Section

		OKN-EU and	KN-2C Krimpnu	t Diameters	
Installation Tool	5/32 inch	3/16 inch	1/4 inch	5/16 inch	3/8 inch
200	99-833	99-834			
352		99-834-1			
2700		99-834-2			
		99-834-3			
		99-990	99-799		
		99-990-1	99-799-1		
354		99-990-2	99-799-2		
		99-990-3	99-799-3		
	99-897	99-898			
		99-898-1			
		99-898-2			
		99-898-3			
542		99-991			
		99-991-1			
		99-991-2			
		99-991-3			
543			99-899		
			99-899-1		İ
			99-899-2		
			99-992		
			99-992-1		
			99-992-2		
			99-992-3		
544				99-990	99-901*

4800

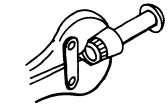
*Will Install Aluminum Nuts Only

		OKN-EU and I	KN-2C Krimpn	ut Diameters	
Installation Tool	5/32 inch	3/16 inch	1/4 inch	5/16 inch	3/8 inch
	99-881*	99-883*	99-885*		
568	99-882*	99-883-1	99-886*		
		99-884*			
574			99-885-1	99-887*	99-889*
				99-888*	99-890*
		99-990	99-799	99-798*	99-797*

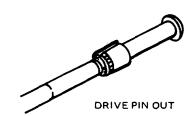
99-990-1

99-990-2

99-990-3


Table 1-64. Huckrimp Fastener Installation Tool and Nose Assembly Section - Continued

1.7.2 <u>Inspection of Huckrimp Fasteners</u>. For appropriate inspection gages see Table 1-65.

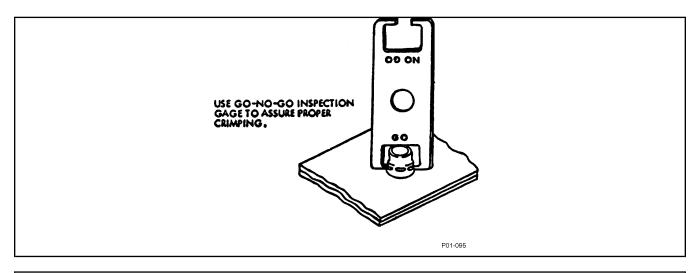

1.7.3 Removal of Huckrimp Fasteners. (See Figure 1-54.) Two methods of removal may be used. The KRIMPNUT may be split with a collar removal tool as shown in Figure 1-54. If the removal tool is not available a narrow chisel may be used to split the KRIMPNUT lengthwise. During removal of fasteners, special care should be taken so as not to damage or enlarge the hole. Replace a

HUCKRIMP fastener with a unit of comparable size, type and material.

1.7.4 <u>Blind Fasteners</u>. Blind fasteners are used when access to one side of the work is impractical. The type of blind fastener selected depends on location, material, and strength requirements. The following outlines the requirements and installation procedure for various types of blind fasteners.

THE KRIMPNUT IS SPLIT WITH A COLLAR REMOVAL TOOL.

99-799-1


99-799-2

99-799-3

KRIMPIN DIA.	TOOL PART NUMBER	FEDERAL STOCK NUMBER	
3/16"	105-6	5120-942-6898	
1/4"	105-8	5120-942-6899	
5/16"	105-10	5120-677-5706	
3/8"	105-12	5120-677-5707	F01-0053

Figure 1-54. Removal of Huckrimp Fasteners

Table 1-65. Huckrimp Fastener Inspection

Krimpnut Part Number	Nominal Diameter	Crimp Inspection Gage Part Number
KN-2C05	5/32 inch	HG91-05
KN-EU05C	5/32 inch	HG93-05
KN-2C06	3/16 inch	HG91-06
OKN-EU06C	13/64 inch	HG93-06
KN-2C08	1/4 inch	HG91-08
OKN-EU08C	17/64 inch	HG93-08
KN-2C10	5/16 inch	HG91-10
OKN-EU10C	21/64 inch	HG93-10
KN-2C12	3/8 inch	HG91-12
OKN-EU12C	25/64 inch	HG93-12

Table 1-66. Huckrimp Fastening System (108 K.S.I. Shear) Krimpin and Krimpnut for Shear/Tension Applications, 100 Degree Flush Crown HEAD or Protruding Head, 1/64 Inch Oversize Shank and Huckrimp Nut. AISI 8740 Alloy Steel Krimpin and A-286 Stainless Steel Krimpnut

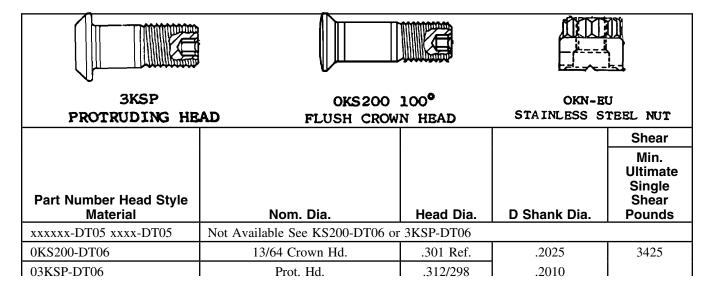
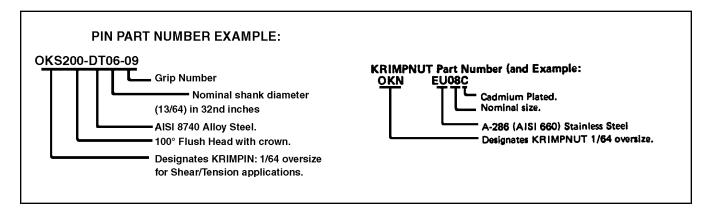
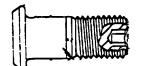
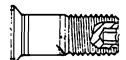
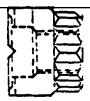


Table 1-66. Huckrimp Fastening System (108 K.S.I. Shear) Krimpin and Krimpnut for Shear/Tension Applications, 100 Degree Flush Crown HEAD or Protruding Head, 1/64 Inch Oversize Shank and Huckrimp Nut. AISI 8740 Alloy Steel Krimpin and A-286 Stainless Steel Krimpnut - Continued

Part Number Head Style				Shear Min. Ultimate Single Shear
Part Number Head Style Material	Nom. Dia.	Head Dia.	D Shank Dia.	Pounds
0KS200-DT08	17/64 Crown Hd.	.400 Ref.	.2650	5890
03KSP-DT08	Prot. Hd.	.413/.398	.2635	
0KS200-DT10	21/64 Crown Hd.	.484 Ref.	.3275	9090
03KSP-DT10	Prot. Hd.	.503/.483	.3260	
0KS200-DT12	25/64 Crown Hd.	.579 Ref.	.3900	12900
03KSP-DT12	Prot. Hd.	.583/.563	.3885	

	Krim	onuts With Instal	led Mechanic	al Properties	
PIN Part No.	A-286 CRES Stainless "EU"	Min. Ult. Ten- sion Strength Pounds	Min. Clamping Force Pounds	Min. Break- Away Torque Inch-Lbs.	Min. Back- Off Torque Inch-Lbs.
xxxxx-DT05	Not Available See 3KSP-DT0	6			
03KSP-DT06	OKN-EU06C	2850	1850	35	7
03KSP-DT08	OKN-EU08C	4800	2600	100	20
03KSP-DT10	OKN-EU10C	7300	5100	225	50
03KSP-DT12	OKN-EU12C	10350	7250	430	100
xxxxx-DT05	Not Available See KS200-DT	06			,
OKS200- DT06	OKN-EU06C	2850	1850	35	7
OKS200- DT08	OKN-EU08C	4800	2600	100	20
OKS200- DT10	OKN-EU10C	7300	5100	225	50
OKS200- DT12	OKN-EU12C	10350	7250	430	100


Table 1-67. Huckrimp Fastening System, (108 K.S.I. Shear), 100 Degree Countersunk or Protruding Head and Huckrimp Nuts for Shear Applications. AISI 8740 Alloy Steel and 6AL-4V Pins with 2024 Aluminum Alloy Nuts

KS100-DT & KS100-V 100 FLUSH HEAD

KN-2C ALUMINUM NUT

				Shear
Part Number Head Style Material	Nom. Dia.	Head Diameter	D Shank Dia.	Ultimate Single Shear Pounds
KS100-DT05	5/32 Flush Hd.	.256 Ref.	.1635/.1620	2280
KS100-V05			.1635/.1630	2010
KSP-DT05	5/32 Prot. Hd.	.257/.245	.1635/.1620	2280
KSP-V05			.1635/.1630	2010
KS100-DT06	3/16 Flush Hd.	.305 Ref.	.1895/.1880	3060
KS100-V06			.1895/.1890	2690
KSP-DT06	3/16 Prot. Hd.	.312/.298	.1895/.1880	3060
KSP-V06			.1895/.1890	2690
KS100-DT08	1/4 Flush Hd.	.399 Ref.	.2495/.2480	5300
KS100-V08			.2495/.2490	4660
KSP-DT08	1/4 Prot. Hd.	.413/.398	.2495/.2480	5300
KSP-V08			.2495/.2490	4660
KS100-DT10	5/16 Flush Hd.	.492 Ref.	.3120/.3105	8280
KS100-V10			.3120/.3115	7290
KSP-DT10	5/16 Prot. Hd.	.503/.483	.3120/.3105	8280
KSP-V10			.3120/.3115	7290
KS100-DT12	3/8 Flush Hd.	.588 Ref.	.3745/.3730	11950
KS100-V12			.3745/.3740	10490
KSP-DT12	3/8 Prot. Hd.	.583/.563	.3745/.3730	11950
KSP-V12			.3745/.3740	10490

Krimpins		Krimpnuts w	vith Installed Mec	hanical Properties	
Part No.	2024 Alum. Alloy "2C"	Min. Ult. Ten- sion Strength Pounds	Min. Clamping Force Pounds	Min. Break-Away Torque Inch-Lbs.	Min. Back-Off Torque Inch- Lbs.
KSP-DT05	KN-2C05	1500	1050	20	4
KSP-DT06	KN-2C06	2000	1400	35	7
KSP-DT08	KN-2C08	3500	2450	100	20
KSP-DT10	KN-2C10	5475	3850	225	50
KSP-DT12	KN-2C12	7925	5550	430	100
KS100-DT05	KN-2C05	1500	1050	20	4
KS100-DT06	KN-2C06	2000	1400	35	7
KS100-DT08	KN-2C08	3500	2450	100	20

Table 1-67. Huckrimp Fastening System, (108 K.S.I. Shear), 100 Degree Countersunk or Protruding Head and Huckrimp Nuts for Shear Applications. AISI 8740 Alloy Steel and 6AL-4V Pins with 2024 Aluminum Alloy Nuts - Continued

Krimpins		Krimpnuts w	vith Installed Mec	hanical Properties	
Part No.	2024 Alum. Alloy "2C"	Min. Ult. Ten- sion Strength Pounds	Min. Clamping Force Pounds	Min. Break-Away Torque Inch-Lbs.	Min. Back-Off Torque Inch- Lbs.
KS100-DT10	KN-2C10	5475	3850	225	50
KS100-DT12	KN-2C12	7925	5550	430	100
KSP-V05	KN-2C05	1500	1050	20	4
KSP-V06	KN-2C06	2000	1400	35	7
KSP-V08	KN-2C08	3500	2450	100	20
KSP-V10	KN-2C10	5475	3850	225	50
KSP-V12	KN-2C12	7925	5550	430	100
KS100-V05	KN-2C05	1500	1050	20	4
KS100-V06	KN-2C06	2000	1400	35	7
KS100-V08	KN-2C08	3500	2450	100	20
KS100-V10	KN-2C10	5475	3850	225	50
KS100-V12	KN-2C12	7925	5550	430	100

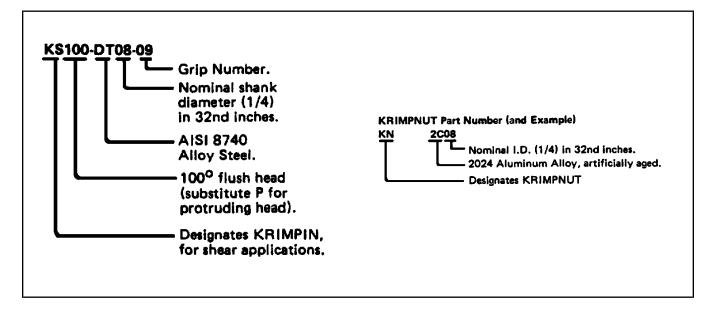
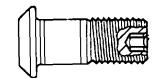
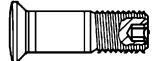




Table 1-68. Huckrimp Fastening System (108 K.S.I. Shear) Krimpin and Krimpnut for Shear/Tension Applications, 100 Degree Flush Crown Head or Protruding Head. AISI 8740 Alloy Steel Krimpin and A-286 Stainless Steel Krimpnut

3KSP PROTRUDING HEAD

OKS 200 100° FLUSH CROWN HEAD

OKN-EU STAINLESS STEEL NUT

				Shear
Part Number Head Style Material	Nom. Dia.	Head Dia.	D Shank Dia.	Min. Ultimate Single Shear Pounds
KS200-DT05	5/32 Crown Hd.	.252 Ref.	.1635/.1620	2280
3KSP-DT05	Prot. Hd.	.257/.245		
KS200-DT06	3/16 Crown Hd.	.301 Ref.	.1895/.1880	3060
3KSP-DT06	Prot. Hd.	.312/.298		
KS200-DT08	1/4 Crown Hd.	.400 Ref.	.2495/.2480	5300
3KSP-DT08	Prot. Hd.	.413/.398		
KS200-DT10	5/16 Crown Hd.	.484 Ref.	.3120/.3105	8280
3KSP-DT10	Prot. Hd.	.503/.483		
KS200-DT12	3/8 Crown Hd.	.579 Ref.	.3745/.3730	11950
3KSP-DT12	Prot. Hd.	.583/.563		

	Krimpnuts With Installed Mechanical Properties										
A-286 CRES Stainless Pin Part No. "EU"				Min. Break-Away Torque Inch-Lbs.	Min. Back-Off Torque Inch- Lbs.						
3KSP-DT05	3KSP-DT05 KN-EU05C 2000 1300		20	4							
3KSP-DT06	3KSP-DT06 OKN-EU06C 2850 1850		35	7							
3KSP-DT08 OKN-EU08C 4800 2600		2600	100	20							
3KSP-DT10	OKN-EU10C	7300	5100	225	50						
3KSP-DT12	OKN-EU12C	10350	7250	430	100						
KS200-DT05	KN-EU05C	2000	1300	20	4						
KS200-DT06	OKN-EU06C	2850	1850	35	7						
KS200-DT08	OKN-EU08C	4800	2600	100	20						
K200-DT10	OKN-EU10C	7300	5100	225	50						
KS200-DT12	OKN-EU12C	10350	7250	430	100						

Table 1-68. Huckrimp Fastening System (108 K.S.I. Shear) Krimpin and Krimpnut for Shear/Tension Applications, 100 Degree Flush Crown Head or Protruding Head. AISI 8740 Alloy Steel Krimpin and A-286 Stainless Steel Krimpnut - Continued

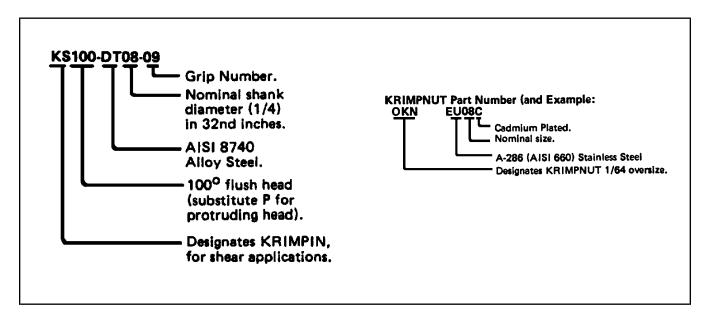
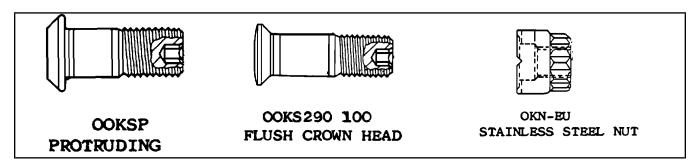
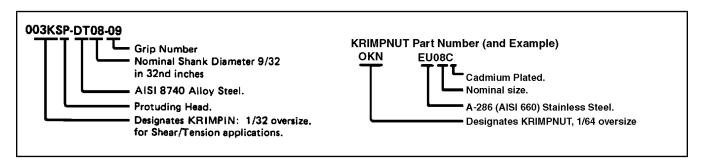




Table 1-69. Huckrimp Fastening System (108 K.S.I.), Krimpin and Krimpnut for Shear/Tension Applications, 100 Degree Flush Crown Head or Protruding Head, 1/32 Inch Oversize Shank and Huckrimp Nut. AISI 8740 Alloy Steel Krimpin and A-286 Stainless Steel Krimpnut

Part Number	Nominal Diameter	Head Diameter	Shank Diameter	Minimum Ult. Shear
003KSP-DT06	7/32	.329/.343	.2167/.2182	3425
00KS200-DT06	7/32	.301 ref.	.2167/.2182	3425
003KSP-DT08	9/32	.429/.444	.2792/.2827	5890
00KS200-DT08	9/32	.400 ref.	.2792/.2827	5890

	Krimpnuts With Installed Mechanical Properties									
1/32 inch Over- size Krimpin Part Number	Krimpnut Part Number	Tension Clam Strength For		Min. amping Force Min. Break-Away ounds Torque Inch-Lbs.						
003KSP-DT06	OKN-EU06C	2850	1850	35	7					
00KS200-DT06	OKN-EU06C	2850	1850	35	7					
003KSP-DT08	OKN-EU08C	4800	2600	100	20					
00KS200-DT08	OKN-EU08C	4800	2600	100	20					

Table 1-70. Krimpnut Torque Installation Tools

Table 1-71. Conventional Rivet Substitution with Blind Fasteners - Continued

Substitute

Fastener

NAS1398D4

Notes

Installed

Fastener

		Torque Tools							
Krimpnuts	Dia.	Crowfoot	Flat						
		10602F05B	10608F05B						
OKN-EU	05								
KN-2C									
		10603C06B	10609C06B						
	06								
KN-EU		10604C08B	10610C08B						
	08								
		10605E10D	10611E10D						
	10								
		10606E12B	10612E12B						
	12								

1.8 BLIND FASTENER SUBSTITUTION REQUIREMENTS FOR CONVENTIONAL RIVETS.

The blind fasteners now available have an inherently lower level of reliability than most conventional aircraft fasteners, particularly when the blind side of the installed fastener cannot be inspected. For this reason, they shall only be used when absolutely necessary and more specifically, their use shall be consistent with the following general rules. See Table 1-71 for additional blind fastener substitution information.

Table 1-71. Conventional Rivet Substitution with Blind Fasteners

Installed Fastener	Substitute Fastener	Notes
1/8 Inch Fastener		
MS20426AD4	NAS1399D4	3
	CR3212-4	3
	NAS1769D4	3
	NAS1739B4	3
	CR3242-4	3
MS20426B4	NAS1399B4	3
	CR3212-4	3
	NAS1769D4	3
	NAS1739B4	3
	CR3242-4	3
MS20427M4	NAS1769MW4	5
	NAS1399MW4	5
	CR3522P-4	5
	NAS1739MW4	5
	CR3552P-4	5
MS20470AD4	MS20600AD4	3

CR3213-4 3 NAS1768D4 3 NAS1738D4 3 CR3243-4 3 NAS1398B4 3 CR3213-4 3 NAS1398B4 3 CR3213-4 3 NAS1738B NAS1738B NAS1738B NAS1738B NAS1738B4 5 CR3243-4 5 CR3243-4 5 CR3523P-4 5 CR3553P-4 5 CR3212-6 3 NAS1739B6 3 CR3242-6 3 NAS1739B6 5 CR3242-6 5 NAS1739B6 5 CR3242-6 5 NAS1739B6 5 CR3242-6 5 NAS1739B6 5 CR3552P-6 5 NAS1739B6 5 CR3552P-6 5 NAS1739B6 5 CR3243-6 3 NAS1738B6 3 CR3213-6 3 NAS1739B6 3 CR3213-6 3 CR3213-6 3 CR3213-6 3 CR3213-6 3 CR3213-6 3 CR3213-6 3 C		NAS1398D4)	
MS20470B4 NAS1738D4 CR3243-4 3 MS20600B4 3 NAS1398B4 3 CR3213-4 3 NAS1768D4 3 NAS1738B NAS1738B NAS1738B4 3 CR3243-4 3 MS20600M4 4 MS20600MP4 5 NAS1398MW4 5 CR3523P-4 5 CR3553P-4 5 CR3212-6 3 NAS1739B6 3 CR3242-6 3 NAS1739B6 5 CR3242-6 5 NAS1739B6 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 CR3243-6 3 NAS1738B6 3 CR3213-6 3 NAS1738B6 3 CR3213-6 3 NAS1739B6 3 CR3213-6		CR3213-4	3	
MS20470B4 MS20600B4 NAS1398B4 CR3213-4 NAS1768D4 NAS1738B NAS1738B4 CR3243-4 MS20600M4 MS20600M4 MS20600MP4 NAS1398MW4 CR3523P-4 CR3553P-4 CR3553P-4 5 3/16 Inch Fastener MS20426AD6 MS20426B6 CR3212-6 NAS1739B6 CR3212-6 NAS1739B6 3 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 3 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 SR3242-6 NAS1739B6 CR3242-6 NAS1739MW6 CR3552P-6 NAS1739MW6 CR3552P-6 NAS1739MW6 CR3552P-6 NAS1739MW6 CR3552P-6 NAS1739MW6 CR3552P-6 NAS1739MW6 CR3552P-6 SNAS1739MW6 CR3552P-6 SNAS1739B6 ANS1739B6 CR3243-6 NAS1738B6 CR3243-6 MS20470DD6 NAS1738B6 CR3243-6 NAS1738B6 CR3243-6 MS20470B6 MS20600B6 NAS1399B6 CR3213-6 NAS1739B6 3		NAS1768D4	3	
MS20470B4 MS20600B4 3 NAS1398B4 3 CR3213-4 3 NAS1768D4 3 NAS1738B 3 NAS1738B4 3 CR3243-4 3 MS20600M4 4 MS20600MP4 5 NAS1398MW4 5 CR3523P-4 5 CR3553P-4 5 3/16 Inch Fastener MS20426AD6 CR3212-6 3 MS20426B6 NAS1399B6 3 CR3212-6 3 3 NAS1769B6 3 3 CR3242-6 3 3 MS20426DD6 NAS1769D6 3 NAS1739B6 3 3 CR3242-6 3 3 MS20427M6 NAS1769M6 5 NAS1399MW6 5 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20600B6 <		NAS1738D4	3	
NAS1398B4 3 CR3213-4 3 NAS1738B NAS1738B NAS1738B NAS1738B NAS1738B4 3 CR3243-4 3 MS20600M4 4 MS20600MP4 5 NAS1398MW4 5 CR3523P-4 5 CR3553P-4 5 S CR3212-6 3 NAS1769B6 3 CR3212-6 3 NAS1739B6 3 CR3242-6 3 NAS1739B6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739B6 3 CR3243-6 3 NAS1738B6 3 CR3243-6 3 NAS1738B6 3 CR3243-6 3 NAS1739B6 3 CR3213-6 CR3213-6 CR3213-6 CR3213-6 CR3213-6 CR3213-6 CR321		CR3243-4	3	
CR3213-4 NAS1768D4 NAS1738B NAS1738B4 CR3243-4 3 MS20600M4 MS20600MP4 MS20600MP4 SNAS1398MW4 CR3523P-4 CR3553P-4 SCR3212-6 MS20426AD6 CR3212-6 MS20426B6 NAS1399B6 CR3212-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 SNAS1739B6 CR3242-6 SNAS1739B6 CR3242-6 SNAS1739MW6 CR3552P-6 SNAS1739MW6 SCR3243-6 SNAS1739B6 ANS20470B6 MS20470B6 MS20470B6 ANS20470B6	MS20470B4	MS20600B4	3	
NAS1768D4 3 NAS1738B NAS1738B NAS1738B4 3 CR3243-4 3 MS20600M4 4 MS20600MP4 5 NAS1398MW4 5 CR3523P-4 5 CR3553P-4 5 CR3553P-4 5 CR35212-6 3 NAS1769B6 3 NAS1739B6 3 CR3242-6 3 NAS1739B6 5 CR3242-6 3 NAS1739B6 5 CR3522P-6 5 NAS1739MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739MW6 5 CR3552P-6 5 NAS1739B6 3 CR3243-6 3 NAS1738B6 3 CR3243-6 3 NAS1738B6 3 CR3243-6 3 NAS1739B6 3 CR3213-6 CR3213-6 CR3213-6 CR3213-6 CR3213-6 CR3213-6 CR3213-6		NAS1398B4	3	
NAS1738B NAS1738B4 CR3243-4 3 MS20600M4 MS20600MP4 NAS1398MW4 CR3523P-4 CR3553P-4 5 3/16 Inch Fastener MS20426AD6 CR3212-6 MS20426B6 NAS1399B6 CR3212-6 NAS1739B6 3 CR3242-6 NAS1739B6 3 CR3242-6 NAS1739B6 3 CR3242-6 NAS1739B6 3 CR3242-6 NAS1739B6 5 CR3242-6 NAS1739MW6 CR3552P-6 NAS1739MW6 CR3552P-6 SNAS1739MW6 CR3243-6 MS20470DD6 NAS1768D6 NAS1738B6 3 CR3243-6 MS20470B6 MS20470B6 MS20600B6 NAS1399B6 3 CR3213-6 NAS1739B6 3 CR3213-6 NAS1739B6 3 NAS1739B6 3 NAS1739B6 3 NAS1739B6 3 NAS1739B6 3 NAS1739B6 3 NAS1739B6 3 NAS1739B6 3		CR3213-4	3	
MS20615-4M MS20600M4 MS20600MP4 MS20600MP4 S NAS1398MW4 CR3523P-4 CR3553P-4 CR3553P-4 S MS20426AD6 MS20426B6 CR3212-6 MS20426B6 NAS1399B6 CR3212-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 MS20427M6 MS2043-6 MS2043-6 MS2043-6 MS20470B6 MS20470B6 MS20600B6 MS20470B6 MS20600B6 MS20600B6 MS20470B6 MS20600B6 MS20470B6 MS20470B6 MS20600B6 MS20600B6 MS20470B6 MS20600B6 MS2060B6 MS2060		NAS1768D4	3	
MS20615-4M MS20600M4 MS20600MP4 NAS1398MW4 CR3523P-4 CR3553P-4 CR3553P-4 CR3212-6 MS20426B6 MS20426B6 CR3212-6 MS212-6 MS212-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 MS20427M6 MS20470AD6 MS20470AD6 MS20470AD6 MS20470AD6 MS20470B6 MS20600B6 NAS1739B6 3 CR3213-6 NAS1739B6 3 NAS1739B6		NAS1738B		
MS20615-4M MS20600M4 4 MS20600MP4 5 NAS1398MW4 5 CR3523P-4 5 CR3553P-4 5 3/16 Inch Fastener CR3212-6 3 MS20426AD6 CR3212-6 3 MS20426B6 NAS1399B6 3 CR3212-6 3 NAS1769B6 NAS1739B6 3 CR3242-6 MS20426DD6 NAS1769D6 3 NAS1739B6 3 CR3242-6 NAS1739B6 3 CR3242-6 NAS1769MW6 5 NAS1739MW6 CR3522P-6 5 NAS1739MW6 CR3213-6 3 NAS1738B6 MS20470DD6 NAS1768D6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3		NAS1738B4	3	
MS20600MP4 NAS1398MW4 CR3523P-4 CR3553P-4 5 CR3553P-4 5 3/16 Inch Fastener MS20426AD6 CR3212-6 MS20426B6 NAS1399B6 CR3212-6 NAS1769B6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 NAS1769MW6 NAS1769MW6 NAS1769MW6 SCR3522P-6 NAS1739MW6 CR3552P-6 CR3552P-6 SNAS1739MW6 CR3552P-6 SNAS1739MW6 CR3552P-6 SNAS1739MW6 CR3552P-6 SNAS1739B6 ANS1738B6 CR3243-6 MS20470DD6 NAS1768D6 NAS1738B6 CR3243-6 NAS1739B6 3 CR3213-6 NAS1399B6 3 CR3213-6 NAS1399B6 3 CR3213-6 NAS1769D6 3 NAS1769D6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3		CR3243-4	3	
NAS1398MW4 5	MS20615-4M	MS20600M4	4	
CR3523P-4 CR3553P-4 5 3/16 Inch Fastener MS20426AD6 CR3212-6 MS20426B6 NAS1399B6 CR3212-6 NAS1769B6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 NAS1739B6 CR3242-6 S MS20427M6 NAS1769MW6 NAS1399MW6 CR3522P-6 NAS1739MW6 CR3552P-6 CR3552P-6 S NAS1739MW6 CR3552P-6 S NAS1739B6 CR3243-6 MS20470DD6 NAS1738B6 CR3243-6 NAS1738B6 CR3243-6 NAS1739B6 3 CR3243-6 NAS1739B6 3 CR3213-6 NAS1739B6 3 NAS1739B6 3 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1769D6 NAS1739B6 3		MS20600MP4	5	
3/16 Inch Fastener CR3553P-4 5 MS20426AD6 CR3212-6 3 MS20426B6 NAS1399B6 3 CR3212-6 3 NAS1769B6 NAS1769B6 3 NAS1739B6 3 CR3242-6 3 MS20426DD6 NAS1769D6 NAS1739B6 3 CR3242-6 3 NAS1739B6 5 CR3242-6 3 NAS1739MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3		NAS1398MW4	5	
3/16 Inch Fastener CR3212-6 3 MS20426AD6 CR3212-6 3 MS20426B6 NAS1399B6 3 CR3212-6 3 NAS1769B6 3 NAS1739B6 3 CR3242-6 3 MS20426DD6 NAS1769D6 NAS1739B6 3 CR3242-6 3 MS20427M6 NAS1769MW6 5 NAS1399MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DB6 MS20600B6 3 MS20470B6 MS20600B6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3		CR3523P-4	5	
MS20426AD6 CR3212-6 3 MS20426B6 NAS1399B6 3 CR3212-6 3 NAS1769B6 3 NAS1739B6 3 CR3242-6 3 MS20426DD6 NAS1769D6 3 NAS1739B6 3 CR3242-6 3 NAS1739B6 5 CR3242-6 3 MS20427M6 NAS1769MW6 5 CR35522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1769D6 3 NAS1769D6 3		CR3553P-4	5	
MS20426B6 NAS1399B6 3 CR3212-6 3 NAS1769B6 3 NAS1739B6 3 CR3242-6 3 MS20426DD6 NAS1769D6 NAS1739B6 3 CR3242-6 3 MS20427M6 NAS1769MW6 NAS1399MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3	3/16 Inch Fastener			
CR3212-6 NAS1769B6 NAS1739B6 CR3242-6 3 MS20426DD6 NAS1769D6 NAS1739B6 CR3242-6 3 MS20427M6 NAS1769MW6 NAS1399MW6 CR3522P-6 NAS1739MW6 CR3552P-6 S NAS1739MW6 CR3213-6 MS20470DD6 NAS1768D6 NAS1738B6 CR3243-6 3 MS20470B6 MS20600B6 NAS1399B6 CR3213-6 NAS179B6 3 NAS1769D6 NAS1769D6 NAS1739B6 3 NAS1769D6 NAS1739B6 3	MS20426AD6	CR3212-6	3	
NAS1769B6 3 NAS1739B6 3 CR3242-6 3 MS20426DD6 NAS1769D6 3 NAS1739B6 3 CR3242-6 3 MS20427M6 NAS1769MW6 5 NAS1399MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3	MS20426B6	NAS1399B6	3	
NAS1739B6 3 CR3242-6 3 MS20426DD6 NAS1769D6 3 NAS1739B6 3 CR3242-6 3 MS20427M6 NAS1769MW6 5 NAS1399MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3		CR3212-6	3	
MS20426DD6 CR3242-6 3 MS20426DD6 NAS1769D6 3 NAS1739B6 3 CR3242-6 3 MS20427M6 NAS1769MW6 5 NAS1399MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3 NAS1739B6 3		NAS1769B6	3	
MS20426DD6 NAS1769D6 NAS1739B6 CR3242-6 3 MS20427M6 NAS1769MW6 NAS1399MW6 CR3522P-6 NAS1739MW6 CR3552P-6 S MS20470AD6 MS20470DD6 NAS1768D6 NAS1738B6 CR3243-6 MS20470B6 MS20600B6 NAS1399B6 CR3213-6 NAS1769D6 NAS1769D6 NAS1739B6 3 NAS1769D6 NAS1739B6 3		NAS1739B6	3	
NAS1739B6 3 CR3242-6 3 NAS1769MW6 5 NAS1399MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3		CR3242-6	3	
CR3242-6 3 MS20427M6 NAS1769MW6 5 NAS1399MW6 5 CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1769D6 3 NAS1739B6 3	MS20426DD6	NAS1769D6	3	
MS20427M6 NAS1769MW6 NAS1399MW6 CR3522P-6 NAS1739MW6 CR3552P-6 MS20470AD6 CR3213-6 MS20470DD6 NAS1768D6 NAS1738B6 CR3243-6 MS20470B6 MS20600B6 NAS1399B6 CR3213-6 NAS1769D6 NAS1769D6 NAS1739B6 3		NAS1739B6	3	
NAS1399MW6 CR3522P-6 NAS1739MW6 CR3552P-6 S NAS20470AD6 CR3213-6 MS20470DD6 NAS1768D6 NAS1738B6 CR3243-6 MS20470B6 MS20600B6 NAS1399B6 CR3213-6 NAS1769D6 NAS1769D6 NAS1739B6 3 NAS1739B6 3		CR3242-6	3	
CR3522P-6 5 NAS1739MW6 5 CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3	MS20427M6	NAS1769MW6	5	
NAS1739MW6 CR3552P-6 CR3213-6 MS20470DD6 NAS1768D6 NAS1738B6 CR3243-6 MS20470B6 MS20600B6 NAS1399B6 CR3213-6 NAS1769D6 NAS1739B6 3 NAS1769D6 NAS1739B6 3		NAS1399MW6	5	
CR3552P-6 5 MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3		CR3522P-6	5	
MS20470AD6 CR3213-6 3 MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3		NAS1739MW6	5	
MS20470DD6 NAS1768D6 3 NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3		CR3552P-6	5	
NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3	MS20470AD6	CR3213-6	3	
NAS1738B6 3 CR3243-6 3 MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3	MS20470DD6	NAS1768D6	3	
CR3243-6 3 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3				
MS20470B6 MS20600B6 3 NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3				ĺ
NAS1399B6 3 CR3213-6 3 NAS1769D6 3 NAS1739B6 3	MS20470B6	MS20600B6		
CR3213-6 3 NAS1769D6 3 NAS1739B6 3		NAS1399B6	1	
NAS1769D6 3 NAS1739B6 3		CR3213-6	1	
NAS1739B6 3		1		
			1	
CR3243-6 3			1	
MS20615-6M MS20600M6 4	MS20615-6M			
MS20600MP6 5			1	

Table 1-71. Conventional Rivet Substitution with Blind Fasteners - Continued

Installed Fastener	Substitute Fastener	Notes
	NAS1398MW6	5
	CR3523P-6	5
	CR3553P-6	5
MS20426AD5	NAS1769D5	3
	NAS1399D5	3
	CR3212-5	
	NAS1739B5	3
	CR3242-5	3
5/32 Inch Fastener		3
MS20426B5	NAS1769D5	3
	NAS1399B5	3
	CR3212-5	3
	NAS1739B5	3
	CR3242-5	3
MS20427M5	NAS1769MW5	5
	NAS1399MW5	5
	CR3522P-5	5
	NAS1739MW5	5
	CR3552P-5	5
MS20470AD5	MS20600AD5	3
	NAS1398D5	3
	CR3213-5	3
	NAS1768D5	3
	NAS1738D5	3
	CR3243-5	3
MS20470B5	MS20600B5	3
	NAS1399B5	3
	CR3212-5	3
	NAS1769D5	3
	NAS1739B5	3
	CR3242-5	3
MS20615-5M	MS20600M5	4
	MS20600MP5	5
	NAS1398MW5	5
	CR3242-5	3
MS20615-5M	MS20600M5	4
	MS20600MP5	5
	NAS1398MW5	5
	CR3523P-5	5
	CR3553P-5	5
1/4 Inch Fastener		
MS20426B8	NAS1399B8	3
	CR3212-8	3
MS20470B8	MS20600B8	3

Table 1-71. Conventional Rivet Substitution with Blind Fasteners - Continued

	Installed Substitute Fastener Fastener						
		3					
		CR3213-8	3				
MS	S20615-8M	MS20600M8	4				
	MS20600MP8						
1.	Refer to paragraph 1.7.4 for general rules to apply in use of blind fasteners.						
2.	Refer to paragraph 1.9.12 for additional information on interchangeability of blind fasteners.						
3.	Limited to 250°F.						
4.	Limited to 900°F. Do not use in aluminum alloy.						
5.	Limited to 400°F.						
6.	CR3242/3; NAS1738/9 and NAS1768/9 are 1/64 inch oversize diameter fasteners.						

- **1.8.1** <u>Requirements.</u> Blind fasteners may be substituted for conventional aircraft fasteners in accordance with the following:
 - a. Blind fasteners shall be used in nonstructural applications only when access to one of the working sides of the assembly is impossible, or the cost and effort to gain access for installation of conventional aircraft fasteners is not practical. Examples of nonstructural application are: attaching tank liners, rubber seals, name plates, anchor nuts, and gang channels.
 - b. Blind fasteners shall be used in structural applications only where lack of access precludes the use of conventional aircraft fasteners. In structural applications considerable effort is justified to enable the use of conventional-nonblind fasteners. Only blind fasteners with design allowables interchangeable with the fastener to be replaced should be used.
 - c. Blind fasteners shall not be used for primary tension applications.
 - d. In cases where blind side of the work is visible, though not accessible, the blind head shall be visually inspected and replaced if not properly seated and/or formed.
 - e. Blind fasteners shall not be used in any of the following applications.
 - (1) Areas requiring a fluid tight seam.
 - Control systems, operating devices, or mechanisms.
 - (3) Primary structure fittings.

- (4) Any item or assembly that must be periodically removed.
- f. Hi-shear rivets may be replaced with Hi-shear blind bolts with limits in accordance to steps a. thru e.

1.9 CHERRYLOCK AND OLYMPIC-LOK RIVETS.

Cherrylock and Olympic-Lok rivets are used where access to one side of the work area is impossible. Rivets can be installed by one operator using a riveter designed specifically for installation of blind rivets. See paragraph 1.9.12 for interchangeability of Cherry and Olympic rivets.

- 1.9.1 <u>Types of Rivets</u>. The four types of rivets and their basic makeup are listed below.
 - a. Pull-thru: Consists of a hollow sleeve and a spindle with an increased diameter in the plug section.
 - b. Standard Self-plugging: Consists of a hollow sleeve and a spindle with an increased diameter in the plug section. As the spindle is pulled into the sleeve and lodges into the rivet sleeve, the blind head is also formed.
 - c. Self-plugging Mechanical Locked Spindle: Consists of a multiple piece construction, but must be an integral assembly and shall include a means, other than friction, of mechanically locking the spindle to the rivet sleeve.
 - d. Self-Plugging, Mechanical Locked Spindle, Bulbed Type: Has the same installation characteristics as the self-plugging mechanical locked spindle rivets, but differs because large blind side head provides higher strength in thinner sheets. Available in nominal diameter and 1/64 inch oversize. Some bulbed type rivets can be installed in applications where the blind head is formed against a dimpled sheet.
- 1.9.2 <u>Identification</u>. Each rivet can be identified by a standard code number. This number represents style, material, diameter, and maximum grip length of each rivet. Figure 1-55 shows each type of rivet with its basic code number. The basic types of identification are:
 - a. Military Standard MS.
 - b. National Aerospace Standard NAS.
 - c. Cherry Rivet CR.
 - d. Olympic Rivet RV.
- 1.9.2.1 An example of a standard code number is MS20600AD5W3. This represents a self-plugging, 100° countersunk head, 2117 aluminum alloy, serrated system, having a diameter of 5/32 inch. This rivet may be installed in material ranging in thickness from 0.126 to 0.187.

- 1.9.3 <u>Rivet Pattern Layout</u>. When possible, rivet patterns shall have the same configuration as the original installation or as called out for repair. Specific repair procedures are prescribed for all types of repairs; however, there are some general procedures which will apply in all instances.
- 1.9.4 Edge Distance. Rivet edge distance is measured from the centerline of the rivet to the nearest edge of the part through which it passes. The recommended minimum edge distance for rivets is two times the rivet diameter plus 0.06. This minimum edge distance may be used except where specified differently in a specific repair procedure or when replacing existing rivets.
- 1.9.5 <u>Rivet Spacing</u>. Rivet spacing is measured between the centerline of adjacent rivets. The minimum spacing between protruding head rivets shall not be less than three and one-half times the rivet diameter. The minimum spacing between flush head rivets shall not be less than four times the diameter of the rivet. These dimensions may be used as the minimum spacing except when specified differently in a specific repair procedure or when replacing existing rivet.
- 1.9.6 <u>Hole Preparation</u>. When installing Cherry and Olympic rivets, it is important that the rivet holes be the correct size, shape and free from burrs. Refer to step c for hole size and recommended drill size. Holes shall be drilled as follows:

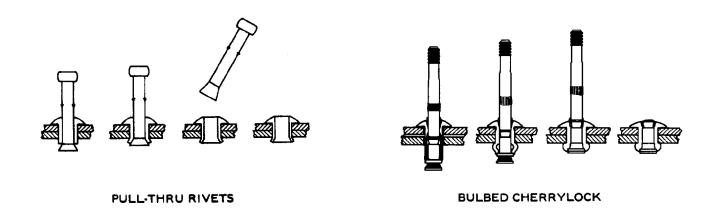
NOTE

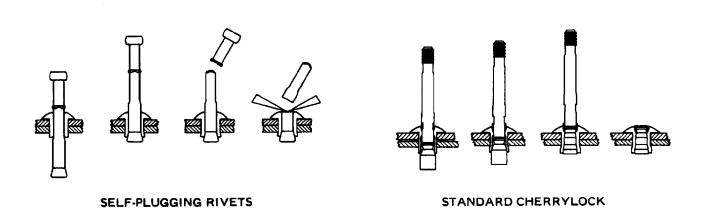
Nominal diameter locked spindle rivets are not interchangeable with bulb type rivets due to differences in diameters and strength.

- a. Drilling.
 - (1) Drill or ream holes to the diameter specified in step c. Use a clean, sharp drill. Center the drill in the chuck so that drill will run true.
 - (2) To ensure proper hole alignment and to prevent burrs and chips from lodging between the sheets, the material to be drilled should be clamped tightly together. Before clamping the material, remove any foreign matter that may be lodged between the metal sheets.
 - Check holes with a Cherrylock T172 Go/No-Go gage.
- b. Machine countersink and dimpling.
 - (1) For installation of flush head rivets, the sheets shall be dimpled or machine countersunk. Holes shall have 100° incline and be deep enough so the head of the rivet fits flush with surrounding surface.

- (2) Dimpled parts that receive flush head rivets shall have undersized pilot holes for dimpling operation. After dimpling, the holes shall then be drilled or reamed to proper size.
- c. The following hole sizes shall be used when installing all Cherry and Olympic rivets, except when specified differently in a specific repair procedure or when replacing existing fasteners.

Non-Bulb Type - Locked Spindle


Rivet Dia	Hole Size (Min) (Max)	Size Drill	Drill Dia
1/8	0.129	30	0.1285
	0.132		
5/32	0.160	21	0.1590
	0.164		
3/16	0.192	11	0.1910
	0.196		
1/4	0.256	F	0.2570


Bulb Type - Locked Spindle

Rivet Dia	Hole Size (Min) (Max)	Size Drill	Drill Dia	
nivel Dia	(WITH) (WAX)	Size Dilli	Dilli Dia	_
1/8	0.143	27	0.1440	
	0.146			
5/32	0.176	16	0.1770	
	0.180			
3/16	0.205	5	0.2055	
	0.209			

- 1.9.7 <u>Equipment</u>. Special rivet guns and pulling heads are required for the installation of Cherry and Olympic rivets.
 - a. Rivet Guns. Rivet Guns are available in the following types: hand operated, pneumatic and pneumatic-hydraulic. Some of the guns used for Cherry rivets may be adapted for Olympic-Lok rivets. Refer to Chapter 7 for information on gun conversion.
 - b. Pulling Heads. Pulling heads are furnished to accommodate standard rivet diameters and head styles. A different pulling head is required for each rivet diameter except for the CherryMAX system. The flush head style pulling head may be used to

- install either universal or flush head rivets. Types of pulling heads required are listed below:
- (1) Pulling head for self-plugging serrated stem rivets (MS20600/01 Series). Cherry pulling heads (H9015 and H9040 Series) and Olympic pulling heads (RV355 and RV3355 Series) are required to install the "MS" serrated stem series rivets.
- (2) Pulling heads for Cherrylock rivets (NAS1398/9 and NAS1738/9). Cherrylock pulling heads (H681 Series) are required to install Standard Cherrylock (NAS1398/9) and Bulbed Cherrylock (NAS1738/9) rivets.
- (3) Pulling heads for Olympic-Lok rivets (NAS1398/9 "A" Code and NAS1768/9). Olympic pulling heads (RV812 Series) are required to install Olympic-Loc (NAS1398/9 "A" Code) and Olympic Bulb-Lok (NAS1768/9) rivets.
- (4) Pulling heads for CherryMAX rivets (CR3242/3 and CR3552/3). CherryMAX pulling heads (H701A456, H763 and H753) are recommended to install CherryMAX rivets. Installations can be accomplished by using "MS" serrated stem pulling heads.
- c. Trimming of Rivets.
 - (1) The tools used for removing the exposed "MS rivet" spindle after installation can be a power stem trimmer or a flush ground, side cutting, nipper. The Cherry Fasteners, Part No. 220, 225, or 301B power trimmer may be used. For hand use, the Cherry Fasteners, Part No. 209 trimmer may be used. An acceptable substitute is a pair of diagonal cutting pliers with the cutting jaws ground flush on one side.
 - (2) No special equipment is required for trimming mechanical locked spindle rivets. The installation tool is adjusted to fracture the spindle approximately flush with rivet head. If trimming is required, the above equipment may be used. Sanding disc or grinding wheels will not be used to trim rivet stems.
 - (3) Trimming of all rivets must be held within the limits of paragraph 1.9.8.

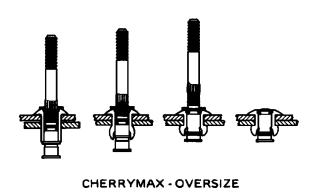


Figure 1-55. Cherry and Olympic-Lok Rivet Identification and Installation (Sheet 1 of 3)

F01-054S01

GE	Range	Maximum	0.062	0.125	0,187	0,250	0,312	0.375	0.437	0.500	0.562	0.625	0.687	0.750	
PIC-LOK RAN	Grip Range	Minimuse	•	0.063	0.126	0.188	0.251	0,313	0.376	0.438	0.501	0.563	0.626	0.688	ts
TK AND OLYM		CR148 CR198C	-2	7	9	۴	-10	-12	-14	-16	-18	-20	-22	-24	Short Rive
K, CHERRYLOC	bers	MS20600 MS20601 MS20605	-1	-5	e.	4	5	٩	-1	8	5 1	-10	-11-	-12	Minimum Srip for Short Rivets
CHERRY, CHERRYMAX, CHERRYLOCK AND OLYMPIC-LOK RANGE	Dash Numbers	NAS1398/9 NAS1398A/9A CR3212/3 CR3522/3 NAS1738/9 CR3242/3 CR3522/3	7	-5	-3	*-	٠,	9	-1	8-	6-	-10	-1	-12	minim (*)
ប		NAS1736 NAS1739	-1	-2	ĩ	4	-5-	ģ	7	æ	6-	o1-	-11	-12.	

	ū	Universal Head	pq	10	100° Countersink	nk
Diameter	NAS1398 NAS1398A CR3213 CR3523	NAS1738 CR3243 CR3553	MS20600	NAS1399 NAS1399A CR3212 CR3522	NAS1739 CR3242 CR3552	MS20601 MS20605 CR148 CR198C
1/8 (-4)	,025 (-1)	.020	.025 (-2)	.063	.045	.052 (-2)
5/32 (-5)	.031	.025 (-1)	.031	.075 (-2)	.063	.065
3/16 (-6)	.037 (1-)	.030 (-1)	.037	.090	.073	.080
1/4 (-8)	.063	1 1	.050	.126	1 1	. 105 (4)

Standard Type (Hollow		Head	Dissip
	Configuration	Identification	Number
<u>.</u>		100 Degree Countersunk	MS20605
Pull Thru		Large Flat Head	CR148
		100 Degree Countersunk	MS20601
Self Plugging		Universal Head	MS20600
		Large Flat Head	CR198C
		100 Degree Countersunk	NAS1399 (No Code)
Cherrylock [Universal Head	NAS1398 (No Code)
Bulbed		100 Degree Countersunk	NAS1739
Cherrylock		Universal Head	NAS1738
CherryMax		100 Degree Countersunk	CR3212 CR3522 CR3242 CR3552
		Universal Head	CR3213 CR3523 CR3243 CR3553
Olympic-Lok		130 Degree Countersunk	NAS1399 "A" Code
		Universal Head	NAS1398 "A" Code
Buibed		100 Degree Countersunk	NAS1769
Olympic-Lok		Universal Head	NAS1768

F01-054S02

Figure 1-55. Cherry and Olympic-Lok Rivet Identification and Installation (Sheet 2)

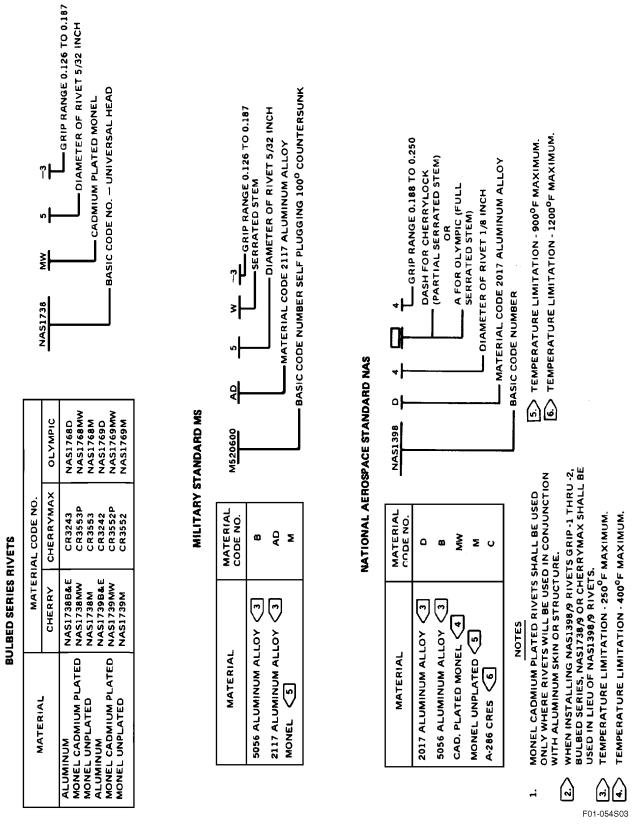


Figure 1-55. Cherry and Olympic-Lok Rivet Identification and Installation (Sheet 3)

BREAKDOWN OF RIVET CODE NUMBERS

- 1.9.8 <u>Installation</u>. When replacing existing rivets or installing repairs, paragraph 1.9.5 will be used in conjunction with this paragraph. The following steps shall be used to install rivets.
 - Material to be joined must be secured firmly in position. Sheet metal holders, C-clamp, or temporary fasteners may be used.
 - b. Select correct diameter and length rivet. Insert rivet in hole but do not force.
 - c. Completely insert stem of rivet in slot of draw bolt.

NOTE

It is recommended that both the hand and power guns be checked for proper operation before use and adjustments be made as required.

- d. Use hand or power gun.
 - (1) Hand gun. When using hand gun, hold handle rigid and straight in line with axis of the rivet. Operate gun by making several short strokes. Keep gun pushed firmly against rivet head and work so rivet head is snug against the surface. When rivet becomes snug, continue movement of handle until stem breaks. Release stem by bringing handles together.
 - (2) Power gun. When using power gun to install rivets, follow same basic procedure as outlined for hand guns. Hold power gun in proper position and pull trigger. The spindle will be pulled, fractured, and ejected. On Cherrylock rivets, during this sequence, the lock ring will be inserted automatically.
- e. Before trimming operation, rivets shall be inspected per paragraph 1.9.9.
- 1.9.9 <u>Inspection</u>. The following test and visual inspections shall be used to determine minimum requirements for rivets.
 - a. Cherry Rivet Inspection.
 - Before trimming operation, compare spindle stems. Rivets not having spindles properly pulled can be detected by comparing the height of broken spindle with adjacent spindle heights.

- (2) If blind side of rivet is visible, the expanded shank portion shall be visually inspected. The plugged end of the spindle shall extend into the rivet shank, forming the shop head. The shop head shall be pulled up tight against the material.
- (3) Stem push out test shall be performed. A push of approximately 10 pounds shall be applied on the fractured spindle. Push steadily on the stem. Do not strike. Cherry stem gauge 352B1 (NSN 5220-01-034-2430), or the end of a pencil may be used for this purpose. Replacement of the rivet is required if the stem is removed.
- (4) Fit of Rivet Head. Flat head rivets may have a gap of 0.008 maximum one side only. Opposite side of rivet must be seated. Brazer head rivets may have 0.004 maximum gap, one side only. Gap may not extend to rivet shank. Countersunk rivets may have 0.003 gap, provided no more than forty percent of the circumference has a gap. It is acceptable for countersunk rivets if recession does not exceed 0.004 below surface. Countersunk rivets may not protrude more than 0.011 above surface. If any one of these limits are exceeded, rivet shall be replaced. Closer limits shall apply to meet contour and smoothness requirements.
- b. Trimmed Stem Inspection. Trimmed stems of countersunk or brazer head rivets shall not protrude more than 0.010 above the head for exterior installations, and 0.030 for interior installations. If a sharp edge remains after trimming, the remaining portion may be milled or filed. In no case shall more than 0.005 be milled or filed from rivet head. Closer limits shall apply to meet contour smoothness requirements.
- c. Cherrylock, CherryMAX and Olympic-Lok Rivet Inspection. See Figure 1-56.
 - (1) Check rivet head for proper fracture of the spindle (stem) and lock ring insertion. For countersunk and brazer head rivets the spindle may fracture 0.020 above or 0.015 below rivet head. The lock ring must also be within these limits.

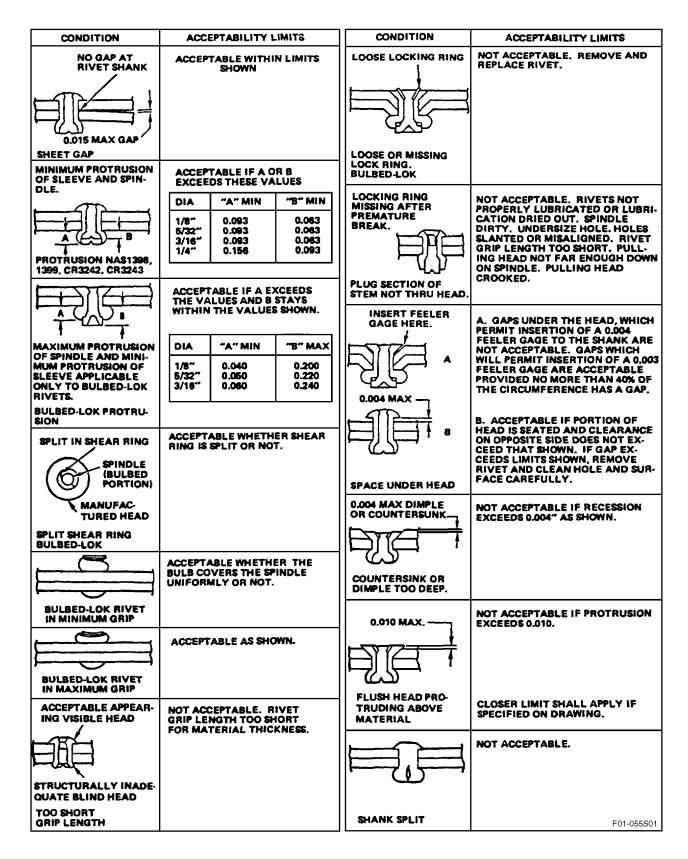
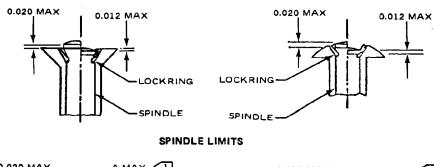
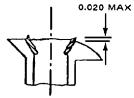
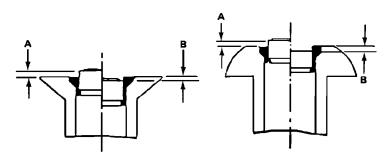




Figure 1-56. Cherrylock, CherryMAX and Olympic-Lok Rivet Inspection (Sheet 1 of 2)

RIVET SIZE	-4 DIA.	-5 DIA.	-6 DIA.	-8 DIA.
A MAX	0.015	0.020	0.025	0.030



LOCKRING LIMIT

A SLIGHT LOCKRING "FLASH" CAUSED BY THE PRESSURES NECESSARY TO DRIVE THE LOCKRING IS ACCEPTABLE WITHIN THE LIMIT SHOWN.

LEGEND

LOCKRING SHOULD NEVER BE HIGHER THAN 0.020 FROM TOP OF RIVET HEAD WHEN SPINDLE IS ABOVE RIVET HEAD. IF SPINDLE IS FLUSH OR BELOW FLUSH WITH RIVET HEAD, LOCKRING SHOULD NEVER BE MORE THAN "A" HIGHER THAN SPINDLE.

SPINDLE FLU	JSHNESS LIMIT	S (INCH)
RIVET DIAMETER	A MAX. (ABOVE)	B MAX. (BELOW)
1/8	0.010	0.015
5/32	0.010	0.020
3/16	0.010	0.020

NOTE: COLLAR TO BE FLUSH WITH TOP SURFACE OF RIVET HEAD. COLLAR FLASH PERMISSABLE (0.020 MAX.).

F01-055S02

Figure 1-56. Cherrylock, CherryMAX and Olympic-Lok Rivet Inspection (Sheet 2)

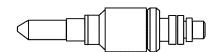
- (2) Spindles and lock rings may be milled flush with rivet head. But in no case shall more than 0.020 be milled from lock ring or spindle, and rivet head must not be shaved more than 0.005 during milling operations.
- (3) If blind side of rivet is visible, the same requirements listed in step a. (2) will apply. Also in minimum grip installations using bulbed Cherrylock it is acceptable if the shear ring will not shear from spindle, but shop head is formed. If shear ring is split but remains firmly attached to the spindle and shop head has formed, the rivet is acceptable.
- 1.9.10 <u>Removal</u>. Rivets can be easily removed by knocking out the rivet stem with a small punch and then drilling through the rivet head. The drill diameter shall be slightly smaller than the rivet shank diameter. Drill to a depth just past the thickness of the rivet head. The head may then be removed easily with a punch and the shank driven out.
- 1.9.11 Micro Stop Countersink Units. Holders: Countersink, Adjustable, Micrometer Stop and Cutters, Countersink: MIL-H-4081B. A precision tool for production countersinking with skirt and locking collar designed to permit fast and accurate adjustment in increments of 0.001. A positive lock eliminates the possibility of accidental adjustment change when tool is in use and absolute depth control is maintained by a thrust ball bearing. Has 1/4 inch travel and uses cutters with 5/8 inch maximum diameter, 1/4-28 male threaded shank and 120° seating angle. See Figure 1-57.

1.9.12 <u>Interchangeability of Cherry and Olympic</u> Rivets.

a. The following information will govern the replacement of existing MS blind fasteners in all areas except engine intake ducts and engine compartments. However, blind fastener substitutions in engine intake ducts, engine compartments and airframe areas are permissible where the system manager has authorized substitution by part number, specified in TCTO's and manuals for the specific aerospace vehicle. When replacing rivets, the preferred rivets are Cherrylock, CherryMAX or Olympic-Lok rivets; however, MS rivets may be used, providing the structure is not subject to high vibration and that hole size permits.

NOTE

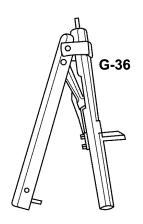
Olympic no longer manufactures NAS 1738/9 rivets.


CAUTION

MS20600/1 and NAS1398/9 series rivet shall not be used for replacements for NAS1738/9, NAS1768/9 or CherryMAX bulbed series rivets due to the oversize hole requirements and higher strength.

- (1) When an MS20600 standard Cherry is installed, the replacement rivet can be either MS20600, NAS1398, or NAS1399; all require the same hole size. NAS1738/9, NAS1768/9 or CherryMAX bulbed series may be used if hole size is enlarged per paragraph 1.9.6, step c to accommodate increased shank diameter.
- (2) When NAS1738/9, NAS1768/9 or CherryMAX bulbed series are installed, regardless of the type MS fasteners in surrounding structure, replacement rivet shall be NAS1738/9, NAS1768/9 or CR3242/3 series Bulbed CherryMAX. This is due to the enlarged shank of bulb series and higher strength.
- (3) See Figure 1-58 for Cherrylock and Olympic-Lok rivet conversion charts.
- (4) Special Handling of Rivets. The rivet stems are prelubricated at the factory and shall not be wiped off or any relubrication attempted. If the rivet stems appear to be dry, the rivets shall not be used where inspection of the blind side of the rivet, when installed, is impossible. Rivets shall not be carried in pockets, but may be carried in a container with seperate compartments and covered with a lid. Rivets maintained in shop bench stocks must be stored in the original package to retain lot identity.
- 1.9.13 Cherrylock Tooling. Cherrylock rivets (NAS1398/9 and NAS1738/9) are installed with hydroshift or mechanical shift tooling system. The hydroshift system is a newer design and when available should be used in place of the mechanical system.
- 1.9.14 Cherrylock Mechanical Tooling. Most existing Cherry riveters, either hand or power operated, may be used to install Cherrylock rivets when equipped with the proper mechanical pulling head. Cherrylock mechanical pulling heads are of two types: the H615 and H640 series. They differ only in their method of attachment to the riveter. The H615 series is for the smaller screw-on type tools and the H640 is for the larger snap-on type. Both pulling heads will install standard and bulbed Cherrylock rivets.
 - a. H615 Series.
 - (1) A separate pulling head is required to install each diameter Cherrylock rivet. Separate pulling

heads are recommended for universal and countersunk head rivets but countersunk pulling heads may be used for both styles.


(2) To attach pulling head to riveter, engage threaded portion of pulling head sleeve cap and drawbolt to the tool head and drawbolt and screw on tight. Tighten jam nut to prevent loosening.

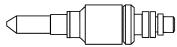
RIVET DIAMETER	PULLING HEAD NUMBER	NSN
1/8"	H615-4U UNIVERSAL HEAD H615-4C COUNTERSUNK HEAD H615-4S UNI-SINK HEAD	5130-00-570-5427 5130-00-570-5403
5/32"	H615-5U UNIVERSAL HEAD H615-5C COUNTERSUNK HEAD H615-5S UNI-SINK HEAD	5130-00-570-5444 5130-00-570-5433
3/16"	H615-6U UNIVERSAL HEAD H615-6C COUNTERSUNK HEAD H615-6S UNI-SINK HEAD	5130-00-570-5451 5130-00-570-5448

P01-110A

(3) H615 Series pulling head is used on these riveters:

NSN 5120-00-771-5644

P01-117A



NSN 5130-00-758-8656

P01-117B

H615 Series pulling head can be used on G-40, G-55, G-86, G-88, and G740 tools by using a 226 adapter.

b. H640 Series.

RIVET DIAMETER	PULL	ING HEAD NUMBER	NSN
1/8"	H640-4U H640-4C H640-4S	UNIVERSAL HEAD COUNTERSUNK HEAD UNI-SINK HEAD	5130-00-910-0614 5130-00-570-5466
5/32"	H640-5U H640-5C H640-5S	UNIVERSAL HEAD COUNTERSUNK HEAD UNI-SINK HEAD	5130-00-570-5479 5130-00-045-9785
3/16"	H640-6U H640-6C H640-6S	UNIVERSAL HEAD COUNTERSUNK HEAD UNI-SINK HEAD	5130-00-570-5490 5130-00-056-7118
1/4"	H640-8U H640-8C	UNIVERSAL HEAD COUNTERSUNK HEAD	5130-00-570-5505 5130-00-570-5498

P01-117C

- (1) To attach pulling head to riveter, engage internal threads of drawbolt to external threads of head piston. Align holes in pulling head with those on tool adapter and tighten one set screw.
- (2) H640 Series pulling head is used on these riveters:

NSN 5120-00-251-1105

P01-117D

P01-117F

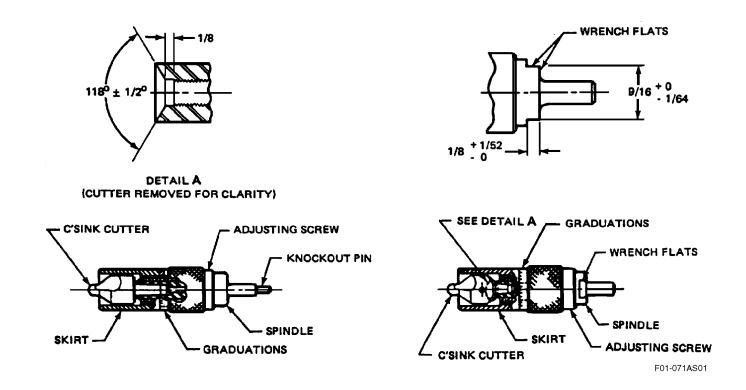


Figure 1-57. Micro Stop Countersink Units (Sheet 1 of 2)

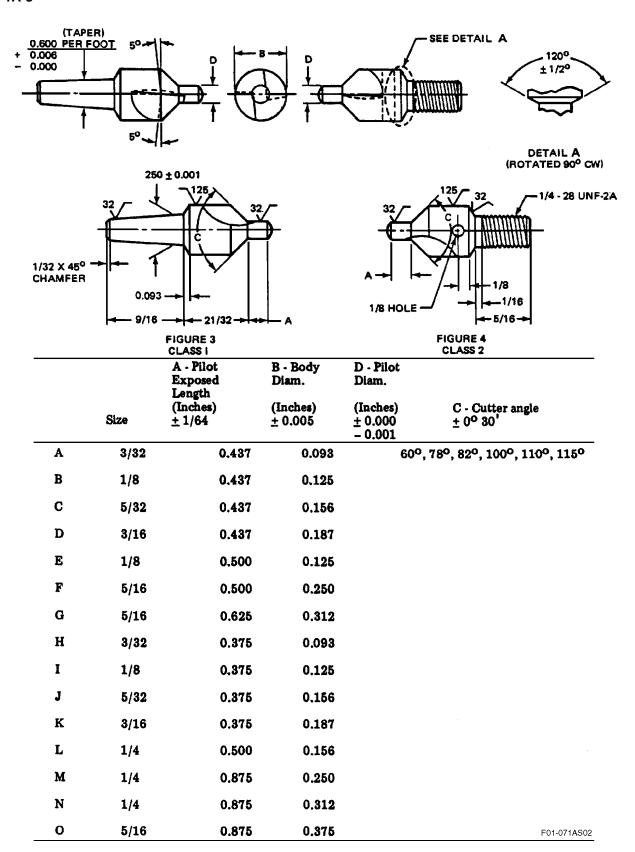


Figure 1-57. Micro Stop Countersink Units (Sheet 2)

RIVET - BLIND, PROTRUDING HEAD, LOCKED SPINDLE, 2017 ALUMINUM ALLOY

Nominal	National	Charry Part No.	National Aerospace	Olympic Part No.	Grip	Range	Superseded
Nominal Diameter	Aerospace Standard Part No.	Cherrylock Rivets	Standard Part No.	Olympic-Lok Rivets	Minimum	Maximum	Part No.
1/8 1	NAS1398D4-1	CR2163-4-1	NA51398D4A1	RV1200-4-1	0.025	0.062	MS20600AD4-1
5/32 2	NAS1398D5-1	CR2163-5-1	NAS1398D5A1	RV1200-5-1	0.031	0.062	MS20600AD5-1
3/16 3	NAS1398D6-1	CR2163-6-1	NAS1398D6A1	RV1200-6-1	0.031	0.062	MS20600AD6-1
1/4 4	NAS1398D8-2	CR2163-8-2	NAS1398D8A2	RV1200-8-2	0.063	0.125	MS20600AD8-2

RIVET - BLIND, PROTRUDING HEAD, LOCKED SPINDLE, 5056 ALUMINUM ALLOY

Nominal Diameter	Cherry Part No. Nominal CherryMAX Rivet	National Aerospace Standard Part No.	Cherry Part No. Cherrylock Rivets	National Aerospace Standard Part No.	Olympic Part No. Olympic-Lok Rivets	Grip R	•	Superseded Part No.
1/8 1	CR3213-4-1	NAS139884-1	CR2263-4-1	NA\$1398B4A1	RV1250-4-1	0.025	0.062	MS20600B4-1
5/32 2	CR3213-5-1	NAS139885-1	CR2263-5-1	NAS1398B5A1	RV1250-5-1	0.031	0.062	MS20600B5-1
3/16 3	CR3213-6-1	NAS139886-1	CR2263-6-1	NAS1398B6A1	RV1250-6-1	0.037	0.062	MS20500B6-1
1/4 🚯		NAS139888-2	CR2263-8-2	NAS1398B8A2	RV1250-8-2	0.063	0.125	MS20600B8-2

${\bf RIVET-BLIND, PROTRUDING\ HEAD,\ LOCKED\ SPINDLE,\ MONEL,\ CADMIUM\ PLATE}$

	Cherry Part No.	National Aerospace	Cherry Part No.	National Aerospace	Olympic Part No.	Grip i	Range
Nominal Diameter	Nominal CherryMAX Rivet	Standard Part No.	Cherrylock Rivets	Standard Part No.	Olympic-Lok Rivets	Minimum	Maximum
1/8 1	CR3523P4-1	NAS1398MW4-1	CR2563-4-1	NAS1398MW4A1	RV1290-4-1	0.025	0.062
5/32 2	CR3523P5-1	NAS1398MW5-1	CR2563-5-1	NAS1398MW5A1	RV1290-5-1	0.031	0.062
3/16 3	CR3523P6-1	NAS1398MW6-1	CR2563-6-1	NAS1398MW6A1	RV1290-6-1	0.037	0.062
1/4 4		NAS1398MW8-2	CR2563-8-2	NAS1398MW8A2	RV1290-8-2	0.063	0.125

Figure 1-58. Cherrylock and Olympic-Lok Rivet Conversion Chart (Sheet 1 of 6)

RIVET - BLIND, PROTRUDING HEAD, LOCKED SPINDLE, A-286 CORROSION RESISTANT STEEL

Nominal	National Aerospace	Charry Part No.	National Aerospace	Olympic Part No.	Grip	Range
Diameter	Standard Part No.	Cherrylock Rivets	Standard Part No.	Olympic-Lok Rivets	Minimum	Maximum
1/8 1	NAS1398C4-1	CR2663-4-1	NAS1398C4A1	RV1240-4-1	0.025	0.062
5/32 2	NAS1398C5-1	CR2663-5-1	NAS1398C5A1	RV1240-5-1	0.031	0.062
3/16 3	NAS1398C6-1	CR2663-6-1	NAS1398C6A1	RV1240-6-1	0.037	0.062
1/4 4	NAS1398C8-2	CR2663-8-2	NAS1398C8A2	RV1240-8-2	0.063	0.125

Nominal	Cherry Part No.	National Aerospace	Cherry Part No.	Nationai Aerospace	Olympic Part No.	Grip	Range	Superseded
Diameter	Nominal CherryMAX Rivet	Standard Part No.	Charrylock Rivets	Standard Part No.	Olympic-Lok Rivets	Minimum	Maximum	Part No.
1/8 1	CR3523-4-1	NAS1398M4-1	C R2563M4-1	NAS1398M4A1	RV1290M4-1	0.025	0.062	MS20600M4-1
5/32 2	CR3523-5-1	NAS1398M5-1	CR2563M5-1	NAS1395M5A1	RV1290M5-1	0.031	0.062	MS20600M5-1
3/16 3	CR3523-6-1	NAS1398M6-1	CR2563M6-1	NAS1398M6A1	RV1250M6-1	0,037	0.062	MS20600M6-1
1/4 🐴		NAS1398M8-2	CR2563M8-2	NAS1398M8A2	RV1290M8-2	0.063	0.125	M520600M8-2

RIVET - BLIND, 100° FLUSH HEAD, LOCKED SPINDLE, 2017 ALUMINUM ALLOY

Nominal	National Aerospace	Cherry Part No.	National Aerospace	Olympic Part No.	Grip	Range	Superseded
Diameter	Standard Part No.	Cherrylock Rivets	Standard Part No.	Olympic-Lok Rivets	Minimum	Maximum	Part No.
1/8 1	NAS1399D4-2	CR2162-4-2	NAS1399D4A2	RV1201-4-2	0.063	0.125	MS20601 AD4-2
5/32 2	NAS1399D5-2	CR2162-5-2	NAS1399D5A2	RV1201-5-2	0.065	0.125	MS20601 AD5-2
3/16 3	NAS1399D6-2	CR2162-6-2	NAS1399D6A2	RV1201-6-2	0.080	0.125	M\$20601 AD6-2
1/4 4	NAS1399D8-3	CR2162-8-3	NAS1399D8A3	RV1201-8-3	0.126	0.187	M\$20601 AD8-3

Figure 1-58. Cherrylock and Olympic-Lok Rivet Conversion Chart (Sheet 2)

Nominal	Cherry Part No.	National Aerospace	Cherry Part No.	National Aerospace	Olympic Part No.	Grip Range		Superseded Part No.	
Diameter	Nominal CherryMAX Rivet	Standard Part No.	Cherrylock Rivets	Standard Part No.	Olympic-Lok Rivets	Minimum	Maximum		
1/8 1	CR3212-4-2	NAS1399B4-2	CR2262-4-2	NAS139984A2	RV1251-4-2	0.063	0.125	MS20601B4-2	
5/32 2	CR3212-5-2	NAS139985-2	CR2262-5-2	NA5139985A2	RV1251-5-2	0.065	0.125	MS20601B5-2	
3/16 3	CR3212-6-2	NAS139986-2	CR2262-6-2	NAS139986A2	R∀1251-6-2	0.080	0.125	MS20601B6-2	
1/4 4		NAS139988-3	CR2262-8-3	NAS139988A3	RV1251-8-3	0.126	0.187	MS20601B8-3	

RIVET - BLIND 100° FLUSH HEAD, LOCKED SPINDLE A-286 CORROSION RESISTANT STEEL

Nominal	National Aerospace	Cherry Part No.	National Aerospace	Olympic Part No.	Grip Range		
Diameter	Standard Part No.	Cherrylock Rivets	Standard Part No.	Olympic-Lok Rivets	Minimum	Maximum	
1/8 1	NAS1399C4-2	CR2662-4-2	NAS1399C4A2	RV1241-4-2	0.063	0.125	
5/32 2	NAS1399C5-2	CR2662-5-2	NAS1 399C5A2	RV1241-5-2	0.065	0.125	
3/16 ③	NAS1399C6-2	CR2662-6-2	NAS1399C6A2	RV1241-6-2	0.090	0.125	
1/4 4	NAS1399C8-3	CR2662-8-3	NAS1399C8A3	RV1241-8-3	0.126	0.187	

RIVET — BLIND, 100° FLUSH HEAD, LOCKED SPINDLE, MONEL, CADMIUM PLATE

Nominal Diameter	Cherry Part No. Nominal	National Aerospace Standard	Cherry Part No. Cherrylock	National Aerospace Standard	Olympic Part No. Olympic-Lok	Grip Range		
Diameter.	CherryMAX Rivet	Part No.	Rivets	Part No.	Rivets	Minimum	Maximum	
1/8 1	CR3522P4-2	NAS1399MW4-2	CR2562-4-2	NAS1399MW4A2	RV1291-4-2	0.063	0.125	
5/32 2	CR3522P5-2	NAS1399MW5-2	CR2562-5-2	NAS1399MW5A2	RV1291-5-2	0.065	0.125	
3/16 3	CR3522P6-2	NAS1399MW6-2	CR2562-6-2	NAS1399MW6A2	RV1291-6-2	0.080	0.125	
1/4 4		NAS1399MW8-3	CR2562-8-3	NAS1399MW8A3	RV1291-8-3	0.126	0.187	

Figure 1-58. Cherrylock and Olympic-Lok Rivet Conversion Chart (Sheet 3)

RIVET - BLIND, 100° FLUSH HEAD, LOCKED SPINDLE, MONEL, UNPLATED

Nominal Diameter	Cherry Part No. Nominal	National Aerospace Standard	Cherry Part Number Bulbed	National Aerospace Standard	Olympic Part No. Olympic	Grip Range		Superseded
	CherryMAX Rivet	Part Number	Cherrylock Rivet	Part Number	Bulb-Lok Rivet	Minimum	Maximum	Part'. Number
1/8 1	CR3522-4-2	NAS1399M4-2	CR2562M-4-2	NAS1399M4A2	RV1291M4-2	0.063	0.125	MS20601 M4-2
5/32 2	CR3522-5-2	NAS1399M5-2	CR2562M-5-2	NAS1399M5A2	RV1291M5-2	0.065	0.125	MS20601M5-2
3/16 🕄	CR3522-6-2	NAS1399M6-2	CR2562M-6-2	NA\$1399M6A2	RV1291M6-2	0.080	0.125	M\$20601M6-2
1/4 4		NAS1399M8-3	CR2562M-8-3	NAS1399M8A3	RV1291M8-3	0.124	0.187	MS20601 M8-3

RIVET - BLIND, UNIVERSAL HEAD, LOCKED SPINDLE, 5056 ALUMINUM ALLOY

Nominal Diameter	Cherry Part No. Bulbed	National Aerospace Standard	Cherry Part No. Bulbed	National Aerospace Standard	Olympic Part No. Olympic	Grip	Range	Superseded Part No. McDonnell
	CherryMAX Rivet	Part No.	Cherrylock Rivet	Part No.	Builbal AV	Minimum	Maximum	Douglas Std. Part No.
1/8 5	CR3243-4-1	NAS173884-1	CR2249-4-1	NAS1768D4-1	RVI100-4-1	0.020	0.062	3M266B4-1
5/32 6	CR3243-5-1	NA\$173885-1	CR2249-5-1	NAS1768D5-1	RV1100-5-1	0.025	0.062	3M266B5-1
3/16 7	CR3243-6-1	NAS173886-1	CR2249-6-1	NAS176806-1	RV1100-6-1	0.030	0.062	3M266B6-1

RIVET — BLIND, UNIVERSAL HEAD, LOCKED SPINDLE, MONEL, CADMIUM PLATED

Nominal	Cherry Part No.	National Aerospace	Cherry Part No.	National Aerospace	Olympic Part No. Olympic Bulb-Lok Rivet	Part No.	Part No.	Grip	Range	Superseded Part No.
Diameter	Bulbed Cherry MAX Rivet	Standard Part No.	Bulbed Cherrylock Rivet	Standard Part No.		Minimum	Maximum	McDonnell Douglas Std. Part No.		
1/8 5	CR3553P4-1	NAS1738MW4-1	CR2539P4-1	NAS1768MW4-1	RV1190-4-1	0.020	0.062	3M266M4P1		
5/32 6	CR3553P5-1	NAS1738MW5-1	CR2539P5-1	NAS1768MW5-1	RV1190-5-1	0.025	0.062	3M266M5P1		
3/16 7	CR3553P6-1	NAS1738MW6-1	CR2539P6-1	NAS1768MW6-1	RV1190-6-1	0.030	0.062	3M266M6P1		

Figure 1-58. Cherrylock and Olympic-Lok Rivet Conversion Chart (Sheet 4)

Nominai Diameter	Cherry Part No. Bulbed	National Aerospace Standard	Cherry Part No. Bulbed	National Aerospace Standard	Aerospace Olympic Standard Part No.		Range	Superseded Part No. McDonnell	
	CherryMAX Rivet	Part No.	Cherrylock Rivet	Part No.	Bulb-Lok Rivet	Minimum	Maximum	Douglas Std. Part No.	
1/8 5	CR3553-4-1	NA\$1738M4-1	CR2539-4-1	NAS1768M4-1	RV1190M4-1	0.020	0.062	3M266M4-1	
5/32 6	CR3553-5-1	NAS1738M5-1	CR2539-5-1	NAS1768M5-1	RV1190M5-1	0.025	0.062	3M266M5-1	
3/16 7	CR3553-6-1	NAS1738M6-1	CR2539-6-1	NAS1768M6-1	RV1190M6-1	0.030	0.062	3M266M6-1	

RIVET - BLIND, 1000 FLUSH HEAD, LOCKED SPINDLE, 5056 ALUMINUM ALLOY

Nominal Diameter	Cherry National Cherry National Olympic Part No. Aerospace Part No. Aerospace Part No. Bulbed Standard Bulbed Standard Olympic		Part No. Olympic	Grip I	Superseded Part No. McDonnell				
	CherryMAX Rivet	Part No.	Cherrylock Rivet	Part No.	Bulb-Lok Rivet	Minimum	Maximum	Douglas Std. Part No.	
1/8 5	(*)	NAS1739B4-1	CR2248-4-1	NAS1769D4-1	RV1101-4-1	0.020	0.062	3M267B4-1	
5/32 6	(*) CR3242-5-2	NAS173985-1 NAS173985-2	CR2248-5-1 CR2248-5-2	NAS1769D5-1 NAS1769D5-2	RV1101-5-1 RV1101-5-2	0.025 0.063	0.062 0.125	3M267B5-1 3M266B5-2	
3/16 7	(*) CR3242-6-2	NAS173986-1 NAS173986-2	CR2248-6-1 CR2248-6-2	NAS1769D6-1 NAS1769D6-2	RV1101-6-1 RV1101-6-2	0.030 0.063	0.062 0.125	3M267B6-1 3M267B6-2	

RIVET - BLIND, 100° FLUSH HEAD, LOCKED SPINDLE, MONEL

Nominal Diameter	Cherry National Cherry National Olympic Part No. Aerospace Part No. Aerospace Part No. Bulbed Standard Olympic		Part No.	Grip Range		Superseded Part No. McDonnell			
	Cherry MAX Rivet	Standard Part No.	Cherrylock Rivet	Part No.	Bulb-Lok Rivet	Minimum	Maximum	Douglas Std. Part No.	
1/8 5	(*) CR3552-4-2	NAS1739M4-1 NAS1739M4-2	CR2538-4-1 CR2538-4-2	NAS1769M4-1 NAS1769M4-2	RV1191M4-1 RV1191M4-2	0.045 0.063	0.062 0.125	3M267M4-1 3M267M4-2	
5/32 6	CR3552-5-2	NAS1739M5-2	CR2538-5-2	NAS1769M5-2	RV1191M5-2	0.063	0.125	3M267M5-2	
3/16 7	CR3552-6-2	NAS1739M6-2	CR2538-6-2	NAS1769M6-2	RV1191M6-2	0.073	0.125	3M267M6-2	

Figure 1-58. Cherrylock and Olympic-Lok Rivet Conversion Chart (Sheet 5)

RIVET - BLIND, 100° FLUSH HEAD, LOCKED SPINDLE, MONEL, CADMIUM PLATED

Nominal Diameter	Cherry Part No. Bulbed	National Aerospace Standard	Cherry Part No. Bulbed	National Aerospace Standard	Olympic Part No. Olympic Bulb-Lok Rivet	Part No. Grip R		Superseded Part No. McDonnell
	CherryMAX Rivet:	Part No.	Cherrylock Rivet	Part No.		Minimum	Maximum	Douglas Std. Part No.
1/8 5	(*) CR3552P4-2	NAS1739MW4-1 NAS1739MW4-2	CR2538P4-1 CR2538P4-2	NAS1769MW4-1 NAS1769MW4-2	RV1191-4-1 RV1191-4-2	0.046 0.063	0.062 0.125	3M267M4P1 3M267M4P2
5/32 6	CR3552P5-2	NA51739MW5-2	CR2539P5-2	NAS1769MW5-2	RV1191-5-2	0.063	0.125	3M267M5P2
3/16 7	CR3552-6-2	NAS1739MW6-2	CR2539P6-2	NAS1769MW6-2	RV1191-6-2	0.073	0.125	3M267M6P2

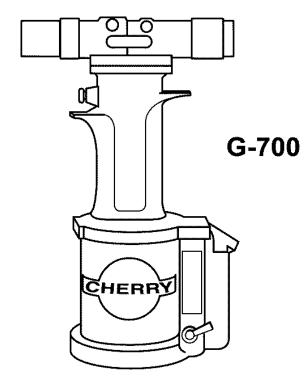
NOTES

- 1) Use Drill Size Number 30 Hole Size 0.129 to 0.132
- 2 Use Drill Size Number 20 Hole Size 0.160 to 0.164
- (3) Use Drill Size Number 10 Hole Size 0.192 to 0.196
- 4 Use Drill Size Number F Hole Size 0.256 to 0.261
- 5 Use Drill Size Number 27 Hole Size 0.143 to 0.146
- 6 Use Drill Size Number 16 Hole Size 0.176 to 0.180
- 7 Use Drill Size Number 5 Hole Size 0.205 to 0.209

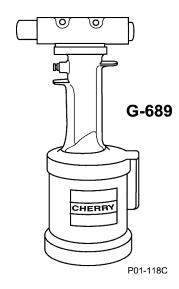
Figure 1-58. Cherrylock and Olympic-Lok Rivet Conversion Chart (Sheet 6)

1.9.15 Cherrylock Hydroshift Tooling.

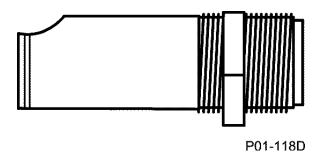
- a. The hydroshift tooling system is an advanced design in which the sequence of operations necessary to install the rivet is accomplished hydraulically within the hydroshift tool rather than by means of a mechanical pulling head. Cherrylock
- hydroshift pulling heads are of one type only: the H681.
- b. A separate H681 pulling head is required to install each diameter Cherrylock rivet. Countersunk pulling heads are recommended to install both universal and countersunk head styles.

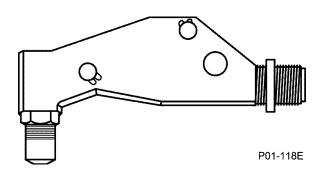

RIVET			DIMEN	ISIONS	NSN
DIAMETER		PULLING HEAD NUMBER	А	В	Nan
	H681-3U	UNIVERSAL HEAD	.188	.348	
	H681-3C	Countersunk Head (MS20426)	.163	.332	
3/32"		-			
	H681-4U	Universal Head	.250	.359	5130-00-083-6626
	H681-4C	Countersunk Head (MS20426)	.208	.341	5130-00-083-6625
1/8"	H681-4F	Countersunk Head (156*)	.430	.358	
	H681-4S	Countersunk Head (NAS 1097)	.174	.341	
	H681-B166-4	Uni-Sink Head	.250	.359	
	H681-5U	Universal Head	.313	.377	5130-00-083-6628
	H681-5C	Countersunk Head (MS20426)	.269	.352	5130-00-083-6627
5/32"	H681-5F	Countersunk Head (156*)	.535	.338	
	H681-5S	Countersunk Head (NAS 1097)	.225	.352	
	H681-B166-5	Uni-Sink Head	.313	.377	
	H681-6U	Universal Head	.375	.418	5130-00-083-6633
	H681-6C	Countersunk Head (MS20426)	.335	.386	5130-00-083-6631
3/16"	H681-6F	Countersunk Head (156*)	.625	.367	
	H681-6S	Countersunk Head (NAS 1097)	.281	.386	
	H681-B166-6	Uni-Sink Head	.375	.419	
	H681-8U	Universal Head	.500	.452	5130-00-083-6635
	H681-8C	Countersunk Head (MS20426)	.458	.398	5130-00-083-6634
1/4"	H681-8F	Countersunk Head (NAS 1097)	.374	.398	

P01-117G

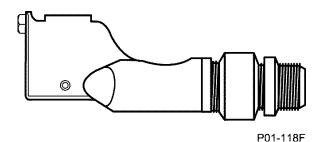

c. The H681 pulling head is used on these riveters:

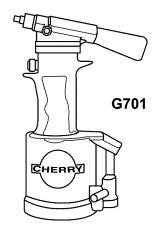
NSN 5130-00-935-4681

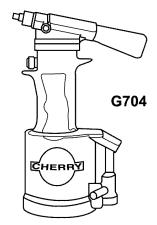

P01-118B


- 1.9.16 Cherrymax Tooling. CherryMAX hand and pneumatic-hydraulic tools have been specifically designed for installing CherryMAX fasteners. These tools incorporate features that provide a simple, quick system with superior limited access capabilities.
- 1.9.17 Existing Tooling Systems. Most existing tooling systems, either hand or power operated, may be used to install CherryMAX rivets providing tools have sufficient power and stroke.

1.9.18 Cherrymax Tools.

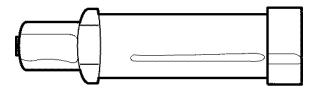

a. H701A456 Pulling Head. This single pulling head will install -4, -5, and -6 diameter rivets of any material, head style and grip without adjustments or changing of pulling heads for each diameter. To attach the H701A456 pulling head to the riveter, engage collet assembly and spring to the threaded portion of the riveter drawbolt, then engage the outer sleeve assembly (with jam nut) threads to the female threads on the riveter housing and screw on tight. Tighten jam nut to prevent loosening.


b. H753-456 Right Angle Pulling Head. This single pulling head will install -4, -5, and -6 diameter rivets of any material, head style and grip without adjustments or changing of pulling heads for each diameter. To attach the H753-456 pulling heads to riveter, engage the threaded portion of the pulling head with the drawbolt and head assembly and screw on tight. Tighten jam nut to prevent loosening.


c. H763-456 Offset Pulling Head. This single pulling head will install -4, -5, and -6 diameter rivets of any material, head style and grip without adjustments or changing of pulling heads for each diameter. To attach the H763-456 pulling heads to riveter, engage the threaded portion of the pulling head with the drawbolt and head assembly and screw on tight. Tighten jam nut to prevent loosening.

d. The H701A456, H753-456 or the H763-456 are used on these rivets:

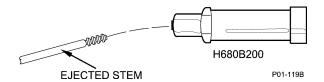
NSN 5130-01-044-7206 P01-118G



NSN 5130-01-044-7207

e. H680B200 Pulling Head. This single pulling head will install -4, -5, and -6 diameter rivets of any material, head style and grip without adjustments or changing of pulling heads for each diameter.

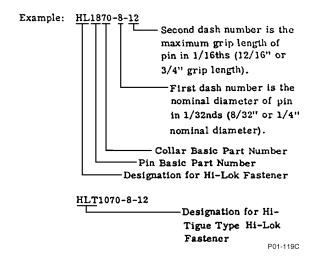
The H680B200 pulling head can be attached to all Cherry hydroshift riveters (G700, G684, and G784, etc.) for installation of CherryMAX rivets. Attachment procedures are as follows:


- (1) Remove knurled cap from front of riveter head.
- (2) Take collet adapter assembly and screw onto head piston threads. Turn assembly until adapter bottoms on shoulder of piston. Hand tightening is sufficient.

NSN 5130-01-044-7198

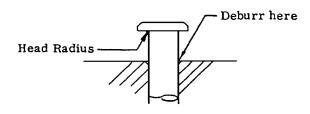
P01-119A

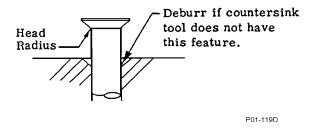
- (3) Screw on sleeve to sleeve adapter and tighten sleeve with jam nut.
- (4) After installing the rivet, the fractured stem will eject from the front of pulling head, the same as the hydroshift H681 pulling heads.



1.10 HI-LOK AND HI-LOK/TIGUE FASTENERS.

The patented, high strength Hi-Lok or Hi-Lok/Hi-Tigue is basically a threaded fastener which combines the best features of a rivet and bolt. Three primary design advantages include:

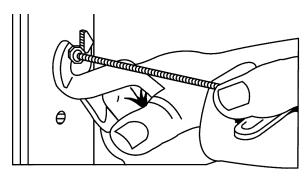

- a. A controlled preload of clamp-up consistent with ±10% designed into the fastener.
- b. Minimum size and weight.
- Simple, quiet and rapid installation, done from one side of the work by one worker.


1.10.1 <u>Selecting the Fastener Assembly</u>. The basic part number indicates the assembly of the pin and the collar part numbers.

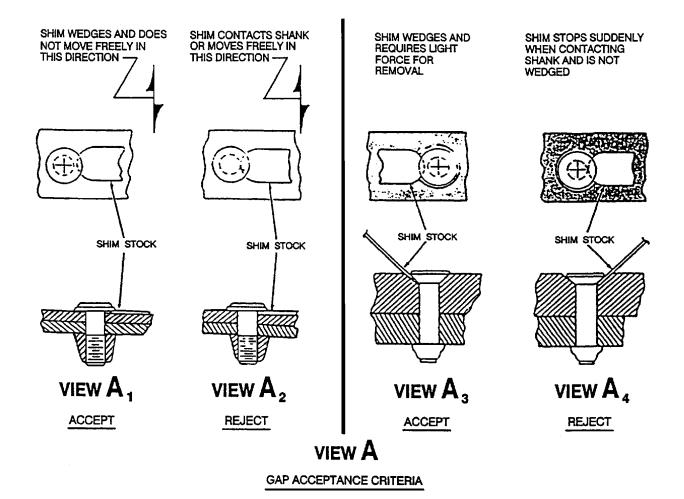
1.10.2 Hole Preparation.

- a. The straight wall drilled holes shall be prepared in accordance with NAS618. For standard Hi-Lok pins, it is generally recommended that the maximum interference fit shall not exceed 0.002 inch. The Hi-Tigue type Hi-Lok pin is normally installed in a hole at 0.002 to 0.004 inch diametral interference.
- b. The Hi-Lok pin has a slight radius under its head. After drilling, deburr the edge of the hole. This permits the head to fully seat in the hole. See appropriate Hi-Lok Standards Pages for head radius dimension. For instance, the 3/16 protruding head has a 0.015/.025 radius while the 3/16 flush head has a 0.025/.030 radius.

1.10.3 Tooling.


- Hi-Loks are rapidly and quietly installed by one person working from one side of the work using standard power or hand tools and Hi-Lok adaptor tools. (See Figure 1-60.)
- b. Hi-Lok adaptors tools are fitted to high speed, pistol grip and ratchet wrench drivers in straight, 90°, offset, extension and automatic collar-feed configurations. Refer to Hi-Shear Corporation's. Hi-Lok/Hi-Tigue Tool Catalog 2-1573 for a complete description of a wide variety of Hi-Lok drivers and accessories.
- 1.10.4 <u>Fastener Installation</u>. Installation of Hi-Lok pin is accomplished by using the following procedures (see Figure 1-61).
 - a. The threaded end of the Hi-Lok pin contains a hexagonal shaped recess. The hex wrench tip of the Hi-Lok driving tool engages the recess to prevent rotation of the pin while the collar is being installed. The pin recess also offers a secondary benefit, weight savings.
 - b. The pin is designed in two basic head styles. For shear applications, the pin is made in the light-weight, "Hi-Shear" countersunk style and in a compact protruding head style. For tension applications, the MS24694 (AN509) flush and protruding head styles are available.
 - c. The self-locking, threaded Hi-Lok collar has an internal counterbore at the base to accommodate variations in material thickness. At the opposite end of the collar is a wrenching device which is torqued by the driving tool until its shears off during installation; this shear-off point occurs

when a predetermined preload or clamp-up is attained in the fastener during installation. Removal of the collar wrenching surfaces after installation saves additional weight.


- d. The Hi-Lok/Hi-Tigue type interference fit pin provides improved fatigue benefits to the air-frame structure. The Hi-Tigue feature on the end of the pin shank makes it possible to use a straight shank interference fit fastener in a standard straight drilled hole to obtain the maximum fatigue life of the structure.
- 1.10.5 <u>Inspection After Installation</u>. Hi-Lok fasteners are visually inspected. No inspection tools or torque wrenches are required. (See Gap Acceptance Criteria, Figure 1-59.)

1.10.6 Removal of Installed Fastener.

 a. In non-interference fit holes, Hi-Loks can be removed with common hand tools in a manner similar to removing a nut from a bolt. Use an Allen hex wrench to prevent the pin from rotating while the collar is being unscrewed with pliers. If not damaged during collar removal, the Hi-Lok pin can be reused.

P01-120BA

TABLE 4 - PIN PROTRUSION LIMITS			
FASTENER NOMINAL DIAMETER	P= PIN PROTRUSION (INCH)		
5/32	0.302 TO 0.384		
3/16	0.315 TO 0.397		
1/4	0.385 TO 0.467		
5/16	0.490 TO 0.572		
3/8	0.535 TO 0.817		

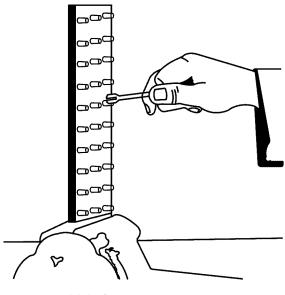

TABLE 5 - GAP LIMIT FOR ALL PROTRUDING HEAD PINS AND ALL COLLARS				
FASTENER MAXIMUM				
	NOMINAL GAP			
DIAMETER	LIMITS			
5/32	0.004			
3/16	3/16 0.004			
1/4 0.005				
5/16 0.006				
3/8	0.006			

TABLE 6 - SHIM DIMENSIONS				
FASTENER NOMINAL DIAMETER	T +0.0005 -0.0000	1/8 INCH NOMINAL RADIUS — LENGTH IS OPTIONAL		
5/32 3/16 1/4 5/16 3/8	0.004 0.004 0.005 0.008 0.008	1/4 INCH NOMINAL WIDTH T (SHIM STOCK)		

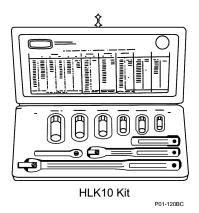
F01-056A

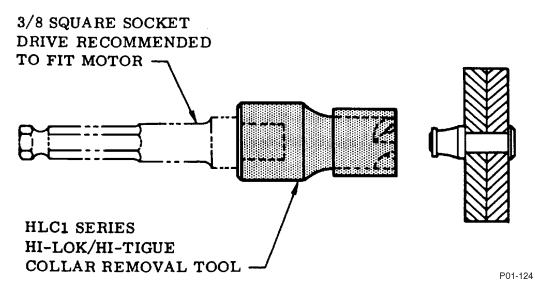
Figure 1-59. Gap Acceptance Criteria

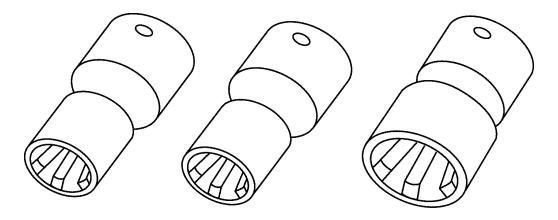
b. To more easily remove Hi-Lok collars from pins installed in interference fit holes and in limited access areas, the HLH128 series of hand tools are available in individual sizes or in sets as in the HLK10 Hi-Lok/Hi-Tigue Collar Removal Tool Kit. The Hi-Lok pin can be reused.

HLH128 Collar Removal Tool

P01-120BB

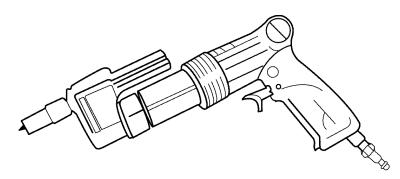

c. In interference fit holes, ALUMINUM Hi-Lok/Hi-Tigue collars can be removed with an HLC1 Hi-


Lok Collar Removal Tool fitted to a 3/8 square socket drive and companion air motor. The tool is pressed firmly over the Hi-Lok Collar and rotated until the tool teeth bite sufficiently into the collar material to grip and unscrew the collar from the pin.


NOTE

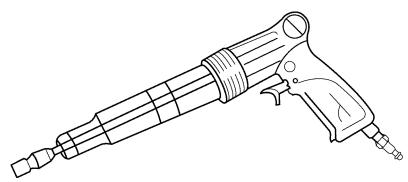
Initial loosening of the -8 and larger Hi-Lok collars with HLH128 Removal Tool is recommended.

d. COLLAR REMOVAL DRIVERS. Designed for production use to remove Hi-Lok collars from pins, pistol grip power drivers with cutter-type nose-pieces are available. The Hi-Lok pin can be reused.



HLC1 HI-LOK/HI-TIGUE COLLAR REMOVAL TOOLS

From left, -5, -6, and -8 sizes shown. Tools are available for -10 and -12 collar sizes. For dimensional data, refer to HLC1 tool in HI-LOK/HI-TIGUE Tool Catalog.


The Hi-Lok/Hi-Tigue pin can be reused.

P01-125A

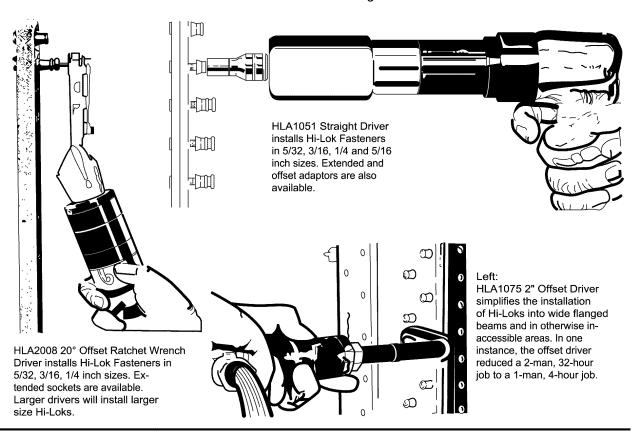
HLA6000 Hi-Lok/Hi-Tigue Straight Air Driver Collar Removal Assembly. Removes aluminum Hi-Lok/Hi-Tigue collars from pins installed in noninterference fit holes. Remove 5/32, 3/16 and 1/4 diameter Hi-Lok collars. Check Tool Catalog 2-1573 for the Hi-Lok pin hex recess sizes accommodated by the Driver's hex wrench.

P01-125B

HLA6005 Hi-Lok/Hi-Tigue Straight Air Driver Collar Removal Assembly.

Removes aluminum Hi-Lok/Hi-Tigue collars from pins installed in interference fit holes. Removes 5/32, 3/16 and 1/4 diameter Hi-Lok collars. On steel collars, initial loosening of the collar with the HLH128 Hand Tool is required.

P01-125C

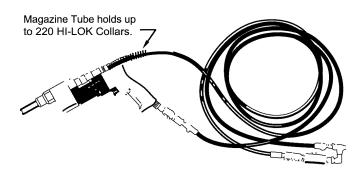

HLA6007 Hi-Lok/Hi-Tigue Offset Air Driver with an HLC13-6 or -8 Removal Tool.

Removes Hi-Lok/Hi-Tigue collars from pins installed in interference fit holes. Offset design permits access under flanges or in restricted areas. Removes 3/16 and 1/4 diameter Hi-Lok collars. Initial loosening of the collars with the HLH128 Hand Tool is recommended to break the high residual preload.

P01-126

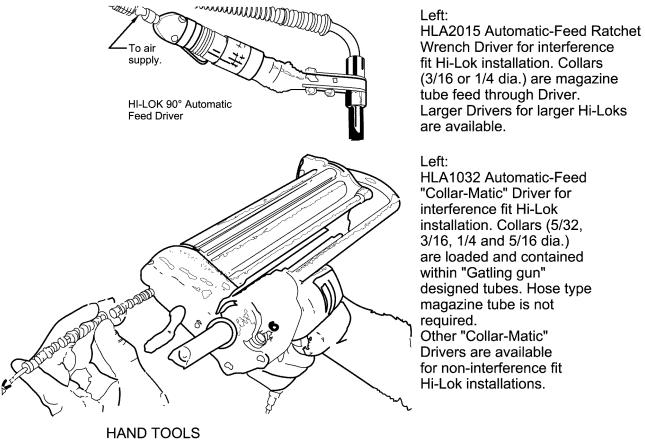
STANDARD POWER DRIVERS

With light weight, compact tooling, HI-LOKS are easily installed and require the minimum of employee training. HI-LOK adaptor tools can be fitted to high speed power air drivers. The installation is fast and quiet without conventional riveting noise.



AUTOMATIC COLLAR-FEEDING DRIVERS

The HI-LOK Automatic Feed Driver assembles HI-LOK collars (3/16 and 1/4 dia.) onto HI-LOK pins without reloading and at an assembly rate of up to 45 per minute.

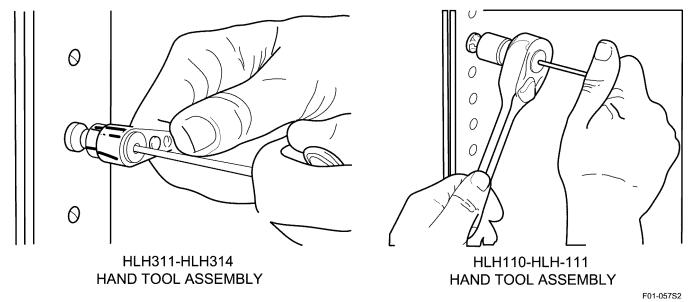
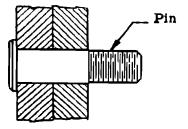
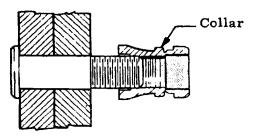

Above: Automatic Driver assembles HI-LOK Collar on Pins. Interference fit holes can be prepared and HI-LOK Pins inserted by Drivmatic Riveter method.

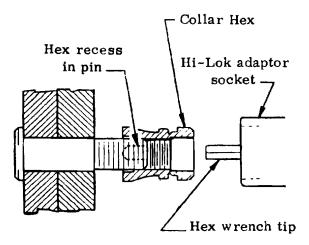
HLA1008 Straight Collar Automatic-Feed Driver

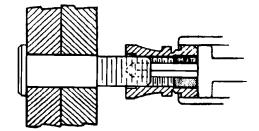
F01-057S1

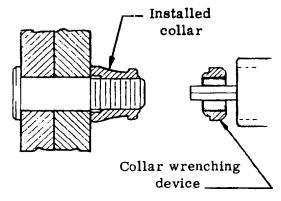
Figure 1-60. HI-LOK/HI-TIGUE Tools (Sheet 1 of 2)

The Hi-Lok fastener may be installed with hand tools, Allen hex keys and open-end or ratchet type wrenches. See photos below. Refer to Hi-Lok/Hi-Tigue Tool Catalog 2-1573 for complete description of hand tools available.

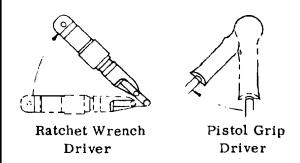





Figure 1-60. HI-LOK/HI-TIGUE Tools (Sheet 2)


a. Insert the pin into the prepared non-interference fit hole.

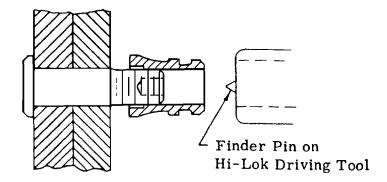

b. Manually thread the collar onto the pin.

c. Insert the hex wrench tip of the power driver into the pin's hex recess, and the socket over the collar hex. This prevents rotation of the pin while the collar is being installed.



d. Firmly press the power driver against the collar, operate the power driver until the collar's wrenching device has been torqued off.

e. This completes the installation of the Hi-Lok Fastener Assembly.


NOTE:

To ease the removal of the driving tool's hex wrench tip from the hex recess of the pin after the collar's wrenching device has sheared off, simply rotate the entire driver tool in a slight clockwise motion.

F01-058S01

Figure 1-61. Installation Steps (HI - LOK Pin in Non-interference Fit Hole) (Sheet 1 of 2)

When Hi-Lok pins are pressed or driven into interference fit holes, the fit is sufficiently tight to grip the pin to prevent it from rotating during assembly with the collar. This means that the driving tool hex wrench tip engagement is not required to keep the pin from rotating. Hi-Lok driver tools are available using a finder pin instead of the hex wrench tip to locate the tool on the collar and pin. Except for this difference, the fastener installation is the same as described in paragraph 1 above.

Refer to Hi-Lok Tool Catalog 2-1573 for further details.

F01-058S02

Figure 1-61. Installation Steps (HI - LOK Pin in Non-interference Fit Hole) (Sheet 2)

1.11 ASP® FASTENING SYSTEM.

1.11.1 Recommendations for Hole Preparation.

- a. Holes for ASP® fasteners are "straight". No potting, bushings, inserts or stepped holes are required.
- b. There are three basic diameters. (Oversize diameters may be available.)

e Dia	Recommended	Fillet	C'sink Dia	C'si
5"_ ∩∩∩"	Drill Siza	Radius	Tension	

Nom Dia	Hole Dia +.005"000"	Recommended Drill Size	Fillet Radius (Ref)	C'sink Dia Tension Head	C'sink Dia Shear Head
-06	.203"	13/64"	.020"	.386/.380	.302/.296
-08	.266"	Letter "H"	.025"	.507/.500	.399/.393
-10	.328"	21/64"	.030"	.634/.626	.479/.472

Table 1-72. Recommendations for Hole Preparation

Notes to Table:

- Countersinks are 100°.
- The product is available in tension head (AN509; pin and sleeve), shear head (NAS1097; pin only) and protruding head (pin and sleeve) configuration.
- Countersink diameter limits shown in the table are theoretical and intended for reference. When countersinking thin face sheets on sandwich panels, care must be taken to c'sink no deeper than necessary.
- Fillet radius figures apply to protruding head and flush head fasteners.

- 1.11.2 <u>Suggestions for Hole Preparation and Installation Practice.</u>
- 1.11.2.1 Clamping of the structure with temporary devices is very helpful in avoiding sheet separation, burrs/chips between the sheets and hole misalignment.
- **1.11.2.2** Drill speeds are critical to achieve hole quality and productivity, while minimizing operator fatigue.
- 1.11.2.2.1 Aluminum structure 4,000 to 6,000 RPM are recommended.
- 1.11.2.2.2 For stainless or titanium 300 to 1,000 RPM are recommended.
- **1.11.2.2.3** For Composite structure, carbide drills and c'sink cutters are recommended.
- 1.11.2.2.4 Lubrication of drills is very helpful in reducing drill wear, burrs and effort. Each shop has its own favorite drill lubes.

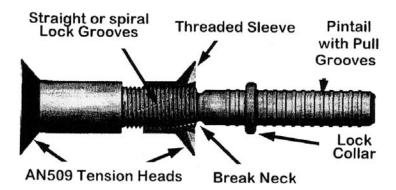
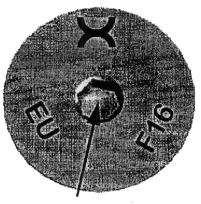

- 1.11.2.2.5 Excessive "push" on the drill motor (dull drill) should be avoided as it can crate sheet separation, and burrs and chips between the sheets.
- **1.11.2.2.6** Hole normally is important. Angularity beyond 2° should be avoided.
- 1.11.2.2.7 Countersink concentricity is critical, particularly with thin honeycomb face sheets. Generally, countersinks are normal to the structural surface. Flushness or head seating problems are caused by hole angularity beyond the 2° limit. Undersize countersink pilots are the most common cause of eccentricity problems and resulting cosmetics issues.
- 1.11.2.2.8 These parts are commonly used in honeycomb panels with thin face sheets. Accuracy in countersink depth is critical in avoiding head pull through.
- 1.11.3 <u>Basic Part Numbers</u>. Basic Part Numbers are listed in Table 1-73.

Table 1-73. Basic Part Numbers

Description	Pin Configuration (specified)	Pin P/N	Sleeve Configuration (mating sleeve)	Sleeve P/N	Lock Collar P/N
Double Flush Full Shank	100° Tension	AspFF	100° Tension	AspF-S	Asp-LC
Double Flush Full Shank	100° Shear	Asp100F	100° Tension	AspF-S	Asp-LC
Double Flush Reduced Shank	100° Tension	2Asp509F	100° Tension	AspF-S	Asp-LC
Double Flush Reduced Shank	100° Shear	2AspFF	100° Tension	AspF-S	Asp-LC
Flush-Protr Full Shank	100° Tension	AspFP	Protr Head	2AspP-S	Asp-LC
Flush-Protr Full Shank	100° Shear	Asp100P	Protr Head	2AspP-S	Asp-LC
Flush-Protr Reduced Shank	100° Tension	2Asp509P	Protr Head	2AspP-S	Asp-LC
Flush-Protr Reduced Shank	100° Shear	2AspFP	Protr Head	2AspP-S	Asp-LC
Protr-Flush Reduced Shank	Protr Head	2AspPF	100° Tension	AspF-S	Asp-LC
Protr-Protr Full Shank	Protr Head	AspPP	Protr Head	2AspP-S	Asp-LC
Protr-Protr Reduced Shank	Protr Head	2AspPP	Protr Head	2AspP-S	Asp-LC


P/N Example for Pin: 2AspFF - DT08 - 06 P/N Example for Sleeve: AspF - S - DT08 P/N Example for Collar: Asp - LC - 2AC08

- 1.11.4 Anatomy of ASP® Component.
- 1.11.4.1 Double Flush AspFF-EU06-16.
- 1.11.4.2 Identification Head Markings. Asp® pins carry the following identification head markings:
- 1.11.4.2.1 The Huck symbol serves as manufacturer's identification.
- 1.11.4.2.2 A letter "F" or "P" to identify the head style of the mating sleeve and a grip dash number (Full shank tension and protruding head only).
- 1.11.4.2.3 Pins and sleeves are identified with the letters "V" to indicate Titanium 6AL-4V or "EU" for A-286 Cres material. No material letter indicates alloy steel.
- 1.11.4.2.4 The Huck symbol is used for manufacturer's identification on the sleeves also.

H0702562

Figure 1-62. Double Flush AspFF-EU06-16

Hex Recess (pin)

H0702563

Figure 1-63. Hex Recess (Pin)

Driving Recesses (sleeve)

Figure 1-64. Driving Recesses (Sleeve)

1.11.5 Part Number Logic (Full Shank Pins).

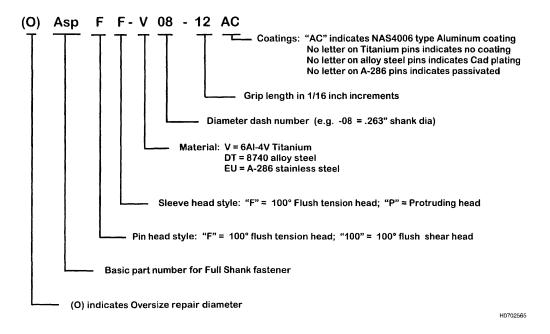


Figure 1-65. Part Number Logic (Full Shank Pins)

1.11.6 Part Number Logic (Reduced Shank Pins).

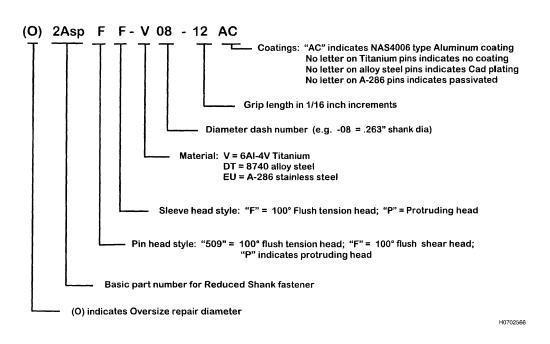


Figure 1-66. Part Number Logic (Reduced Shank Pins)

1.11.7 Part Number Logic (Sleeves).

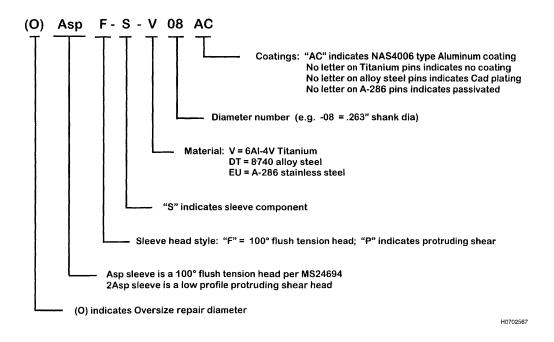


Figure 1-67. Part Number Logic (Sleeves)

1.11.8 Part Number Logic (Lock Collar).

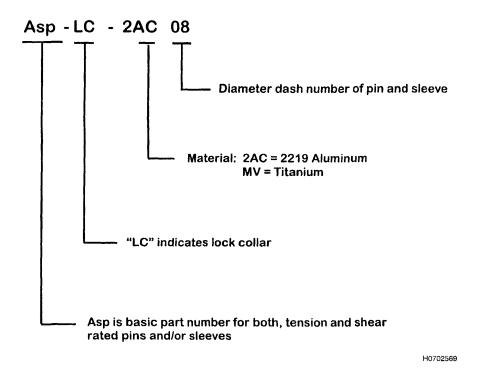
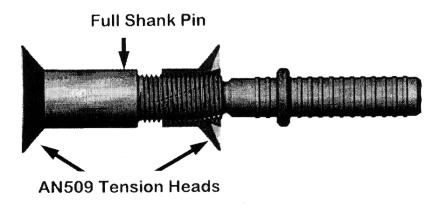



Figure 1-68. Part Number Logic (Lock Collar)

1.11.9 Configuration Options.

1.11.9.1 The figure shown below is Double Flush AN509 Tension Heads; Full Shank; P/N family AspFF.

H0702570

Figure 1-69. Double Flush AN509 Tension Heads; Full Shank; P/N Family AspFF

1.11.9.2 The figure shown below is the configuration option for a Double Flush NAS1097/AN509 Heads; Full Shank; P/N family Asp100F.

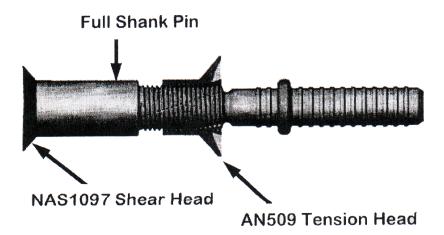
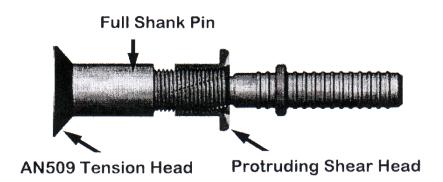



Figure 1-70. Double Flush NAS1097/AN509 Heads; Full Shank; P/N Family Asp100F

1.11.9.3 The figure shown below is the configuration option for a Flush AN509 Tension Head and Protruding Head; Full Shank; P/N family AspFP.

H0702572

Figure 1-71. Flush AN509 Tension Head and Protruding Head; Full Shank; P/N Family AspFP

1.11.9.4 The figure shown below is the configuration option for a Flush NAS1097 Shear Head and Protruding Head; Full Shank; P/N family ASP100P.

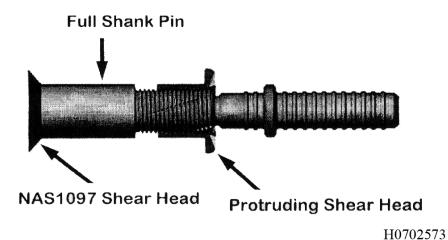


Figure 1-72. Flush NAS1097 Shear Head and Protruding Head; Full Shank; P/N Family Asp100P

1.11.9.5 The figure shown below is the configuration option for Flush AN509 Tension Heads; Reduced Shank; P/N family 2Asp509F.

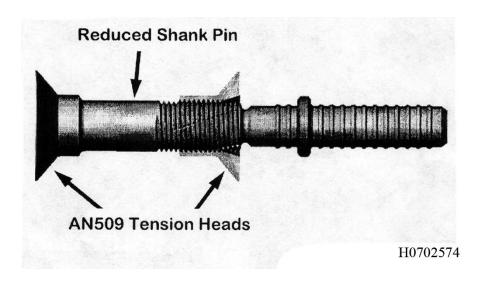


Figure 1-73. Flush AN509 Tension Heads; Reduced Shank; P/N Family 2Asp509F

1.11.9.6 The figure shown below is the configuration option for a Flush NAS1097 Shear Head and 509 Tension Head; Reduced Shank; P/N family 2AspFF.

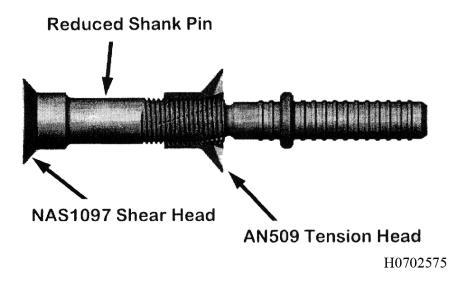


Figure 1-74. Flush NAS1097 Shear Head and 509 Tension Head; Reduced Shank; P/N Family 2AspFF

1.11.9.7 The figure shown below is the configuration option for a Flush AN509 Tension Head and Protruding Head; Reduced Shank; P/N family 2Asp509P.

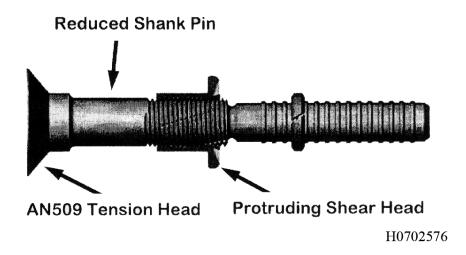


Figure 1-75. Flush AN509 Tension Head and Protruding Head; Reduced Shank; P/N Family 2Asp509P

1.11.9.8 The figure shown below is the configuration option for a Flush NAS1097 Shear Head and Protruding Head; Reduced Shank; P/N family 2AspFP.

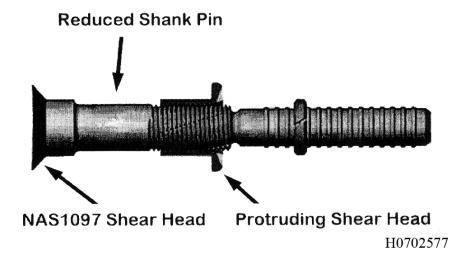


Figure 1-76. Flush NAS1097 Shear Head and Protruding Head; Reduced Shank; P/N family 2AspFP

1.11.9.9 The figure shown below is the configuration option for a Protruding Head and 509 Flush Tension Head; Reduced Shank; P/N family 2AspPF.

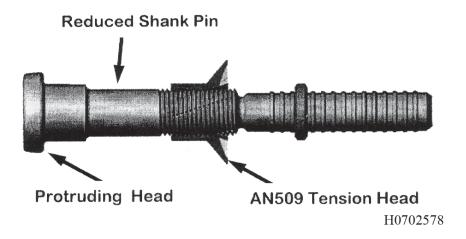


Figure 1-77. Protruding Head and 509 Flush Tension Head; Reduced Shank; P/N family 2AspPF

1.11.9.10 The figure shown below is the configuration option for a Protruding Head and Protruding Head; Reduced Shank; P/N famly 2AspPP.

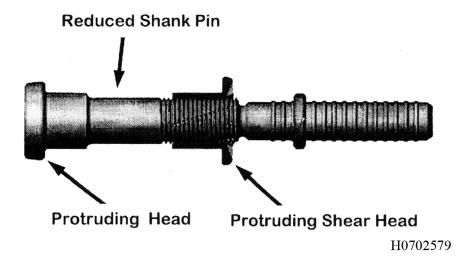


Figure 1-78. Protruding Head and Protruding Head; Reduced Shank; P/N family 2AspPP

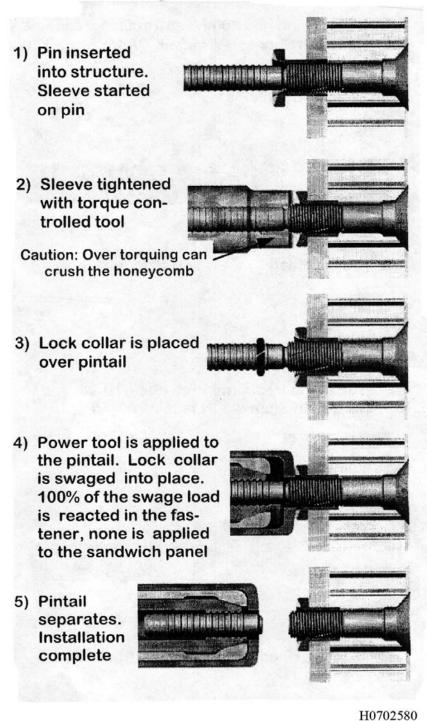


Figure 1-79. Installation Sequence

1.11.11 Installation Tooling.

1.11.11.1 Installing the sleeve component:

- a. Sleeve will thread freely onto the pin.
- b. Sleeve may be tightened using a driver but by hand or with a torque controlled power tool. Care must be taken not to over torque the sleeve to avoid crushing of soft cores or the honeycomb sandwich. AFS does not recommend specific tightening torque values. User determines torque based on desired compression of the specific joint geometry and materials.
- The pin head may be retained against rotation with a hex key.

d. The screw driver bit is a special part as shown in the table below:

Dia	AFS P/N
-06	106524
-08	106525
-10	107735

Screw driver bit may cam out if over torqued.

Caution: Screw driver bit may cam out if over torqued.

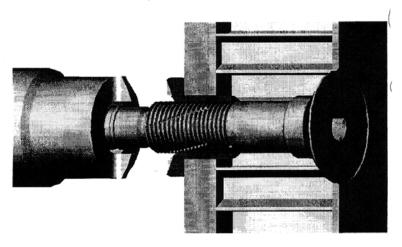


Figure 1-80. Installation of the Sleeve Component

- 1.11.11.2 Swaging the lock ring with straight on access:
 - a. After the sleeve component is tightened to the desired torque, the lock collar is placed onto the pintail, the pintail is engaged with a power tool and the lock collar is swaged in place. This locks the components together mechanically and assures that they function as a unit.
- b. In 95% of all cases, there is access for straight on tools. Recommended power tools for straight access are AFS ergonomic Models 202, 2012 and 244.

CAUTION

Model 2012 pulls -06 and some -08 dia only!

c. Nose tools attaching to all these tools are shown in the table below. All of these nose attachments fit directly onto Models 202, 2012 and 244 without adapters.

Dia	Straight-On Nose At- tach
-06	99-2642
-08	99-2645
-10	99-2648

NOTE

The tools and nose attachments shown on this page are only the most basic styles.

Pneudraulic Tool

H0702582

Figure 1-81. Model 244 - Pneudraulic Tool

1.11.11.3 Swaging the lock ring with limited access:

- a. After the sleeve component is tightened to the desired torque and the lock collar is placed in position, the pintail is engaged with a power tool and the lock collar is swaged in place. This locks the components together mechanically and assures they function as a unit.
- b. In some cases, off-set tools are required for limited access. Recommended power tools for off-set access are AFS ergonomic Model 244OS or allhydraulic Model 206-375.
- c. Nose tools attaching to all these tools are shown in the table below. All of these nose attachments fit directly onto Models 244OS and 206-375 without adapters.

Dia	Offset Nose Attach		
-06	99-3728		
-08	99-3729		
-10	99-3730		

NOTE

The tools and nose attachments shown on this page are only the most basic styles.

Model 244 OS Pneudraulic Tool

H0702583

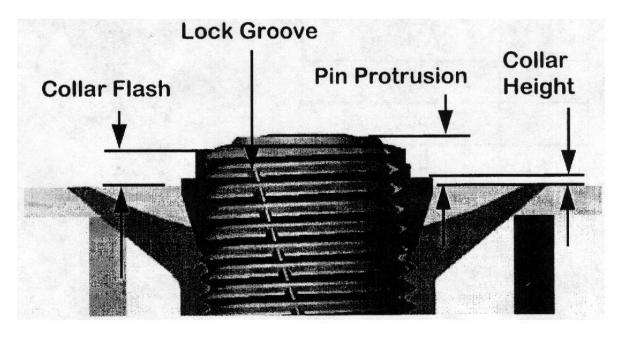

Figure 1-82. Model 244 OS Pneudraulic Tool

Figure 1-83. Model 206-375 Hydraulic Tool

1.11.12 <u>Prior to Shave</u>. The fastener must be checked for the limits in pin height, collar height and collar flash prior to shaving. After protrusion verification, pin and collar may be shaved flush to the top of the sleeve head.

Fastener Diameter	Pin Protrusion		
	Min Max		
-06 (13/64)	.020"	.107"	
-08 (17/64)	.030"	.119"	
-10 (21/64)	.035"	.129"	

H0702585

Figure 1-84. Fastener Prior to Shaving

Fastener Diameter	Collar Flash		
	Max Flash Max Collar Height Height		
-06 (13/64)	.020"	.010"	
-08 (17/64)	.030"	.013"	
-10 (21/64)	.040"	.016"	

1.11.13 <u>Clean Up Shave</u>. The pin is designed to break approximately .030" to .090" above flush, depending on the actual thickness of he structure. On countersink head parts, where aerodynamic flushness is required, shaving of the protruding pin area is required. Since the pin material is hard, high speed rivet shavers (20,000 RPM) with carbide tipped cutters are most effective.

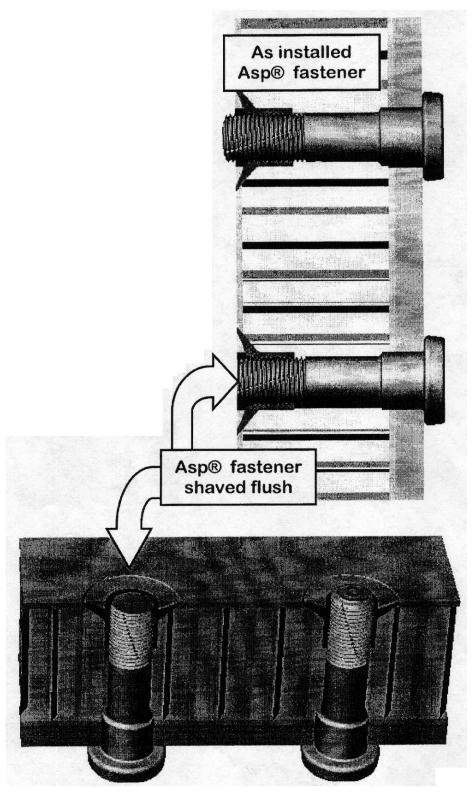


Figure 1-85. Asp® Installed and Shaved Flush

- 1.11.14 <u>Fastener Removal</u>. Since pin and sleeve are locked together with a swaged lock collar, drilling out of the lock collar is required.
 - a. Using a guide bushing and a drill slightly smaller than the hole diameter, the lock collar is drilled out.
- b. Remnants of lock collar are pried out, sleeve is unthreaded, and pin is tapped out of the hole.

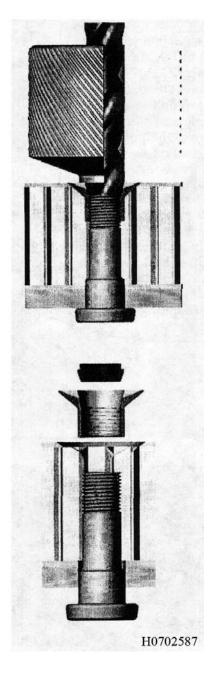


Figure 1-86. Fastener Removal

CHAPTER 2 SCREWS

2.1 SCREWS.

Screws are the most common type of threaded fasteners used on aircraft. They are similar to other types of threaded fasteners, such as bolts, but differ mainly by usually having a lower material strength, a looser thread fit, and shanks threaded along their entire length. However, several types of structural screws are available that differ from structural bolts only in the type of head; the material is equivalent and there is a definite grip. The countersunk, brazier, and roundhead screws have various types of slots or recesses, and each type requires a particular type of screwdriver. For proper performance and to prevent mutilation of the screw head and the screwdriver always use the proper type screwdriver. Screws may be divided into four main groups: structural screws, machine screws, self-tapping screws, and setscrews.

- 2.1.1 Screws are composed of three parts, with three additional combinations of these parts (see Figure 2-4).
- The head is that portion of the screw into which the screwdriver fits.
- The body is that portion from the bottom of the head to the beginning of the thread bevel
- The threads are the helical portion of the screw.
- The screw length is the combination of the three lengths above, extending from the top of the head to the bottom of the threads.
- The grip length is the distance from the underhead bearing surface to the beginning of the bevel just prior to the threads. On screws with no countersink to the heads, this is synonymous with the body of the screw. On countersunk screws, the griplength includes the beveled portion of the head.
- The shank is the combination of the body and threads.
- 2.1.2 <u>Screw and Bolt Markings</u>. Screws and bolts are designed and fabricated of different materials and with

different tensile strengths for their individual beat and grip stresses. Screws and bolts are marked, as required, by the applicable AN, NAS, or Military Standard drawing with a code for identification and physical characteristics. Refer to Table 2-1 for these code markings. It is permissible for the vendor to place his trade mark on the head of these screws and bolts if he so desires.

2.1.3 <u>Structural Screws</u>. (Refer to <u>Table 2-2</u> through <u>Table 2-6</u>.) Structural screws are used in the primary structure of aircraft as structural bolts or rivets are used. These screws are fabricated from a material with a high tensile strength and differ from structural bolts only in the type of head. They have a definite grip and the same shear strength as the equivalent size bolt.

2.1.4 Machine Screws.

2.1.5 Flathead, Machine Screws. (Refer to Table 2-7 through Table 2-12.) Flathead, machine screws are used in countersunk holes where a flush surface is desired. An 82-degree and a 100-degree countersunk flathead machine screw is available. These screws have various types of recesses and slots and are manufactured from different materials, such as carbon steel, corrosion- resistant steel, aluminum alloy, and brass.

2.1.6 Roundhead, Machine Screws. (Refer to Table 2-13 and Table 2-14.) AN508, AN515, and AN520 roundhead, machine screws are available. The AN508 screw is a brass screw designed for electrical use only and is available only with a slotted head. The AN515 coarse thread screw and AN520 fine thread screw are used as general purpose screws and are available with slotted or recessed heads and a class 2 thread fit. The AN515 and AN520 screws are manufactured from carbon steel, corrosion-resistant steel, and brass.

Table 2-1. Screw and Bolt Markings

		Physical Characteristics	istics	Material	Classification or Specification
\bigcirc	Grade 2 No Marking	Tensile Strength: 69,000 PSI Min Rockwell Hardness: B100 Max	Up to 1/2 Incl	Steel, Low Carbon	SAE Grade 2
		Tensile Strength: 64,000 PSI Min Rockwell Hardness: B100 Max Tensile Strength: 55,000 PSI Min Rockwell Hardness: B95 Max	Over 1/2 to 3/4 Incl Over 3/4		
(·)		Yield Strength: 60,000 PSI Min		Steel, Low Carbon	
		Tensile Strength: 70,000 PSI Min Rockwell Hardness: B80-100		Steel, Low Carbon	AMS5061 - Cold Drawn
\mid	Grade 3 2 Radial Dashes	Tensile Strength: 110,000 PSI Min Rockwell Hardness: B95-104	Up to 1/2 Incl	Steel, Medium Carbon	SAE Grade 3
	- 180° Apart	Tensile Strength: 100,000 PSI Min Rockwell Hardness: B95-104	Over 1/2 to 5/8 Incl		
(m)		Yield Strength: 75,000 PSI Min		Steel, Medium Carbon	
	Grade 5	Tensile Strength: 120,000 PSI Min	Up to 3/4 Incl	Steel, Medium Carbon	FF-S-85 (Up to 2-1/2 Incl)
\longleftrightarrow	3 Radial Dashes - 120° Apart	Rockwell Hardness: C23-30			
		Tensile Strength. 110,000 PSI Min Rockwell Hardness: C19-30	Over 3/4 to 1 Incl		
		Tensile Strength: 105,000 PSI Min	Over 1 to 1-1/2 Incl		SAE Grade 5 (Up to 1-1/2 Incl)

Table 2-1. Screw and Bolt Markings - Continued

		Physical Characteristics	stics	Material	Classification or Specification
		Rockwell Hardness: C19-30			
		Tensile Strength: 90,000 PSI Min Rockwell Hardness: C9-21	Over 1-1/2 to 2-1/2 Incl		
4		Yield Strength: 85,000 PSI Min		Steel, Medium Carbon	
Grade 6	de 6	Tensile Strength: 140,000 PSI Min	Up to 5/8 Incl	Steel, Medium Carbon	SAE Grade 6
- 90°	4 Radial Dashes - 90° Apart	Rockwell Hardness: C30-36			
		Tensile Strength: 133,000 PSI Min Rockwell Hardness: C28-36	Over 5/8 to 3/4 Incl		
(W		Yield Strength: 95,000 PSI Min		Steel, Medium Carbon	
Grade 7	le 7	Tensile Strength: 130,000 PSI Min		Steel, Alloy, Medium Carbon	SAE Grade 7
5 Ra	5 Radial Dashes - 72° Apart	Rockwell Hardness: C28-34			
۵		Yield Strength: 110,000 PSI Min		Steel, Alloy	
Grade 8	de 8	Tensile Strength: 150,000 PSI Min	To 1-1/2 Incl	Steel, Alloy, Medium Carbon	FF-S-85 (Up to 2-1/2 Incl)
6 Ra	6 Radial Dashes - 60° Apart	Rockwell Hardness: C32-38			
		Tensile Strength: 125,000 PSI Min	Over 1-1/2 to 2-1/2 Incl		SAE Grade 8 (Up to 1-1/2 Incl)
		Rockwell Hardness: C25 Min			

Table 2-1. Screw and Bolt Markings - Continued

Table 2-1. Screw and Bolt Markings - Continued

	Physical Characteristics	Material	Classification or Specification
		Steel, Alloy, Medium Carbon	MIL-S-8695 for #4037
	Tensile Strength: 125,000 PSI Min	Steel. Alloy, Medium Carbon (Cr, Ni, Mo)	MIL-S-7839 includes:
	Rockwell Hardness: C26-32		ML-S-6049 for #8740
			MIL-S-6050 for #8630
			MIL-S-6098 for #8735
			MIL-S-6758 for #4130
			MIL-S-8695 for #4037
	Tensile Strength: 62,000 PSI Min	Aluminum Alloy	
Single Dash	Tensile Strength: 85,000 PSI Min	Steel, Corrosion Resistant	
		Steel, Corrosion Resistant	#410, Hardened
	Tensile Strength: 70,000 PSI Min	Steel, Corrosion Resistant	QQ-S-763
	Tensile Strength: 75,000 PSI Min	Steel, Corrosion Resistant	QQ-S-763, Class IV or (18-8)
2 Radial Dashes - 90° Apart	Tensile Strength: 70,000 PSI Min	Steel, Corrosion Resistant	66-s-763
		Steel, Corrosion Resistant	QQ-S-763, Class 7, Grade A

Table 2-1. Screw and Bolt Markings - Continued

	Physical Characteristics	Material	Classification or Specification
Single Dash		Steel, Corrosion Resistant	MIL-B-6812 (16 Cr, 2 Ni)
EC3	Tensile Strength: 125,000 PSI Min	Steel, Corrosion Resistant	AMS7472 (17-20 Cr, 7-11 Ni) or AMS5637, SAE30302 (18 Cr, 8 Ni)
EH I	Tensile Strength: 130,000 PSI Min Rockwell Hardness: 248-321	Steel, Corrosion and Heat Resistant	AMS5735 (15 Cr, 26 Ni; 1.3 Mo, 1.9 Ti, 0.32)
200	Tensile Strength: 110,000 PSI Min	Steel, Corrosion and Heat Resistant	1200°F MIL-B-
	Tensile Strength: 62,000 PSI Min	Aluminum Alloy	MIL-B-6812 (Al-24)
Double Dash	Tensile Strength: 85,000 PSI Min	Bronze, Coml	
$\langle \overline{\Diamond} \rangle$			Close Tolerance
09	Tensile Strength: 48,000 PSI Min	Steel, Coml	Bolt, Hexagon Head, Fine Thread
65	Tensile Strength: 48,000 PSI Min	Steel, Coml	Bolt, Hexagon Head, Coarse Thread
(02	Tensile Strength: 48,000 PSI Min	Steel, Coml	Bolt, Carriage

Table 2-1. Screw and Bolt Markings - Continued

		Physical Characteristics	Mat	Material	Classification or Specification
	Grade	Tensile Strength: 55,000 PSI Min 0 to 4	Steel, Carbon, Free Machining	oon, Free	ASTM A-307, Grade A
		Rockwell Hardness: B66			
) (08	Grade BO	Tensile Strength: 100,000 PSI Min 0 to 2	Steel, Carbon, Heat Treated	oon, Heat	ASTM A-261
88	Grade BB	Tensile Strength: 105,000 PSI Min 0 to 1-1/2	Steel, Alloy, Quenched and Tempered	y, and	ASTM A-354
		Tensile Strength: 105,000 PSI Min Over 1-1/2 to 2-1/2 Tensile Strength: 100,000 PSI Min Over 2-1/2 to 4	2-1/2		
	Grade	Tensile Strength: 120,000 PSI Min 0 to 3/4	Steel, Medium Carbon Quenched and Tempered	lium Car- ched and	ASTM A-325
		Rockwell Hardness: C23-32 Tensile Strength: 115,000 PSI Min 7/8 to 1			
		Rockwell Hardness: C22-32 Tensile Strength: 105,000 PSI Min 1-1/8 to 1-1/2		,	
		Rockwell Hardness: C19-30 Tensile Strength: 90,000			
) (38)	Grade BC	Tensile Strength: 125,000 PSI Min 0 to 1-1/2	Steel, Alloy, Quenched and Tempered	y, and	ASTM A-354
		Tensile Strength: 125,000 PSI Min Over 1-1/2 to 2-1/2 Tensile Strength: 115,000 PSI Min Over 2-1/2 to 4	2-1/2		
	Grade BD	Tensile Strength: 150,000 PSI Min 0 to 1-1/2	Steel, Alloy, Quenched and Tempered	y, and	ASTM A-354
Ŭ (♥)	Grade	Tensile Strength: 115,000 PSI Min	Steel, Alloy, Track Bolts	y, Track	ASTM A-241

Table 2-1. Screw and Bolt Markings - Continued

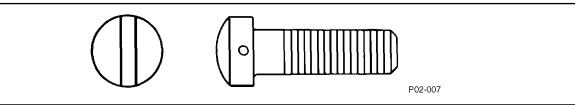
		Physical Characteristics		Material	Classification or Specification
Gra	Grade B5	Tensile Strength: 100,000 PSI Min 0 to 2-1/2		Steel, 5% Chromium	AISI 501
		Tensile Strength: 95,000 PSI Min Over 2-1/2 to 4	2 to 4		
Gra	Grade B6	Tensile Strength: 105,000 PSI Min 0 to 2-1/2	7	Steel, 12% Chromium	AISI 416
Gra	Grade B7	Tensile Strength: 105,000 PSI Min 0 to 2-1/2	+	Steel, Chromium-	AISI 4140, 4142,
18				Molybdenum	4145
		Tensile Strength: 105,000 PSI Min Over 2-1/2 to 4 Tensile Strength: 90,000 PSI Min Over 4 to 7	2 to 4 7		
Gra	Grade B7A	Tensile Strength: 125,000 PSI Min 0 to 2-1/2		Steel, Chromium- High-Molybdenurn	
		Tensile Strength: 115,000 PSI Min Over 2-1/2 to 4	2 to 4		
B Gra	Grade B14	Tensile Strength: 125,000 PSI Min 0 to 2-1/2		Steel, Chromium- Molybdenum- Vanadium	
		Over 2-1/2 to 4	2 to 4		
BIG Salar	Grade B16	Tensile Strength: 125,000 PSI Min 0 to 2-1/2		Steel, Chromium- Molybdenum- Vanadium	
		Tensile Strength: 110,000 PSI Min Over 2-1/2 to 4 Tensile Strength: 100,000 PSI Min Over 4 to 7	2 to 4 7		
Gra	Grade B8	Carbide Treated		Steel, Corrosion esistant, 18 Cr 8 Ni	AISI 304
		Tensile Strength: 75,000 PSI Min All Diameters	ters		
	Grade <u>B8</u>	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni	

Table 2-1. Screw and Bolt Markings - Continued

	Physical Characteristics	ieristics	Material	Classification or Specification
	Tensile Strength: 125,000 PSI Min	0 to 3/4		
	Tensile Strength: 115,000 PSI Min	Over 3/4 to 1		
	Tensile Strength: 105,000 PSI Min	Over 1 to 1-1/4		
	Tensile Strength: 100,000 PSI Min	Over 1-1/4 to 1-1/2		
Grade B8C	Carbide Treated		Steel, Corrosion Resistant, 18 Cr 8 Ni,	AISI 347
>			Columbium Stabilized	
•	Tensile Strength: 75,000 PSI Min	All Diameters		
Grade B8C	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni, Columbium Stabilized	AISI 347
	Tensile Strength: 125,000 PSI Min	0 to 3/4		
	Tensile Strength: 115,000 PSI Min	Over 3/4 to 1		
	Tensile Strength: 105,000 PSI Min	Over 1 to 1-1/4		
	Tensile Strength: 100,000 PSI Min	Over 1-1/4 to 1-1/2		
Grade B8T	Carbide Treated		Steel, Corrosion Resistant, 18 Cr 8 Ni, Titanium Stabilized	AISI 321
	Tensile Strength: 75,000 PSI Min	All Diameters		
Grade B8T	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni, Titanium Stabilized	AISI 321
	Tensile Strength: 125,000 PSI Min	0 to 3/4		
	Tensile Strength: 115,000 PSI Min	Over 3/4 to 1		
	Tensile Strength: 105,000 PSI Min	Over 1 to 1-1/4		
	Tensile Strength: 100,000 PSI Min	Over 1-1/4 to 1-1/2		
Grade B8F	Carbide Treated		Steel, Corrosion Resistant, 18 Cr 8 Ni, Free Machining	AISI 303
	Tensile Strength: 75,000 PSI Min	All Diameters	_	

Table 2-1. Screw and Bolt Markings - Continued

	Physical Characteristics	SS	Material	Classification or Specification
Grade B8F	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni, Free Machining	AISI 303
	Tensile Strength: 125,000 PSI Min 0 t	0 to 3/4		
	Tensile Strength: 115,000 PSI Min Ov	Over 3/4 to 1		
		Over 1 to 1-1/4		
		Over 1-1/4 to 1-1/2		
$ \begin{array}{c} \text{Grade L7} \\ \text{L7} \end{array} $		0 to 2-1/2	Steel, Chromium- Molybdenum	AISI 4140, 4142, 4145
	Tensile Strength: 105,000 PSI Min Ov	Over 2-1/2 to 4		
Grade L9		0 to 2-1/2	Steel, Nickel	AISI 2340
<u> </u>				
	Tensile Strength: 105,000 PSI Min Ov	Over 2-1/2 to 4		
Grade L10		0 to 4	Steel, Nickel	AISI 2317
Grade L43 Grade L43	Tensile Strength: 125,000 PSI Min 0 t	0 to 4	Steel, Nickel-Chromi- um- Molybdenum	AISI 4340
B8 Grade B8	Annealed		Steel, Corrosion Resistant, 18 Cr 8 Ni	AISI 304
	Tensile Strength: 75,000 PSI Min All	All Diameters		
Grade B8	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni	AISI 304
	Tensile Strength: 125,000 PSI Mi	Min 0 to 3/4		
		Over 3/4 to 1		
	Tensile Strength: 105,000 PSI Min Ov Tensile Strength: 100,000 PSI Min Ov	Over 1 to 1-1/4 Over 1-1/4 to 1-1/2		


Table 2-1. Screw and Bolt Markings - Continued

	Physical Characteristics	cs	Material	Classification or Specification
B8C Grade B8C			Steel, Corrosion Resistant, 18 Cr 8 Ni, Columbium Stabi- lized	AISI 347
	Tensile Strength: 75,000 PSI Min Al	All Diameters		
B8C Grade B8C	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni, Columbium Stabi- lized	AISI 347
	Tensile Strength: 125,000 PSI Min 0 t	0 to 3/4		
		Over 3/4 to 1		
		Over 1 to 1-1/4		
	Tensile Strength: 100,000 PSI Min Ov	Over 1-1/4 to 1-1/2		
Grade B8T	Annealed		Steel, Corrosion Resistant, 18 Cr 8 Ni, Titanium Stabilized	AISI 321
	Tensile Strength: 75,000 PSI Min Al	All Diameters		
Grade B8T	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni, Titanium Stabilized	AISI 321
	Tensile Strength: 125,000 PSI Min 0 t	0 to 3/4		
	Tensile Strength: 115,000 PSI Min Ov	Over 3/4 to 1		
		Over 1 to 1-1/4		
(rengin: 100,000 PSI Min	Over 1-1/4 to 1-1/2		
B8F Grade B8F	Annealed		Steel, Corrosion Resistant, 18 Cr 8 Ni, Free Machining	AISI 303
	Tensile Strength: 75,000 PSI Min Al	All Diameters		
B8F Grade B8F	Cold Drawn		Steel, Corrosion Resistant, 18 Cr 8 Ni, Free Machining	AISI 303
	Tensile Strength: 125,000 PSI Min 0 t	0 to 3/4		
	Tensile Strength: 115,000 PSI Min Ov Tensile Strength: 105,000 PSI Min Ov	Over 3/4 to 1 Over 1 to 1-1/4		
		VCI 1 W 1-1/14	-	_

Table 2-1. Screw and Bolt Markings - Continued

		Physical Characteristics	Material	Classification or Specification
		Tensile Strength: 100,000 PSI Min Over 1-1/4 to 1-1/2		
BOLT STUDS	Grade B7	Type 1 Tensile Strength: 125,000 PSI Min	Steel, Alloy	MIL-S-1222B
)		Rockwell Hardness: 255-321 or C25-35		
(B)	Grade B7A	Tensile Strength: 125,000 PSI Min	Steel, Alloy	MIL-S-1222B
)		Rockwell Hardness: 255-321 or C25-35		
(B)	Grade B14	Tensile Strength: 125,000 PSI Min	Steel Alloy	MIL-S-1222B
		Rockwell Hardness: 255-321 or C25-35		
8	Grade B16	Tensile Strength: 125,000 PSI Min	Steel, Alloy	MIL-S-1222B
		Rockwell Hardness: 255-321 or C25-35		
		National Aircraft Standard Head Markings - NAS380		
	Dash denotes corrosion-resistant	rosion-resistant steel.		
	Two staggered pa	Two staggered parallel dashes (only one need be visible after slotting head) denotes corrosion-resistant steel.	ion-resistant steel.	
+	Cross denotes all	Cross denotes alloy steel (125,000 - 145,000 PSI).		
	Recessed triangle	Recessed triangle denotes close-tolerance shank and/or head.		
\bigcirc	Triangle with a d	Triangle with a dimple inside denotes close-tolerance shank and/or head, high strength (160,000 - 180,000 PSI).	0,000 - 180,000 PSI).	
\otimes	Triangle with an	Triangle with an X inside denotes close-tolerance shank and/or head, alloy steel (125,000 - 145,000 PSI).	145,000 PSI).	
R	The letter R deno	The letter R denotes rolled threads after heat treatment.		
	Double dash denotes aluminum	otes aluminum alloy.		
	This marking on	This marking on screw and bolt heads denotes bronze material.		

Table 2-2. AN502 and AN503, Fillister Head, Structural Screws

	Thr	ead		Head	Height	Material	Strength
First Dash Number	Size	Class	Diameter	Min	Max	Tensile Strength	Shear Strength
-6	6-32	NC-3A	.138	.118	.132	1120	1060
-8	8-32	NC-3A	.164	.141	.156	1740	1500
-10	10-32	NF-3A	.190	.165	.180	2490	2125
-416	1/4-28	UNF-3A	.250	.219	.237	4520	3650
-516	5/16-24	UNF-3A	.312	.276	.295	7240	5750

First dash number indicates screw size.

Second dash number indicates screw length.

Material:

Steel, Military Specification MIL-S-8695 or MIL-S-6050.

Example of part number:

AN502-10-10 = 10-32 screw, 5/8-inch long.

2.1.7 Fillister Head, Machine Screws. (Refer to Table 2-15 through Table 2-17.) Fillister head, machine screws are used as general purpose screws and also may be used as cap screws in light mechanics such as the attachment of cast aluminum gear box cover plates. Fillister head screws are usually drilled for safety wire and are available manufactured from steel and brass. Fillister head screws are available with coarse or fine threads. The coarse threaded screws are commonly used as cap screws in tapped aluminum alloy and magnesium castings because of the softness of the material.

2.1.8 Socket Head, Machine Screws. (Refer to Table 2-18.) Socket head, machine screws are designed to be driven into tapped holes by means of internal wrenches. They are used in applications which require high strength precision products, compactness of the assembled parts, or sinking of heads below surfaces into fitted holes. Socket head, machine screws are manufactured from steel or corrosion-resistant steel.

2.1.9 Pan Head and Truss Head, Machine Screws. (Refer to Table 2-19 through Table 2-23.) Pan head and truss head screws are general purpose screws used where the head height is unimportant. They are available with cross-recessed heads only and are manufactured from steel, carbon steel, corrosion-resistant steel, and aluminum alloy.

2.1.10 <u>Self-Tapping Screws</u>. Self-tapping screws tap their own mating thread when driven into untapped drilled or punched holes slightly smaller than the outside diameter of the screw itself. These screws are made with a milled thread-cutting slot placed off the center of the screw at the entering end. This slot produces a thread-cutting edge similar to a tap. Chips are cleared through the slot so that driving is done with little effort and threads are cut perfectly.

2.1.11 Self-Tapping, Machine Screws (Table 2-24). These screws are usually used for attaching removable parts to castings. They are available in a flathead style and roundhead style. The threads of the screw cut threads in the casting after the hole has been underdrilled. (Refer to Table 2-25.)

2.1.12 Self-Tapping, Sheet Metal Screws. (Refer to Table 2-24, Table 2-26, and Table 2-27.) These screws are used for such purposes as temporarily attaching sheet metal for riveting and for permanent assembly of nonstructural assemblies where the ability to install the screws in a blind application is required. (See Figure 2-1.) The screw is installed by drilling a hole and inserting the screw, which cuts its own thread as it is screwed into the hole. (Refer to Table 2-28.) These screws are hardened for use on steel or aluminum alloy sheets but may be used on plastic also.

Figure 2-1. Using Sheet Metal Screws

Table 2-3. AN509 100-Degree, Flathead, Structural Screws

ash	_					
Thread Diamet Size Class Min 8-32 NC-3A .161			Material	Material Strength		
Size Class Min 8-32 NC-3A .161	Low Alloy Steel	by Steel	Corrosion-Re	Corrosion-Resistant Steel	Aluminu	Aluminum Alloy
8-32 NC-3A .161	Tensile Strength	Shear Strength	Tensile Strength	Shear Strength	Tensile Strength	Shear Strength
	1740	1500	1180	1050	098	770
-10 10-32 NF-3A .186 .189	2490	2125	1690	1385	1230	1046
-416 1/4-28 UNF-3A .246 .249	4520	3680	3080	2500	2240	1825
-516 5/16-24 UNF-3A .308 .311	7240	5750	4920	3910	3590	2850
-616 3/8-24 UNF-3A .371 .374	10,950	8280	7450	5650	5430	4125
-716 7/16-20 UNF-3A .432 .436	14,800	11,250	10,070	7650	7350	2600
-816 1/2-20 UNF-3A .495 .499	19,950	14,700	13,570	10,000	0066	7300
-916 9/16-18 UNF-3A .557 .561	25,300	18,700	17,200	12,650	12,560	9250
Code:						
First dash number indicates screw size.						

Second dash number indicates screw length.

C before first dash number indicates corrosion-resistant steel screw.

DD before first dash number indicates aluminum alloy screw.

R before first and second dash number indicates recessed head screw.

Example of part number:

AN509-10-12 = 10-32 slotted head steel screw, 25/32-inch long.

AN509-10R12 = 10-32 recessed head steel screw, 25/32-inch long.

Material:

Steel, Military Specification MIL-S-8695.

Corrosion-resistant steel, Federal Specification QQ-S-763.

Aluminum alloy, Federal Specification QQ-A-267.

Table 2-4. NAS220 Through NAS227, Brazier Head, Structural Screws

							600-204			
								Material		
	Thr	Thread	Diameter	neter	Alumin	Aluminum Alloy	High Stren	High Strength Bronze	Alloy	Alloy Steel
Part Number	Size	Class	Min	Max	Tensile Strength	Shear Strength	Tensile Strength	Shear Strength	Tensile Strength	Shear Strength
NAS220	8-32	NC-3	.161	.164	480	740	636	954	1150	1600
NAS221	10-32	NF-3	.186	.189	710	066	1014	1280	1690	2125
NAS222	1/4-28	NF-3	.246	.249	1310	1715	1753	2212	3130	3680
NAS223	5/16-24	NF-3	.308	.311	2080	2685	2815	3463	4980	5750
NAS224	3/8-24	NF-3	.371	.374	3240	3870	4370	4980	7740	8280
NAS225	7/16-20	NF-3	.432	.436	4350	5250	5890	6780	10,430	11,250
NAS226	1/2-20	NF-3	.495	.499	5920	6850	8084	8850	14,190	14,700
NAS227	9/16-18	NF-3	.557	.561	7550	8700	10,230	11,190	18,100	18,700
Code:										
Dash numb	er indicates sc	Dash number indicates screw length and grip.	nd grip.							
DD followi	ng basic part	DD following basic part number indicates aluminur	tes aluminum	m alloy screw.						

BZ following basic part number indicates bronze screw.

No letter following basic part number indicates alloy steel screw.

Example of part number:

NAS220DD7 = aluminum alloy screw, 15/32-inch long.

Material:

Aluminum alloy.

High strength bronze.

Steel.

NAS560 100-Degree Flathead, Nonmagnetic, High Temperature, Structural Screw **Table 2-5.**

					GRIP	LIENGTH —		Material Strength Corrosion-Resistant	Material Strength	Corrosion-Resistant	Resistant
		Thread	Dian	neter		Corrosion-Resista Steel, Federal Spe fication QQ-S-763	Corrosion-Resistant Steel, Federal Speci- fication QQ-S-763	Steel, Aeronautical Material Specifica- tion AMS5735	onautical pecifica- 735	Steel, Aeronautical Material Specifica- tion AMS5668	onautical Secifica-
First Dash Number	Size	Class	Min	Max	Head Height	Tensile Strength	Shear Strength	Tensile Strength	Shear Strength	Tensile Strength	Shear Strength
-2	8-32	NC-3	.161	.164	890.	1050	006	1800	1550	2250	1900
-3	10-32	NF-3	.186	.189	080	1500	1200	2600	2100	3200	2700
4-	1/4-28	UNF-3	.246	.249	.106	2700	2100	4700	3700	5750	4550
-5	5/16-24	UNF-3	308	.311	.133	4350	3350	7500	2800	9200	7100
9-	3/8-24	UNF-3	.371	.374	.159	6550	4850	11,400	8400	14,000	10,300
-7	7/16-20	UNF-3	.432	.436	.186	8850	0099	15,400	11,400	18,900	14,300
8-	1/2-20	UNF-3	.495	.499	.213	11,900	8600	20,700	14,900	25,500	18,300
6-	9/16-18	UNF-3	.557	.561	.240	15,100	11,000	26,300	19,000	32,400	23,500
Code.											

Code

First dash number indicates screw size in 16 (sixteen) inch increments.

Second dash number indicates screw grip and length in 16 (sixteen) inch increments.

C after basic part number indicates low strength screws, manufactured from corrosion-resistant steel, Federal Specification QQ-S-763.

H after basic part number indicates high temperature screws manufactured from corrosion-resistant steel, Aeronautical Material Specification, AMS5735.

X after basic part number indicates high strength screws manufactured from corrosion-resistant steel, Aeronautical Material Specification, AMS5668.

K after material code indicates cross recess.

P after first dash number indicates flash cadmium plating.

Example of part number:

NAS560 100-Degree Flathead, Nonmagnetic, High Temperature, Structural Screw - Continued **Table 2-5.**

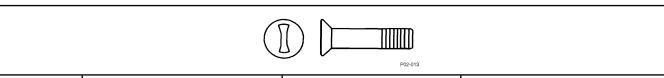
NAS560CK3P12 = cross recess screw, low strength, flash cadmium-plated, 3/16-inch diameter, 3/4 inch grip.

NAS560 = basic screw; C = low strength; K = cross recess; 3 == first dash number, 3/16 inch diameter; P = flash cadmium plated; 12 = second dash number, 12/16 (3/4) inch grip length.

NAS560HK4-0:

NAS560 = basic screw; H = high temperature; K = cross recess; 4 = first dash number, 4/16 (1/4) inch diameter; -0 = second dash number, no grip length.

				Length F	Length For Sizes Indicated +0.030 - 0.015	icated +0.0%	30 - 0.015				
Second	Grip									Second Dash	Grip
No.	±0.015	8-32	10-32	1/4-28	5/16-24	3/8-24	7/16-20	1/2-20	9/16-18	No.	±0.015
00-		0.348	0.400							00-	
0-		0.410	0.463	0.526	0.614					0-	
-1		0.472	0.526	0.589	0.677	0.708	0.790			-1	
-2	0.125	0.535	0.588	0.651	0.739	0.770	0.852	988.0	1.039	7-	0.125
£-	0.188	0.598	0.651	0.714	0.802	0.833	0.915	0.949	1.102	£-	0.188
-4	0.250	0.660	0.713	0.776	0.864	0.895	0.977	1.011	1.164	-4	0.250
-5	0.312	0.722	0.775	0.838	0.926	0.957	1.039	1.073	1.226	5-	0.312
9-	0.375	0.785	0.838	0.901	0.989	1.020	1.102	1.136	1.289	9-	0.375
-7	0.438	0.846	0.901	0.964	1.052	1.083	1.165	1.199	1.352	-7	0.438
8-	0.500	0.910	0.963	1.026	1.114	1.145	1.227	1.261	1.414	8-	0.500
6-	0.562	0.972	1.025	1.088	1.176	1.207	1.289	1.323	1.476	6-	0.562
-10	0.625	1.035	1.088	1.151	1.239	1.270	1.352	1.386	1.539	-10	0.625
-11	0.688	1.098	1.151	1.214	1.302	1.333	1.415	1.449	1.602	-11	0.688
-12	0.750	1.160	1.213	1.276	1.364	1.395	1.477	1.511	1.664	-12	0.750
-13	0.812	1.222	1.275	1.338	1.426	1.457	1.539	1.573	1.726	-13	0.812


Material:

Corrosion-resistant steel, Federal Specification QQ-S-763.

Corrosion-resistant steel, Aeronautical Material Specification AMS5735.

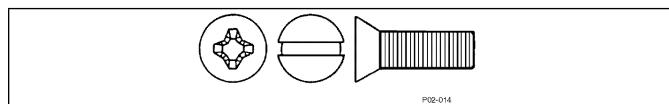
Corrosion-resistant steel, Aeronautical Material Specification AMS5668.

Table 2-6. NAS583 Through NAS590, 100-Degree, Flathead, Structural Screws

	Th	read	Dian	neter	Material	Strength
Part Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS583	10-32	NF-3A	.188	.189	3180	2690
NAS584	1/4-28	UNF-3A	.248	.249	5790	4650
NAS585	5/16-24	UNF-3A	.311	.312	9260	7300
NAS586	3/8-24	UNF-3A	.373	.374	14,000	10,500
NAS587	7/16-20	UNF-3A	.436	.437	19,000	14,300
NAS588	1/2-20	UNF-3A	.498	.499	25,600	18,650
NAS589	9/16-18	UNF-3A	.560	.561	32,400	23,600
NAS590	5/8-18	UNF-3A	.623	.624	40,900	29,150

Dash number indicates grip in sixteenths.

Example of part number:


NAS584-5 = 1/4-28 steel screw, 5/16-inch grip.

Material:

Steel, Military Specification MIL-S-6758 for 3/8 inch and smaller.

Steel, Military Specifications MIL-S-5000, MIL-S-5626, MIL-S-6049, or MIL-S-6098.

Table 2-7. AN505 and AN510, 82-Degree, Flathead, Machine Screws

					Head	Height			
	Th	read		Full	Head		ercut ead	Material Stre	ngth
Part Number	Size	Class	Diameter	Min	Max	Min	Max	Tensile Strength	Shear Strength
AN510-0	0-80	NF-2A	.060	.026	.035	.018	.025	82	49
AN510-1	1-72	NF-2A	.073	.033	.043	.023	.030	132	79
AN505-2	2-56	NC-2A	.086	.040	.051	.028	.036	170	102
AN510-2	2-64	NF-2A	.086	.040	.051	.028	.036	187	112
AN505-3	3-48	NC-2A	.099	.048	.059	.034	.041	225	135
AN510-3	3-56	NF-2A	.099	.048	.059	.034	.041	247	148
AN505-4	4-40	NC-2A	.112	.055	.067	.039	.047	275	165
AN510-4	4-48	NF-2A	112	055	067	039	047	313	188

Table 2-7. AN505 and AN510, 82-Degree, Flathead, Machine Screws - Continued

					Head	Height			
	Th	read		Full	Head		ercut ead	Material Stre	ngth
Part Number	Size	Class	Diameter	Min	Max	Min	Max	Tensile Strength	Shear Strength
AN505-5	5-40	NC-2A	.125	.062	.075	.043	.053	370	222
AN510-5	5-44	NF-2A	.125	.062	.075	.043	.053	396	238
AN505-6	6-32	NC-2A	.138	.069	.083	.048	.058	410	246
AN510-6	6-40	NF-2A	.138	.069	.083	.048	.058	478	287
AN505-8	8-32	NC-2A	.164	.084	.100	.059	.070	660	396
AN510-8	8-36	NF-2A	.164	.084	.100	.059	.070	705	423
AN505-10	10-24	NC-2A	.190	.098	.116	.069	.081	800	480
AN510-10	10-32	NF-2A	.190	.098	.116	.069	.081	960	575
AN505-416	1/4-20	UNC-2A	.250	.131	.153	.092	.107	1480	890
AN510-416	1/4-28	UNF-2A	.250	.131	.153	.092	.107	1790	1075
AN505-516	5/16- 18	UNC-2A	.313	.191	.165	.116	.134	2500	1500
AN505-616	3/8-16	UNC-2A	.375	.200	.230	.140	.161	3730	2240

R between first and second dash numbers indicates recessed head screw.

B before first dash number indicates brass screw with black oxide finish.

PB before first dash number indicates cadmium-plated brass screw.

UB before first dash number indicates plain brass screw.

C before first dash number indicates corrosion-resisting steel screw.

DD before first dash number indicates aluminum alloy screw.

Example of part number:

AN505PB4-8 = 4-40 cadmium plated brass screw, 1/2-inch long, slotted head.

Material:

Carbon steel, Federal Specification QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-S-763.

Aluminum alloy, Federal Specification QQ-A-267.

Table 2-8. AN507 100-Degree, Flathead, Machine Screws

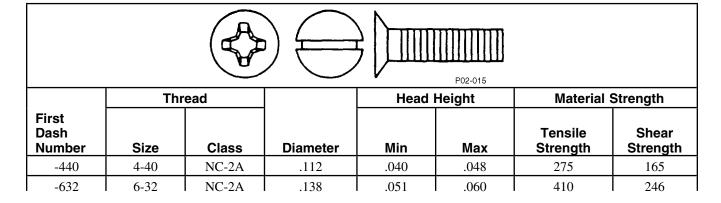


Table 2-8. AN507 100-Degree, Flathead, Machine Screws - Continued

	Thr	ead		Head	Height	Material S	Strength
First Dash Number	Size	Class	Diameter	Min	Max	Tensile Strength	Shear Strength
-832	8-32	NC-2A	.164	.062	.072	660	396
-1032	10-32	NF-2A	.190	.072	.083	960	575
-428	1/4-28	UNF-2A	.250	.097	.110	1790	1075
-524	5/16-24	UNF-2A	.313	.123	.138	2880	1725
-624	3/8-24	UNF-2A	.375	.148	.165	4450	2660

First dash number indicates screw size.

Second dash number indicates screw length.

R between first and second dash numbers indicates recessed head screw.

B before first dash number indicates brass screw with black oxide finish.

PB before first dash number indicates cadmium-plated brass screw.

UB before first dash number indicates plain brass screw.

C before first dash number indicates corrosion-resistant steel screw.

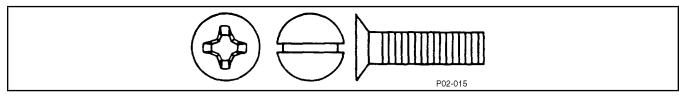
DD before first dash number indicates aluminum alloy screw.

Example of part number:

AN507C428-8 = 1/4-28 corrosion-resistant steel screw, 1/2-inch long, slotted head.

Material:

Carbon steel, Federal Specification QQ-S-633.


Corrosion-resistant steel, Federal Specification QQ-S-763.

Aluminum alloy, Federal Specification QQ-A-267.

Table 2-9. NAS200 100-Degree, Flathead and NAS202 Roundhead, Machine Screws

Pro-sord	Head Height	eter Flathead Roundhead Material Strength	Max Min Max Min Max Strength Strength	.065 .075 .086 201	.138 .073 .083 .091 .103 302 483	.164 .088 .098 .107 .119 489 691	.190 .103 .113 .124 .136 720 937	.250 .122 .132 .161 .174 .1343 .1634	· w.
	d Height	R	Min	.075	.091	.107	.124	.161	
P02-014	Неас	head	Max	.075	.083	860.	.113	.132	
		Flat	Min	.065	.073	880.	.103	.122	
		eter	Max	.112	.138	.164	.190	.250	ew.
		Diameter	Min	.107	.132	.158	.184	.243	screw. iium-plated scr inch long. 1010.
		ead	Class	NF-3	NC-3	NC-3	NF-3	NF-3	Code: B prefixed to dash number indicates brass screw. C prefixed to material letter indicates cadmium-plated screw. Example of part number: NAS200-632-18 = 6-32 steel screw, 1-1/8 inch long. Material: Steel, Society of Automotive Engineering 1010. Brass, Federal Specification QQ-B-626.
		Thread	Size	4-40	6-32	8-32	10-32	1/4-28	Code: B prefixed to dash number indicates brack of part number: NAS200-632-18 = 6-32 steel screw, 1-1 Material: Steel, Society of Automotive Engineerii Brass, Federal Specification QQ-B-626.
			Dash Number	-440	-632	-832	-1032	-428	Code: B prefixed to dash numbe C prefixed to material let Example of part number: NAS200-632-18 = 6-32 s Material: Steel, Society of Automo Brass, Federal Specificati

Table 2-10. NAS514 100-Degree, Flathead, Machine Screw

	Thr	ead	Diar	neter		Material Strength	
First Dash Number	Size	Class	Min	Max	Head Height	Tensile Strength	Shear Strength
-440	4-40	NC-2A	.108	.111	.045	750	450
-632	6-32	NC-2A	.134	.137	.057	1120	670
-832	8-32	NC-2A	.160	.163	.068	1740	1040
-1032	10-32	NF-3A	.186	.189	.080	2490	1490
-428	1/4-28	UNF-3A	.246	.249	.106	4520	2710
-524	5/16-24	UNF-3A	.308	.311	.133	7240	4340
-624	3/8-24	UNF-3A	.371	.374	.159	10,950	6570

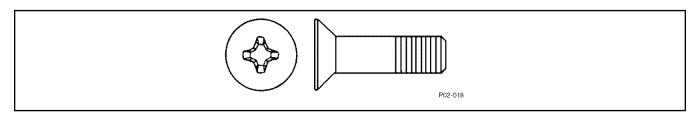
First dash number indicates screw size.

Second dash number indicates screw length.

P preceding first dash number indicates Phillips recessed head.

F preceding first dash number indicates Frearson recessed head.

No letter preceding first dash number indicates slotted head.


Example of part number:

NAS514P428-8 = 1/4-28 screw, Phillips recessed head, 1/2-inch long.

Material:

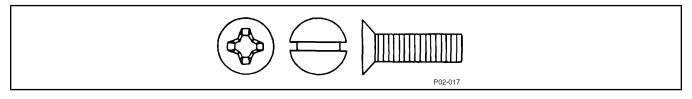
Steel, Military Specification MIL-S-8695 or MIL-S-6050.

Table 2-11. NAS517 100-Degree, Flathead, Machine Screw

	Thread		Dian	Diameter		Material Strength	
First Dash Number	Size	Class	Min	Max	Head Height	Tensile Strength	Shear Strength
-2	8-32	NC-3A	.161	.164	.068	1740	2005
-3	10-32	NF-3A	.186	.189	.080	2490	2690
-4	1/4-28	UNF-3A	.246	.249	.106	4520	4650
-5	5/16-24	UNF-3A	.308	.311	.133	7240	7300
-6	3/8-24	UNF-3A	.371	.374	.159	10,950	10,500
-7	7/16-20	UNF-3A	.432	.436	.186	14,800	14,300
-8	1/2-20	UNF-3A	.495	.499	.213	19,950	18,650

First dash number indicates screw size.

Second dash number indicates screw length.


Example of part number:

NAS517-3-3 = 10-32 screw, 3/16-inch grip.

Material:

Steel, Military Specification MIL-S-8695.

Table 2-12. NAS662 100-Degree, Flathead, Machine Screw

	Ti	Thread		Head	Height
First Dash Number	Size	Class		Min	Max
-0	0-80	NF-2A	.060	.019	.025
-1	1-64	NC-2A	.073	.024	.030
-2	2-56	NC-2A	.086	.029	.036
-3	3-48	NC-2A	.099	.034	.042

First dash number indicates screw diameter.

Second dash number indicates screw length in sixteenths.

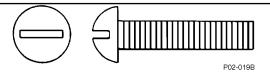
B before first dash number indicates brass screw.

C before first dash number indicates steel screw.

R before second dash number indicates cross recess.

Example of part number:

NAS662C3R4 = 3-48 corrosion-resistant steel screw, 1/4-inch long, with cross recess.


Material:

Carbon steel, Federal Specification QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-S-763.

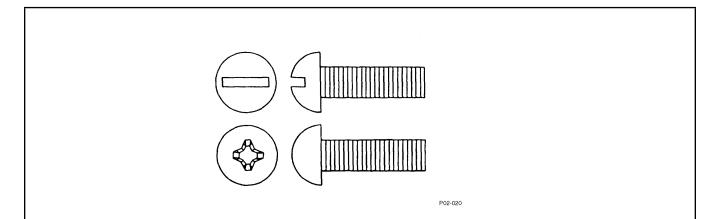
Brass, Federal Specification QQ-B-626.

Table 2-13. AN508 Roundhead, Machine Screw

	Т	Thread		Head Height		
First Dash Number	Size	Class		Min	Max	
-4	4-40	NC-2	.112	.075	.087	
-6	6-32	NC-2	.138	.091	.103	
-8	8-32	NC-2	.164	.107	.119	
-10	10-32	NF-2	.190	.124	.136	

First dash number indicates screw size.

Second dash number indicates screw length.


Example of part number:

AN508-6-3 = 6-32 plated brass screw, 3/16-inch long.

Material:

Brass, Federal Specification QQ-B-626.

Table 2-14. AN515 and AN520, Roundhead, Machine Screws

	Thr	ead			Material Strength		
Part Number	Size	Class	Diameter	Head Height	Tensile Strength	Shear Strength	
AN515-2	2-56	NC-2A	.086	.069	170	102	
AN515-4	4-40	NC-2A	.112	.086	275	165	
AN515-6	6-32	NC-2A	.138	.103	410	246	
AN515-8	8-32	NC-2A	.164	.120	660	396	
AN520-10	10-32	NF-2A	.190	.137	960	575	
AN520-416	1/4-28	UNF-2A	.250	.175	1790	1075	

First dash number indicates screw size.

Second dash number indicates screw length.

B between first and second dash number indicates brass screw with black oxide finish.

PB before first dash number indicates brass screw with cadmium plating.

UB before first dash number indicates plain brass screw.

C before first dash number indicates corrosion-resistant steel screw.

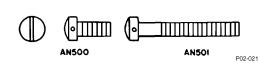
DD before first dash number indicates aluminum alloy screw.

Plain first dash number indicates carbon steel.

R between first and second dash numbers indicate recessed head.

Example of part number:

AN515C4-4 = 4-40 corrosion-resistant steel screw, 1/2-inch long, slotted head.


Material:

Carbon steel, Federal Specification QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-S-763.

Brass, Federal Specification QQ-B-613.

Table 2-15. AN500 and AN501, Fillister Head, Machine Screws

	Thr	ead		Head	Height
Part Number	Size	Class	Diameter	Min	Max
AN500-2	2-56	NC-2	.086	.070	.083
AN500-3	3-48	NC-2	.099	.082	.095
AN500-4	4-40	NC-2	.112	.094	.107
AN500-5	5-40	NC-2	.125	.106	.120
AN500-6	6-32	NC-2	.138	.118	.132
AN500-8	8-32	NC-2	.164	.141	.156
AN501-10	10-32	NF-2	.190	.165	.180
AN501-416	1/4-28	NF-2	.250	.219	.237
AN501-516	5/16-24	NF-2	.312	.276	.295
AN501-616	3/8-24	NF-2	.375	.333	.355

Plain dash number indicates plain steel.

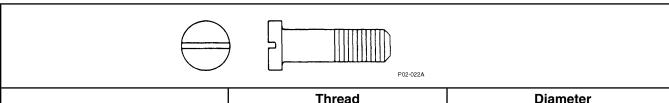
A before first dash number indicates drilled head.

B before first dash number indicates brass screw.

C before first dash number indicates corrosion-resistant steel screw.

Example of part number:

AN500A6-8 = 6-32 drilled carbon steel screw, 1/2-inch long.


Material:

Carbon steel, Federal Specification QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-S-763.

Brass, Federal Specification QQ-B-626.

Table 2-16. AN115401 Through AN115600, Flat Fillister Head, Machine Screws; AN115601 Through AN115800, Flat Fillister Head, Drilled Shank Screws; and AN115801 Through AN116150, Flat Fillister Drilled Head, Machine Screws

	Thread		Diameter	
Part Number	Size	Class	Min	Max
AN115405 through AN115437				
AN115605 through AN115634	10-32	NF-3A	.186	.189
AN115805 through AN115837				
AN115855 through AN115887	1/4-20	UNC-3A	.246	.249
AN115455 through AN115485				
AN115655 through AN115684	1/4-28	UNF-3A	.246	.249
AN115905 through AN115937				
AN115955 through AN115988	5/16-18	UNC-3A	.309	.312
AN115505 through AN115535				
AN115705 through AN115734	5/16-24	UNF-3A	.309	.312
AN116005 through AN116038				
AN116055 through AN116087	3/8-16	UNC-3A	.371	.374
AN115555 through AN115583				
AN115755 through AN115780	3/8-24	UNF-3A	.371	.374
AN116105 through AN116137				

Material:

Steel, Aeronautical Material Specification AMS5061.

Table 2-17. AN116901 Through AN116912 and AN116925 Through AN117040, Oval Fillister Head, Machine Screws; AN116913 Through AN116924 and AN117041 Through AN117080, Oval Fillister Drilled Head, Machine Screws

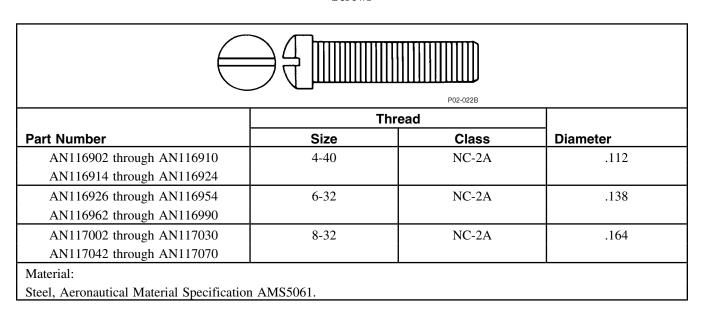


Table 2-18. NAS608 and NAS609, Socket Head, Machine Screws

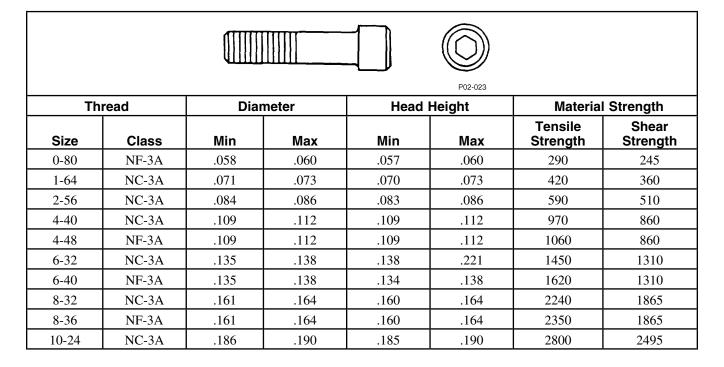


Table 2-18. NAS608 and NAS609, Socket Head, Machine Screws - Continued

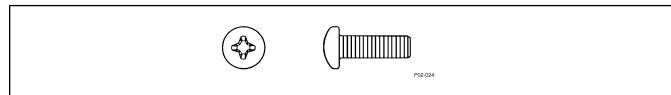
Th	read	Diar	neter	Head I	Height	Materia	Strength
Size	Class	Min	Max	Min	Max	Tensile Strength	Shear Strength
10-32	NC-3A	.186	.190	.185	.190	3200	2495
1/4-20	UNC-3A	.246	.250	.244	.250	5090	4350
1/4-28	UNF-3A	.246	.250	.244	.250	5820	4350
5/16-18	UNC-3A	.308	.312	.306	.313	8380	6815
5/16-24	UNF-3A	.308	.312	.306	.313	9280	6815
3/8-16	UNC-3A	.370	.375	.368	.375	12,400	9830
3/8-24	UNF-3A	.370	.375	.368	.375	14,050	9830
7/16-14	UNC-3A	.432	.437	.430	.438	17,010	13,405
7/16-20	UNF-3A	.432	.437	.430	.438	18,990	13,405
1/2-13	UNC-3A	.494	.500	.492	.500	22,700	17,535
1/2-20	UNF-3A	.494	.500	.492	.500	25,580	17,535
5/8-11	UNC-3A	.619	.625	.616	.625	36,200	27,450
5/8-18	UNF-3A	.619	.625	.616	.625	41,000	27,450

C before first dash number indicates corrosion-resistant steel.

P following second dash number indicates cadmium plating.

H between dash numbers indicate drilled head.

Example of part number:


NAS608-4-8P = socket head cap screw, 1/4-inch diameter, 1/2-inch long, cadmium-plated.

Material:

Steel, Federal Specification QQ-S-624.

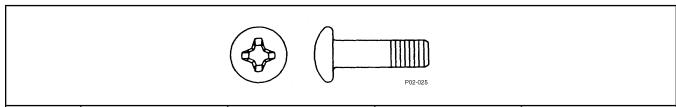
Corrosion-resistant steel, Federal Specification QQ-S-763.

Table 2-19. NAS600 Through NAS606 and NAS610 Through NAS616, Pan Head, Machine Screws

	Th	read		Head H	leight		
Part Number	Size	Class	Diameter	Min	Max	Tensile Strength	
NAS600							
NAS610	4-40	NC-2A	.112	.070	.080	960	
NAS601							
NAS611	6-32	NC-2A	.138	.087	.097	1430	
NAS602							
NAS612	8-32	NC-2A	.164	.105	.115	2230	
NAS603							
NAS613	10-32	NF-3A	.190	.139	.151	3180	
NAS604							
NAS614	1/4-28	UNF-3A	.250	.162	.175	5790	
NAS605							
NAS615	5/16-24	UNF-3A	.312	.203	.218	9260	
NAS606							
NAS616	3/8-24	UNF-3A	.375	.244	.261	14,000	

First dash number indicates screw size.

Second dash number indicates screw length.


Example of part number:

NAS601-8 = 6-32 pan head, fully threaded machine screw, 1/2-inch long, cross recess.

Material:

Steel, Military Specification MIL-S-8695.

Table 2-20. NAS623 Pan Head, Short Thread, Machine Screw

	Thr	ead	Dian	neter	Head Height		Material Strength	
First Dash Number	Size	Class	Min	Max	Min	Max	Tensile Strength	Shear Strength
-2	8-32	NC-2A	.161	.163	.105	.115	1740	2005
-3	10-32	NF-3A	.187	.189	.122	.133	2490	2690
-4	1/4-28	UNF-3A	.247	.249	.162	.175	4520	4600
-5	5/16-24	UNF-3A	.309	.312	.203	.218	7240	7300
-6	3/8-24	UNF-3A	.372	.374	.244	.261	10,950	10,500

First dash number indicates screw diameter.

Second dash number indicates screw grip and length.

W after second dash number indicates Type I plating.

F preceding first dash number indicates Frearson recess.

Example of part number:

NAS623-4-10 = 1/4-inch diameter screw, .625 grip, Type II plating, Phillips recess.

NAS623F4-10W = 1/4-inch diameter screw, .625 grip, Type I plating, Frearson recess.

Material:

Steel, Military Specifications MIL-S-5000, MIL-S-5626, MIL-S-6049, or MIL-S-6098.

Table 2-21. NAS1402 Through NAS1406, Pan Head, Machine Screws

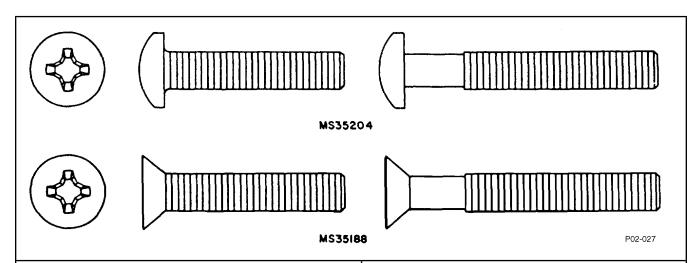
	Thr	ead	Dian	eter Head Height		Material Strength		
Part Number	Size	Class	Min	Max	Min	Max	Tensile Strength	Shear Strength
NAS1402	8-32	NC-2A	.1610	.1635	.105	.115		
NAS1403	10-32	NF-3A	.1870	.1895	.122	.133		
NAS1404	1/4-28	UNF-3A	.2470	.2495	.162	.175	6190	4650
NAS1405	5/16-24	UNF-3A	.3095	.3120	.203	.218	9820	7300
NAS1406	3/8-24	UNF-3A	.3720	.3745	.244	.261	15,200	10,500

First dash number indicates screw size.

Second dash number indicates screw grip and length.

W added to dash number indicates Type I plating.

Example of part number:


NAS1404-8 = 1/4-28 screw, 0.500 grip, pan head, cross-recessed, Type II plating.

NAS1404-8W = 1/4-28 screw, 0.500 grip, pan head, cross-recessed, Type I plating.

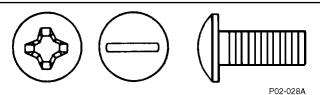
Material:

Steel, Military Specification MIL-S-6098.

Table 2-22. MS35188 Through MS35203, Flathead, and MS35204 Through MS35219, Pan Head, Machine Screws

				Head Height				
Thi	read	Dian	neter	Full	Head	Underc	ut Head	
Size	Class	Min	Max	Min	Max	Min	Max	
2-56	NC	.071	.086	.040	.051	.028	.036	
2-64	NF	.073	.086	.040	.051	.028	.036	
4-40	NC	.092	.112	.055	.067	.028	.036	
4-48	NF	.095	.112	.055	.067	.028	.036	
6-32	NC	.114	.138	.069	.083	.048	.058	
6-40	NF	.118	.138	.069	.083	.048	.058	
8-32	NC	.139	.164	.084	.100	.059	.070	
8-36	NF	.142	.164	.084	.100	.059	.070	
10-24	NC	.158	.190	.098	.116	.069	.081	
10-32	NF	.165	.190	.098	.116	.069	.081	
1/4-20	UNC	.212	.250	.131	.153	.092	.107	
1/4-28	NF	.222	.250	.131	.153	.092	.107	
5/16-18	UNC	.271	.312	.165	.191	.116	.134	
5/16-24	NF	.280	.312	.165	.191	.116	.134	
3/8-16	UNC	.328	.375	.200	.230	.140	.161	
3/8-24	NF	.343	.375	.200	.230	.140	.161	

Dash number indicates size and length of screw.


Example of part number:

MS35188-51.

Material:

Carbon steel, Federal Specification QQ-S-633.

Table 2-23. AN526 Truss Head, Machine Screws

Th	read			Material	Strength
Size	Class	Diameter	Head Height	Tensile Strength	Shear Strength
6-32	NC-2A	.138	.086	410	246
8-32	NC-2A	.164	.102	660	396
10-32	NF-2A	.190	.118	960	575
1/4-28	UNF-2A	.250	.150	1790	1075

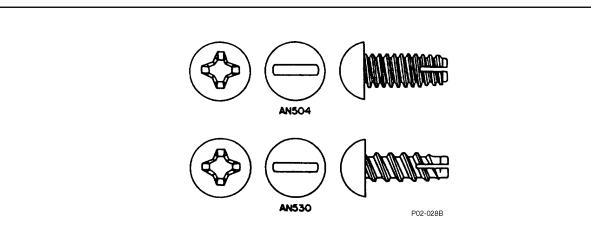
R between first and second dash number indicates recessed-head screw.

C before first dash number indicates corrosion-resistant steel screw.

DD before first dash number indicates aluminum alloy.

Example of part number:

AN526DD1032-8 = 10-32 aluminum alloy screw, 1/2-inch long, slotted head.


Material:

Carbon steel, Federal Specification QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-S-763.

Aluminum alloy, Federal Specification QQ-S-267.

Table 2-24. AN504 Roundhead, Self-Tapping, Machine Screws and AN530 Roundhead, Self-Tapping, Sheet Metal Screws

Part Number	Size	Diameter	Head Height
AN530	2-32	.088	.069
AN530	4-24	.114	.086
AN504	4-40	.112	.086
AN530	6-20	.139	.103
AN504	6-32	.138	.103
AN530	8-18	.166	.120
AN504	8-32	.164	.120
AN530	10-16	.189	.137
AN504	10-32	.190	.137
AN530	1/4-14	.246	.170
AN504	1/4-28	.250	.175

C before first dash number indicates corrosion-resistant steel screw.

R between first and second dash numbers indicates recessed-head screw.

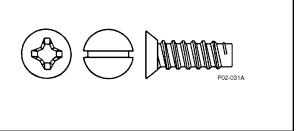
Example of part number:

AN504-4-8 = 4-40, carbon steel, slotted-head screw, 1-1/2 inch long.

Material

Carbon steel, Federal Specification QQ-S-633.

Corrosion-resistant steel, Federal Specification QQ-S-763.


Table 2-25. Hole Sizes for AN504 Roundhead, Self-Tapping, Machine Screws

Hardest Material Tapped, (An, Aeronau- tical, Federal, or Milita- ry Specification; Steel or Alloy Number)	Screw Size Number	.015 through 0.018	.018 through 0.040	.041 through 0.056	.057 through 0.071	.072 through 0.089	.091 through 0.110	.103 through 0.115	.113 through 0.137	.132 through 0.148	Over 0.148
				Drill hole	Drill holes for screws to diameters specified below (inches)	ws to dian	neters spe	cified belo	w (inches).	
STEEL											
		Thickness	less of Hardest Material Tapped (Inches)	aterial Tapr	ed (Inches)						
Carbon mild, quarter- hard (55,000 PSI minimum tensile strength) Military Specification MIL-S-7952	4-40	980.	980.	980.	.093	.093		960.	960:	960:	
	6-32	.104	.104	.104	.113	.113		.113	.120	.120	
	8-32	.128	.128	.128	.140	.140		.140	.144	.144	
Chrome-molybde-num nor- malized (1) (90,000 PSI minimum tensile strength) Military Specification MIL-S-18729	4-40	680:	680.	680	680	960:	860.		860.		
	6-32	.110	.110	.110	.110	.116	.120		.120		
	8-32	.136	.136	.136	.136	.140	.144		.144		
Corrosion-resisting, half-hard (1) (150,000 PSI minimum tensile strength)	4-40	.093	.093	960:							
	6-32	.110	.110	.110	.116						
	8-32	.136	.136	.140	.140	.144					

Table 2-25. Hole Sizes for AN504 Roundhead, Self-Tapping, Machine Screws - Continued

Hardest Material Tapped, (An, Aeronautical, Federal, or Military Specification; Steel or Alloy Number)	Screw Size Number	.015 through 0.018	.018 through 0.040	.041 through 0.056	.057 through 0.071	.072 through 0.089	.091 through 0.110	.103 through 0.115	.113 through 0.137	.132 through 0.148	Over 0.148
				Drill hole	s for scre	Drill holes for screws to diameters specified below (inches)	eters spe	cified belo	w (inche).	
				ALUMINUM	M ALLOY						
Aluminum magnesium chrome, half-hard (34,000 PSI minimum tensile strength) Federal Specifica- tion QQ-A-318	4-40	980	980.	980	980.	680			.093		
	6-32	.104	.104	.104	.104	.106			.106		
	8-32	.128	.128	.128	.128	.136			.140		
Aluminum copper magnesium manganese heat treated (52,000 PSI minimum tensile strength) Federal Specification QQ-A-362	4-40	980.	980.	980.	980.	680.	680.		.093		
	6-32	.104	.104	.104	.104	.106	.106		.106		
	8-32	.128	.128	.128	.128	.136	.140		.140		
Aluminum copper magnesium (1.5 percent manganese) heat treated (62,000 PSI minimum tensile strength) Federal Specification QQ-A-355	4-40	980	980.	980°	680.	680:					
	4-40				960.	960.	960:	960:	860.	860:	860.
	6-32				.116	.116	.116	.116	.120	.120	.120
	8-32				.144	.144	.144	.144	.147	.147	.147
	6-32	.104	.104	.104	.109	.109					
	8-32	.129	.129	.129	.136	.136					
(1) Lubricate with heavy cutting oil.	ting oil.										

Table 2-26. AN531 82-Degree, Flathead, Self-Tapping, Sheet Metal Screw

		Head	Height
Size	Diameter	Min	Max
4-24	.114	.055	.067
6-20	.139	.069	.083
8-18	.166	.084	.100
10-16	.189	.098	.116
1/4-14	.246	.127	.148

C before first dash number indicates corrosion-resistant steel screw.

F between first and second dash numbers indicates fluted or slotted end.

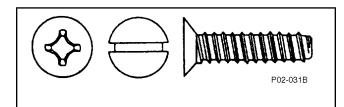
R between first and second dash number indicates recessed-head screw.

Example of part number:

AN531C6RF8 = 6-20 corrosion-resistant steel, recessed head, fluted end thread cutting screw, 1/2-inch long.

Carbon steel, Military Specification MIL-S-6033.

Corrosion-resistant steel, Military Specification MIL-S-6033.


2.1.13 Drive Screws.

Self-tapping screws should never be used to replace standard screws, nuts, bolts, or rivets in the original structure.

(Refer to Table 2-29.) Drive screws are self-tapping screws used to attach nameplates to castings and to seal drain holes in tubular structures. Drive screws differ from other self-tapping screws in that the heads are not formed to fit screwdrivers, and they are not intended to be removed after installation. Drive screws are installed by driving the screw into a drilled hole with a hammer.

Table 2-27. NAS548 100-Degree, Flathead, Self-Tapping, Sheet Metal Screw

	Diameter		Head Hei	ght
Size	Min	Max	Min	Max
4-24	.082	.086	.040	.048
6-20	.099	.104	.051	.060
8-18	.116	.122	.062	.072
10-16	.135	.141	.072	.083
1/4-14	.185	.192	.097	.110

Code:

F after basic part number indicates Frearson recess.

P after basic part number indicates Phillips recess.

S after basic part number indicates slotted recess.

C after last dash number indicates chromium plate. No letter indicates cadmium plate.

Example of part number:

NAS548F8-8C = 8-18 chromium-plated, 100-degree head Type B tapping screw, with Frearson recess, 1/2-inch long.

Material:

Steel, Military Specification MIL-S-18729.

2.1.14 <u>Wood Screws</u>. (Refer to Table 2-30 and Table 2-31.) Wood screws are self-tapping screws used in wood structures. Both a roundhead and an 82-degree countersunk, flathead screw are available manufactured from steel or brass.

Table 2-28. Hole Sizes for AN530 Roundhead and AN531 82-Degree, Flathead, Self-Tapping, Sheet Metal Screws

		Thickness of		t Material T	Hardest Material Tapped (Inches)	hes)					
Hardest Material Tapped. (AN, Aeronautical, Federal, or Military Specification; Steel or Alloy Number)	Screw Size Number	.015 through	.018 through .040	.041 through .056	.057 through .071	.072 through .089	.091 through .110	.103 through .115	.113 through .137	.132 through .148	Over .148
					Drill holes	for screw	Drill holes for screws to diameters specified below (inches).	ers specifi	ed below (i	nches).	
					STEEL						
Carbon mild, quarter-hard (55,000 PSI minimum tensile strength) Military Specification MIL-S-7952	4-24	980.	.091	960:	660:	.101					
	1/4-14	.185	.185	191.	.199	.204		.209	.228	.228	.234
	10-16	.144	.144	.144	.152	.157		.161	.169	.169	.173
	6-20	.104	.106	.111	.116	.120		.128			
	8-18	.116	.116	.128	.136	.140		.149	.149	.152	
Chrome-molybde- num, normalized (1) (90,000 PSI minimum tensile strength) Military Specification MIL- S-18729	4-24	.089	.091	960.	660.	.101		_			
	6-20	.110	.110	.116	.120	.120	.128				
	8-18	.128	.128	.136	.136	.140	.144		.149		
	10-16	.154	.154	.154	.157	.161	.169		.169	.169	.173
	1/4-14	.191	.191	.191	.199	.204	.209		.228	.228	.234
Corrosion-resisting, half-hard (1) (150,000 PSI minimum tensile strength)	4-24	.091	.093	660:							

Table 2-28. Hole Sizes for AN530 Roundhead and AN531 82-Degree, Flathead, Self-Tapping, Sheet Metal Screws - Continued

		Thicknes	Thickness of Hardest Material Tapped (Inches)	t Material 1	Fapped (Inc	;hes)					
Hardest Material Tapped. (AN, Aeronautical, Federal, or Mili- tary Specifica-	Screw	.015	.018	.041	750.	.072	.091	.103	.113	.132	
tion; Steel or Alloy Number)	Size Number	through .018	through .040	through .056	through .071	through .089	through .110	through .115	through .137	through .148	Over .148
					Drill holes	s for screw	s to diame	for screws to diameters specified below (inches)	ed below (i	inches).	
	6-20	.110	.110	.116	.116						
	8-18	.128	.128	.136	.140	.144					
	10-16			.157	.161	.166	.169				
	1/4-14			191	.199	.204	.209	.213	.228		
				AL	ALUMINUM ALLOY	LLOY					
Aluminum magnesium chrome, halfhard (34,000 PSI minimum tensile strength) Federal Specification QQ-A-318	4-24	980.	980.	.091	960.	.099					
	6-20	.104	.104	.106	.111	.116					
	8-18	.116	.116	.116	.128	.136			.149		
	10-16	.144	.144	.144	.144	.152			.161	.169	
	1/4-14	.180	.185	.185	.191	.199			.209	.218	
Aluminum copper magnesium man- ganese heat treated (52,000 PSI mini- mum tensile strength) Federal Specification QQ- A-362	4-24	980:	980.	.091	960:	960:	660:				
	6-20	.104	.104	.106	.106	.111	.113		.116		
	8-18	.116	.116	.116	.128	.128	.136		.140		
	10-16	.144	.144	.144	.144	.152	.152		.157	.161	
_	1/4-14	.185	185	.185	191	199	.204		.209	228	

Table 2-28. Hole Sizes for AN530 Roundhead and AN531 82-Degree, Flathead, Self-Tapping, Sheet Metal Screws - Continued

		Thickness of		t Material T	Hardest Material Tapped (Inches)	hes)					
Hardest Material Tapped. (AN, Aeronautical, Federal, or Mili- tary Specifica- tion; Steel or Alloy Number)	Screw Size Number	.015 through .018	.018 through .040	.041 through .056	.057 through .071	.072 through .089	.091 through .110	.103 through .115	.113 through .137	.132 through .148	Over .148
					Drill holes	for screw	Drill holes for screws to diameters specified below (inches)	ers specifi	ed below (i	nches).	
Aluminum copper magnesium (1.5 percent manga-nese) heat treated (62,000 PSI minimum tensile strength) Federal Specification QQ-A-355	4-24	980.	980.	980:	160.	960:					

Table 2-28. Hole Sizes for AN530 Roundhead and AN531 82-Degree, Flathead, Self-Tapping, Sheet Metal Screws - Continued

		Thickness of		Hardest Material Tapped (Inches)	apped (Inc	hes)					
Hardest Material Tapped. (AN, Aeronautical, Federal, or Mili- tary Specifica- tion; Steel or Alloy Number)	Screw Size Number	.015 through .018	.018 through .040	.041 through .056	.057 through .071	.072 through .089	.091 through .110	.103 through .115	.113 through .137	.132 through .148	Over .148
					Drill hole	s for screw	s to diame	Drill holes for screws to diameters specified below (inches).	ed below (i	inches).	
	6-20	.104	.104	.106	.106	.111					
	81-8	.116	.116	.116	.128	.128					
	10-16	.144	.144	.144	.149	.152					
	1/4-14	.185	.185	.185	.191	.199					
Castings, aluminum alloy or aluminum	4-24				660°	.101	.101				
	9-20				.116	.120	.120	.128			
	81-8				.144	.144	.144	.149	.149	.149	.152
	10-16				.157	.157	.157	.161	.169	.169	.173
	1/4-14				.191	.199	.204	607.	.221	.228	.234
(1) I ubricate with beavy cutting oil	yayy Cutting	<u>ء</u> :									

2.1.15 Setscrews.

- 2.1.16 <u>Hexagon and Fluted Socket, Headless Setscrews</u>. (Refer to <u>Table 2-32</u>.) Setscrews are used to position and hold in place components such as gears on a shaft. These set-screws are available with many different point styles.
- 2.1.17 <u>Self-Locking Setscrews</u>. (Refer to <u>Table 2-33.</u>) These self-locking setscrews are similar to the hexagon socket setscrews except they have a strip type or a button type locking element built into the shank. This locking element when compressed by the threads of the hole locks the setscrew in place.
 - a. An effective aid in removing or tightening screws, use screw Grab Compound (NSN) 8030-01-361-0041).
- 2.1.18 Extracting Broken Screws. The screw extractor has become indispensable for quick and easy removal of broken screws. Screw extractors are easy to use.
 - a. Center Punch Screw.
 - b. Drill pilot hole in broken screw (see Figure 2-2).
 Drill fixture may be used to insure that hole follows the center of screw.
 - c. Select proper screw extractor for screw size (see Table 2-34).
 - d. Drive screw extractor into drilled hole in screw.
 - e. Remove stud, using tap wrench.
- 2.1.19 Always use the largest screw extractor possible. For ordinary condition it is recommended using the size drill shown opposite the screw extractor's size. Unusual conditions may, however, require the use of a smaller or larger drill, depending on the length of the broken part or its depth in the hole.

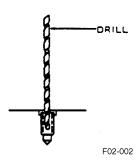


Figure 2-2. Drilling Pilot Hole in Broken Screw

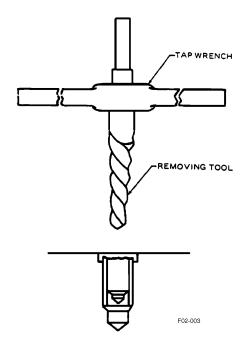
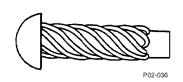



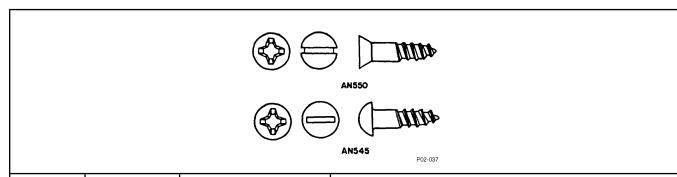
Figure 2-3. Removing Broken Screw

Table 2-29. AN535 Roundhead, Drive Screw

	Diame	eter	Head	Height	Drill	Size
Size	Min	Max	Min	Max	Number	Diameter
00	.057	.060	.026	.034	55	.052
0	.072	.075	.041	.049	51	.067
2	.097	.100	.059	.069	44	.086
4	.112	.116	.075	.086	37	.104
6	.136	.140	.091	.103	31	.120
8	.162	.167	.107	.120	27	.144
10	.177	.182	.123	.137	20	.161
12	.206	.212	.139	.153	11	.191
14	.236	.242	.155	.170	2	.221

First dash number indicates screw size.

Second dash number indicates length in 1/16-inch increments.


Example of part number:

AN535-2-2 = size 2 screw, 1/8-inch long.

Material:

Steel, Military Specification MIL-S-18729.

Table 2-30. AN545 Roundhead, and AN550 Flathead, Wood Screws

				Head Height					
		Diar	Diameter		Roundhead		head		
Size	Threads Per Inch	Min	Max	Min	Max	Min	Max		
2	26	.079	.090	.059	.069	.040	.051		
3	24	.092	.103	.067	.078	.048	.059		
4	22	.105	.116	.075	.086	.055	.067		
5	20	.118	.129	.083	.095	.062	.075		
6	18	.131	.142	.091	.103	.069	.083		
8	15	.157	.168	.107	.120	.084	.100		
10	13	.183	.197	.123	.137	.098	.116		
12	11	.209	.220	.139	.153	.112	.132		
14	10	.235	.248	.155	.170	.127	.148		
16	9	.261	.272	.171	.187	.141	.164		

First dash number indicates screw size.

Second dash number indicates length of screw in 1/16-inch increments.

B before first and second dash number indicates brass screw.

R between first and second dash number indicates recessed-head screw.

Example of part number:

AN545B10R = 10-13 recessed-head, brass screw, 1-1/4 inches long.

Material:

Carbon steel, Federal Specification QQ-S-633.

Brass, Federal Specification QQ-B-613.

Table 2-31. MS35492 Flathead, and MS35493 Roundhead, Wood Screws

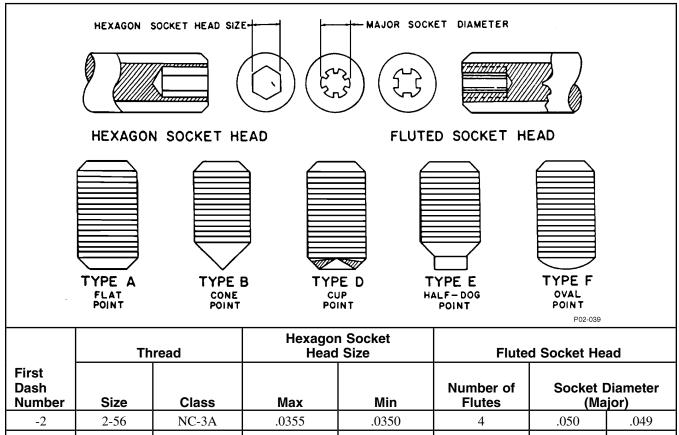
P02-038

			Head Height				
		Diam	eter	Fla	thead	Roundhead	
Size	Threads Per Inch	Min	Max	Min	Max	Min	Max
2	26	.079	.090			.059	.069
3	14	.092	.103	.048	.059	.067	.078
4	13	.105	.116	.055	.067	.075	.086
5	11	.118	.129	.062	.075	.083	.095
6	18	.131	.142	.069	.083	.091	.103
7	16	.144	.155	.076	.091	.099	.111
8	15	.157	.168	.084	.100	.107	.120
9	14	.170	.181	.091	.108	.173	.186
10	13	.183	.194	.098	.116	.123	.137
12	11	.209	.220	.112	.132	.139	.153
14	10	.235	.246	.127	.148	.155	.170
16	9	.171	.187	.141	.164	.261	.272

Code:

The MS part number consists of the Military Standard number plus the dash number.

Example of part number:


MS35492-1.

Material:

Carbon steel, Federal Specification QQ-S-633.

Brass, Federal Specification QQ-B-626.

Table 2-32. AN565 Hexagon and Fluted Socket, Headless Setscrew

First Dash Number	Size	Class	Max	Min	Number of Flutes		Diameter ajor)
-2	2-56	NC-3A	.0355	.0350	4	.050	.049
-4	4-40	NC-3A	.0510	.0500	6	.062	.061
-6	6-32	NC-3A	.0635	.0625	4	.079	.078
-8	8-32	NC-3A	.0791	.0781			
-10	10-32	NF-3A	.0947	.0937			
-416	1/4-20	UNF-3A	.1270	.1250			
-516	5/16-24	UNF-3A	.1582	.1562			
-616	3/8-24	UNF-3A	.1895	.1875			
-816	1/2-20	UNF-3A	.2520	.2500			

The fluted socket head setscrew is available in number 2, 4, and 6 sizes only.

Code:

First dash number indicates screw size.

Point style type before first dash number indicates type of point.

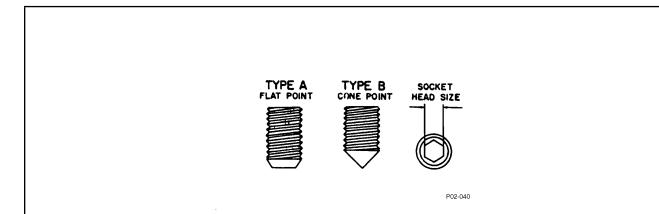
H between dash numbers indicates hexagon socket head.

Table 2-32. AN565 Hexagon and Fluted Socket, Headless Setscrew - Continued

L between dash numbers indicates fluted socket head.

C after point style type indicates corrosion resisting steel setscrew.

Example of part number:


AN565B4H10 = Number 4-40 size (.112-inch diameter), 5/8-inch long, steel, hexagon socket head setscrew with type B point.

Material:

Steel, high grade alloy (4037, 4137, 8630, or 8740).

Corrosion-resistant steel, Military Specification MIL-S-7720.

Table 2-33. NAS1081 Self-Locking Setscrew

	Th	read	Socket Hea	ad Size
First Dash Number	Size	Class	Max	Min
-02	2-56	NC-3A	.0355	.0350
-04	4-40	NC-3A	.0510	.0500
-06	6-32	NC-3A	.0635	.0625
-08	8-32	NC-3A	.0791	.0781
-3	10-32	NF-3A	.0947	.0937
-4	1/4-28	UNF-3A	.1270	.1250
-5	5/16-24	UNF-3A	.1582	.1562
-6	3/8-24	UNF-3A	.1895	.1875
-8	1/2-20	UNF-3A	.2520	.2500

Code:

First dash number indicates screw size.

Second dash number indicates screw length.

Dash before first dash number indicates cadmium-plated steel setscrew.

Table 2-33. NAS1081 Self-Locking Setscrew - Continued

	Thre	Thread		ad Size
First Dash Number	Size	Class	Max	Min

C before first dash number indicates corrosion-resistant steel setscrew.

A between dash numbers indicates flat point; B, cone point.

L after last dash number indicates strip-type locking element; N, button type.

Example of part number:

NAS1081-4A12 = 1/4-28 UNF-3A x 3/4-inches long, cadmium-plated steel, flat point, self-locking setscrew.

 $NAS1081C4B12L = 1/4-28 \ UNF-3A \ x \ 3/4-inches long, corrosion-resistant steel, cone point, self-locking setscrew with strip-type locking element.$

Material:

Chrome-molybdenum steel, Military Specification MIL-S-6758.

Corrosion-resistant steel, Military Specification MIL-S-7720.

Table 2-34. Drill and Extractor Sizes

Extractor No.	Diam. at Small End	Diam. at Large End	Overall Length Inches	For Screws and Bolts Sizes In- ches	For Pipe Sizes In- ches	Size Drill to Use
1	.054	5/32	2	3/16 to 1/4		5/64
2	.080	3/16	2 3/8	1/4 to 5/16		7/64
3	1/8	1/4	2 11/16	5/16 to 7/16		5/32
4	3/16	21/64	2 7/8	7/16 to 9/16		1/4
5	1/4	7/16	3 3/8	9/16 to 3/4	1/8, 1/4	17/64
6	3/8	19/32	3 3/4	3/4 to 1	3/8	13/32
7	1/2	3/4	4 1/8	1 to 1 3/8	1/2	17/32
8	3/4	1	4 3/8	1 3/8 to 1 3/4	3/4	13/16
9	1	1 9/32	4 5/8	1 3/4 to 2 1/8	1	1 1/16
10	1 1/4	1 9/16	5	2 1/8 to 2 1/2	1 1/4	1 5/16
11	1 1/2	1 7/8	5 5/8	2 1/2 to 3	1 1/2	1 9/16
12	1 7/8	2 5/16	6 1/4	3 to 3 1/2	2	1 15/16

NON-COUNTERSUNK SCREWS BODY GRIP LENGTH SHANK SCREW LENGTH

COUNTERSUNK SCREWS

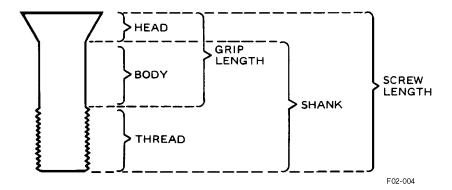


Figure 2-4. Parts of a Screw

CHAPTER 3 BOLTS

3.1 BOLTS.

Most bolts used in aircraft structures are either general purpose, internal wrenching, or close-tolerance AN (Air Force-Navy), NAS (National Aircraft Standard), or MS (Military Standard) bolts. In certain cases, aircraft manufacturers are compelled to make bolts of different dimensions or greater strength than the standard types. Such bolts are made for a particular application and it is of extreme importance to use like bolts in replacement. If such bolts are not available and must be fabricated locally, the identical material and heat treatment specified in the applicable drawings, or an authorized substitute material with its proper heat treatment, should be used. Such special bolts are usually identified by the letter S stamped on the head.

3.1.1 Grip Length. The distance from the under-head bearing surface to the start of the thread. Accordingly, the thickness of material held together by the bolt is called the grip. The ideal installation would have a bolt whose grip length would be a few thousands of an inch shorter than the actual grip to avoid bottoming the nut. All bolt installations which involve self-locking or plain nuts will have at least two complete threads protruding through the nut. These two threads include the chamfered end of the bolt. However, bolts of slightly greater grip length than that required may be used if washers are placed under the nut or bolt head, or, if plate nuts are used, shims are added under the plate. To prevent corrosion caused by dissimilar metal contacting surfaces, aluminum alloy washers (AN960) should be used with steel bolts on aluminum alloy parts and steel washers should be used on steel parts. In cases where high torque must be applied to the bolts, steel washers should be used regardless of whether the part is steel or aluminum alloy.

3.1.2 <u>Shank</u>. The shank is the portion of a bolt which lies between the underhead bearing surface and the opposite end.

3.1.3 Fitting Bolts.

3.1.3.1 <u>Bolt Fit</u>. All bolt holes should be drilled to get a good, mechanical fit. The first lettered drill size larger than the nominal bolt diameter is generally used except where AN hexagon bolts are used in light drive fit applications or when NAS close-tolerance or AN clevis bolts are used. Table 1-9 gives the drill sizes for general applications up to one-half inch. All drills above 1/2-inch diameter are requested by the inch-diameter size of the bolt used. Bolt holes must not be oversized or elongated. If they are, the bolt in such a hole will carry none of its shear load until the parts have yielded or deformed enough to allow the bearing

surface of the oversized hole to come in contact with the bolt. (See Figure 3-1.) Bolts, unlike rivets, can not be swaged to fill up the hole. Loose bolts may actually cause failure of the other bolts, because the other bolts are forced to carry a load greater than intended. Oversized or elongated holes can be drilled or reamed to take the next larger bolt provided this does not weaken the part. A qualified engineering officer should be consulted before drilling or reaming is resorted to. All bolt holes must be perpendicular to the surface involved to provide full bearing surface for the bolt head and nut.

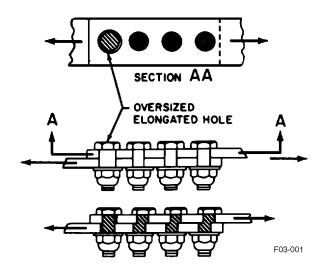


Figure 3-1. Bolted Joint with Oversize Hole

3.1.3.2 <u>Light-Drive Fit</u>. A light-drive fit is defined as an interference fit of 0.0006 inch for 5/8-inch diameter bolts, or a proportionate amount of interference for other size bolts. When drilling for a light-drive fit, particular care must be taken to avoid elliptical, eccentric, or otherwise untrue holes. Although such untrue holes may permit the bolt to be driven according to interference requirements, they will not provide the necessary hole contact along the entire bolt grip length. A light-drive fit can be obtained in this manner:

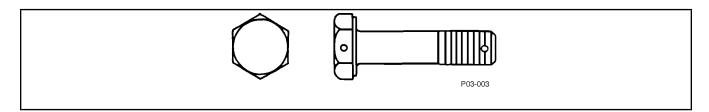
- Measure several bolts of the correct nominal size with micrometer. Segregate them into large, medium, and small groups according to the micrometer readings.
- b. Drill the initial holes in the material approximately 1/32-inch undersize, then redrill to 1/64-inch undersize.

NOTE

For holes 3/4 inch or larger, the initial holes may be drilled 1/8-inch undersize instead of 1/32 inch.

- c. Select a reamer that is known to cut a hole that will give proper interference when using bolts in the small group. Ream one of two holes and try the fit of the small bolts in the reamed holes.
- d. If the hole is too small, it can be made larger by using a reamer of the same nominal size, yet one that is known to cut a hole very slightly larger
- e. If either of these first two holes is too large for light-drive fits with the small bolts, use the medium or large group of bolts to obtain light-drive fits.

3.1.4 Standard Bolts.


- 3.1.5 Standard Aircraft Machine Bolts (AN3 Through AN20). The AN3 through AN20 aircraft machine bolts are all purpose structural bolts used for general applications involving tension or shear loads. These bolts are either of cadmium- or zinc-plated, noncorrosion-resistant steel, or anodized aluminum alloy. The bolts conform to Military Specification MIL-B-6812, with rolled threads, NF-3 fit, conforming to Military Specification MIL-S-7742. Steel bolts smaller than 10-32 and aluminum alloy bolts smaller than 1/4-inch diameter are easily overstressed; therefore, they are not used in primary structures. (See Table 3-1.)
- 3.1.6 Drilled Head **Bolts** (AN73 Through AN81). These AN drilled head bolts are similar to the standard aircraft machine bolts, except for a deeper head that is drilled to receive wire for securing. These bolts were originally intended for use as engine bolts. Replacement with the AN3 through AN20 series of bolts (single drilled heads) is permissible, but should be done with discretion. (See Table 3-2.) The AN3 through AN20 and the AN73 through AN81 series of bolts are interchangeable from the standpoint of tension and shear strengths. The physical differences preventing direct interchangeability are the somewhat greater head height and the longer thread length of the AN73 through AN81 series. In replacing an engine bolt with the standard aircraft machine bolt, care must be used to prevent jamming the shank against the nut. Should this occur, add washers under the bolt head. When bolts are used as cap screws and the parts are drawn together tightly. spring lock washers may be used when specified. AN73 through AN81 drilled head bolts have been superseded by MS20073 for fine thread bolt; and MS20074 for coarse thread series bolts. AN73 through AN74 and MS20073 and MS20074 bolts of like thread and grip lengths are universally functionally and dimensionally interchangeable.

- 3.1.7 <u>Stabilized</u>, Nonmagnetic, Corrosion-Resistant <u>Steel Bolts (NAS501)</u>. The NAS501 stabilized, nonmagnetic, corrosion-resistant steel bolt is similar to the standard aircraft machine bolt, but is manufactured from a different steel alloy. (See <u>Table 3-3.</u>)
- 3.1.8 <u>Hex Head, Nonmagnetic, Heat-Resistant, Machine Bolts (NAS1003 Through NAS1020)</u>. The NAS1003 through NAS1020 series of bolts is fabricated to Aeronautical Material Specification AMS7478. (See Table 3-4.)
- 3.1.9 Hex Head Bolts (AN101001 Through AN101900); Drilled Shank Hex Head Bolts (AN101901 Through AN102800); Drilled Hex Head (One Hole) Bolts (AN102801 Through AN103700); and, Drilled Hex Head (Six Holes) Bolts (AN103701 Through AN104600). These bolts are similar to each other except for the holes in the head and shank. These bolts are engine bolts and are manufactured in accordance with Aeronautical Material Specification AMS7452. (See Table 3-5.)
- 3.1.10 Corrosion-Resistant Steel, Hex Head Bolts (AN104601 Through AN105500); Corrosion-Resistant Steel, Drilled Shank, Hex Head Bolts (AN105501 Through AN106400); Corrosion-Resistant Steel, Drilled Hex Head (One Hole) Bolts (AN106401 Through AN107300); and, Corrosion-Resistant Steel, Drilled Hex Head (Six Holes) Bolts (AN107301 Through AN108200). This series of bolts is similar to the bolts described in paragraph 3.1.9, except that this series is manufactured from corrosion-resistant steel in accordance with Aeronautical Material Specification AMS7472. (See Table 3-6.)
- 3.1.11 Close-Tolerance, Hex Head, Machine Bolts (AN173 Through AN186); 100-Degree Countersunk Head, Close-Tolerance, High Strength Bolts (NAS333 Through NAS340); Hex Head, Close-Tolerance, Short Thread, 4AI-4Mn Titanium Alloy Bolts (NAS653 Through NAS658): 100-Degree Countersunk Flathead, Close-Tolerance, 4AL-4MN Titanium Alloy Bolts (NAS663 Through NAS668); and, Drilled Hex Head, Close-Tolerance, 4AL-4MN Titanium Alloy Bolts (NAS673 Through NAS678). These close-tolerance bolts are used in applications where the bolted joint is subject to severe load reversals and vibration. The shanks of these bolts have a close tolerance, permitting a very close fit with the use of reamers. The standard AN hex head bolts are otherwise identical, and may be used for the same applications as the steel-close-tolerance bolts, provided a light-drive fit is obtained as described in paragraph 3.1.3.2. The use of a close-tolerance bolt permits elimination of lost motion in landing gears, control systems, etc. They are available in two head types, the standard hex head and 100degree countersunk head. The countersunk head has one of

the following recesses: the cross, the slotted, or the hexagonal wrench type. The steel and aluminum close-tolerance bolts are identified by a raised or recessed triangle on top of the head, and the titanium close-tolerance bolts are identified by the complete part number and manufacturer's

symbol on the head. (See Table 3-1, Table 3-7, and Table 3-8.)

Table 3-1. AN3 through AN20, Standard Aircraft Machine Bolt, and AN173 through AN186, Close-Tolerance Machine Bolts

						Mat	erial	
	Thr	ead	Dian	neter	St	eel	Alun	ninum
AN Num- ber	Size	Class	Min	Max	Tensile Strength	Shear Strength	Tensile Strength	Shear Strength
AN3	10-32	NF-3A	.1860	.1890	2210	2125	1100	990
AN173			.1889	.1894				
AN4	1/4-28	UNF-3A	.246	.2490	4080	3680	2030	1715
AN174			.2487	.2492				
AN5	5/16-24	UNF-3A	.3090	.3120	6500	5750	3220	2685
AN175			.3112	.3117				
AN6	3/8-24	UNF-3A	.371	.3740	10,100	8280	5020	3870
AN176			.3737	.3742				
AN7	7/16-20	UNF-3A	.4330	.4370	13,600	11,250	6750	5250
AN177			.4362	.4367				
AN8	1/2-20	UNF-3A	.4950	.4990	18,500	14,700	9180	6850
AN178			.4986	.4991				
AN9	9/16-18	UNF-3A	.5580	.5620	23,600	18,700	11,700	8700
AN179			.5611	.5616				
AN10	5/8-18	UNF-3A	.6200	.6240	30,100	23,000	14,900	10,750
AN180			.6234	.6240				
AN12	3/4-16	UNF-3A	.7440	.7490	44,000	33,150	21,800	15,500
AN182			.7481	.7488				
AN14	7/8-14	UNF-3A	.8690	.8740	60,000	45,050	29,800	21,050
AN184			.8729	.8737				
AN16	1-14	NF-3A	.9930	.9990	80,700	58,900	40,000	27,500
AN186			.9975	.9985				
AN18	1-1/8-12	UNF-3A	1.1180	1.1240	101,800	73,750	50,500	34,500
AN20	1-1/4-12	UNF-3A	1.2430	1.2490	130,200	91,050	64,400	42,500

Code:

Dash number is used to designate grip and length.

Table 3-1. AN3 through AN20, Standard Aircraft Machine Bolt, and AN173 through AN186, Close-Tolerance Machine Bolts - Continued

C before dash number indicates corrosion-resistant steel bolt.

DD before dash number indicates aluminum alloy bolt.

A after dash number indicates undrilled bolt.

H before dash number indicates bolt with drilled head and shank.

H before dash number and A after dash number indicates bolt with drilled head only.

Example of part number:

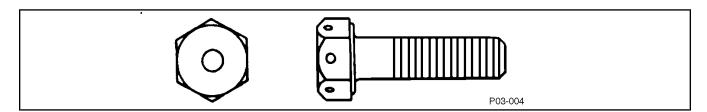
AN6-10 = bolt, noncorrosion-resistant steel, 3/8-24, length 1-5/64, grip 7/16, drilled shank only.

AN6C10A = bolt, corrosion-resistant steel, 3/8-24, length 1-5/64, grip 7/16, undrilled shank and head.

AN6DDH10 = bolt, aluminum alloy, 3/8-24, length 1-5/64, grip 7/16, drilled head and shank.

AN6DDH10A = bolt, aluminum alloy, 3/8-24, length 1-5/64, grip 7/16, drilled head only.

Material:


Steel, Military Specifications MIL-S-6049, MIL-S-6050, MIL-S-6098, and MIL-S-18732 (ASG).

Steel, Military Specifications MIL-S-5626 and MIL-S-6758.

Steel, Military Specification MIL-S-8695.

Aluminum alloy, Federal Specifications QQ-A-267 and QQ-A-268.

Table 3-2. AN73 through AN81, Drilled Head, Standard Aircraft Machine Bolts

					Ma	aterial
	Th	read	Diar	neter	5	Steel
AN Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
AN73	10-24	NC-3A	.186	.189	1800	2125
	10-32	NF-3A			2210	2125
AN74	1/4-20	UNC-3A	.246	.249	3360	3680
	1/4-28	UNF-3A			4080	3380
AN75	5/16-18	UNC-3A	.311	.314	5660	5750
	5/16-24	UNF-3A			6500	5750
AN76	3/8-16	UNC-3A	.371	.374	8800	8800
	3/8-24	UNF-3A			10,100	8470
AN77	7/16-14	UNC-3A	.433	.436	11,680	11,250
	7/16-20	UNF-3A			13,600	11,250
AN78	1/2-13	UNC-3A	.495	.499	15,410	14,720
	1/2-20	UNF-3A			18,350	14,720
AN79	9/16-12	UNC-3A	.558	.562	18,700	18,700
	9/16-18	UNF-3A			23,600	20,300

Table 3-2. AN73 through AN81, Drilled Head, Standard Aircraft Machine Bolts - Continued

					Material	
	Thread		Diameter		Steel	
AN Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
AN80	5/8-11	UNC-3A	.620	.624	23,000	23,000
	5/8-18	UNF-3A			30,100	25,100
AN81	3/4-10	UNC-3A	.745	.749	33,150	33,150
	3/4-16	UNF-3A			44,000	37,800

Dash number is used to designate grip and length.

Plain dash numbers identify fine thread bolts; coarse thread bolts are identified by A inserted before dash number. Except for AN77, AN80, and AN81, fine thread bolts are identified by B inserted before dash number, and coarse thread bolts by H.

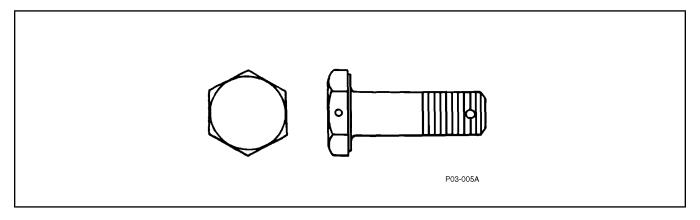
Example of part number:

AN73-7 = bolt, 10-32, fine thread.

AN73A7 = bolt, 10-24, coarse thread.

AN77B7 = bolt, 7/16-20, fine thread.

AN80H7 = bolt, 5/8-11, coarse thread.


Material:

Steel, Military Specifications MIL-S-6049, MIL-S-6050, MIL-S-6098, and MIL-S-18732 (ASG).

Steel, Military Specifications MIL-S-5626 and MIL-S-6758.

Steel, Military Specification MIL-S-8695.

Table 3-3. NAS501 Stabilized, Nonmagnetic, Corrosion-Resistant Steel Bolt

	Thr	Diameter		
First Dash Number	Size	Class	Min	Max
-3	10-32	NF-3A	.186	.189
-4	1/4-28	UNF-3A	.246	.249
-5	5/16-24	UNF-3A	.309	.312
-6	3/8-24	UNF-3A	.371	.374
-7	7/16-20	UNF-3A	.433	.437
-8	1/2-20	UNF-3A	.495	.499

Table 3-3. NAS501 Stabilized, Nonmagnetic, Corrosion-Resistant Steel Bolt - Continued

	Thr	Diameter		
First Dash Number	Size	Class	Min	Max
-9	9/16-18	UNF-3A	.558	.562
-10	5/8-18	UNF-3A	.620	.624
-12	3/4-16	UNF-3A	.744	.749
-14	7/8-14	UNF-3A	.869	.874
-16	1-14	NS-3A	.993	.999
-18	1-1/8-12	UNF-3A	1.118	1.124
-20	1-1/4-12	UNF-3A	1.243	1.249

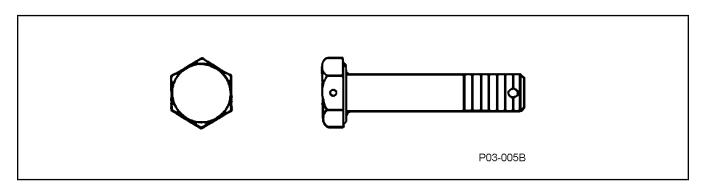
Second dash number is used to designate grip and length.

A after dash number designates undrilled bolt.

H before dash number and A after dash number designates drilled head only.

Example of part number:

NAS501-6-10 = bolt, 1-5/64 long, 7/16 grip, drilled shank.


NAS501-6A-10 = bolt, 1-5/64 long, 7/16 grip, undrilled.

NAS501(H)12A-10 = bolt, 1-5/32 long, 1/16 grip, drilled head only.

Material:

Corrosion-resistant steel, type A, class B, Federal Specification QQ-S-763.

Table 3-4. NAS1003 through NAS1020, Hex Head, Nonmagnetic, Heat-Resistant Machine Bolts

	The	read	Diam	eter
NAS Number	Size	Class	Min	Max
NAS1003	10-32	NF-3A	.1870	.1895
NAS1004	1/4-28	UNF-3A	.2470	.2495
NAS1005	5/16-24	UNF-3A	.3095	.3120
NAS1006	3/8-24	UNF-3A	.3720	.3745
NAS1007	7/16-20	UNF-3A	.4345	.4370
NAS1008	1/2-20	UNF-3A	.4970	.4995
NAS1009	9/16-18	UNF-3A	.5585	.5615
NAS1010	5/8-18	UNF-3A	.6210	.6240
NAS1012	3/4-16	UNF-3A	7460	7490

Table 3-4. NAS1003 through NAS1020, Hex Head, Nonmagnetic, Heat-Resistant Machine Bolts - Continued

	Thr	ead	Diameter		
NAS Number	Size	Class	Min	Max	
NAS1014	7/8-14	UNF-3A	.8410	.8440	
NAS1016	1-12	UNF-3A	.9960	.9990	
NAS1016A	1-14	NS-3A	.9960	.9990	
NAS1018	1-1/8-12	UNF-3A	1.1200	1.1240	
NAS1020	1-1/4-12	UNF-3A	1.2450	1.2490	

Dash number indicates grip in sixteenths and is used to designate length also.

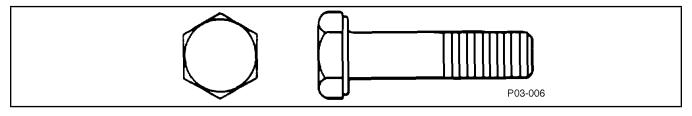
A after dash number designates undrilled bolt.

H after dash number designates drilled head only.

No code letter designates drilled shank only.

Example of part number:

NAS1003-8 = bolt, 3/16-inch diameter, 1/2 grip, drilled shank only.


NAS1003-8A = bolt, 3/16-inch diameter, 1/2 grip, undrilled.

NAS1003-8H = bolt, 3/16-inch diameter, 1/2 grip, drilled head only.

Material:

Corrosion-resistant steel, A-286, Aeronautical Material Specification AMS5735 or Discaloy, Aeronautical Material Specification AMS5733, ultimate tensile strength 130,000 PSI minimum at room temperature, fabricated to Aeronautical Material Specification AMS7478.

Table 3-5. AN101001 through AN101900, Hex Head Bolts; AN101901 through AN102800, Drilled Shank, Hex Head Bolts; AN102801 through AN103700, Drilled Hex Head (One Hole) Bolts; and AN103701 through AN104600, Drilled Hex Head (Six Holes) Bolts

	Th	Thread		neter
AN Number	Size	Class	Min	Max
AN101001 through AN101100				
AN101901 through AN102000				
AN102801 through AN102900	10-32	NF-3A	.186	.189
AN103701 through AN103800				
AN101101 through AN101200				
AN102001 through AN102100				
AN102901 through AN103000	1/4-28	UNF-3A	.246	.249
AN103801 through AN103900				
AN101201 through AN101300				
AN102101 through AN102200				

Table 3-5. AN101001 through AN101900, Hex Head Bolts; AN101901 through AN102800, Drilled Shank, Hex Head Bolts; AN102801 through AN103700, Drilled Hex Head (One Hole) Bolts; and AN103701 through AN104600, Drilled Hex Head (Six Holes) Bolts - Continued

	Th	read	Dian	neter
AN Number	Size	Class	Min	Max
AN103001 through AN103100	5/16-24	UNF-3A	.309	.312
AN103901 through AN104000				
AN101301 through AN101400				
AN102201 through AN102300				
AN103101 through AN103200	3/8-24	UNF-3A	.371	.374
AN104001 through AN104100				
AN101401 through AN101500				
AN102301 through AN102400				
AN103201 through AN103300	7/16-20	UNF-3A	.433	.437
AN104101 through AN104200				
AN101501 through AN101600				
AN102401 through AN102500				
AN103301 through AN103400	1/2-20	UNF-3A	.495	.499
AN104201 through AN104300				
AN101601 through AN101700				
AN102501 through AN102600				
AN103401 through AN103500	9/16-18	UNF-3A	.558	.562
AN104301 through AN104400				
AN101701 through AN101800				
AN102601 through AN102700				
AN103501 through AN103600	5/8-18	UNF-3A	.620	.624
AN104401 through AN104500				
AN101801 through AN101900				
AN102701 through AN102800				
AN103601 through AN103700	3/4-16	UNF-3A	.744	.749
AN104501 through AN104600				

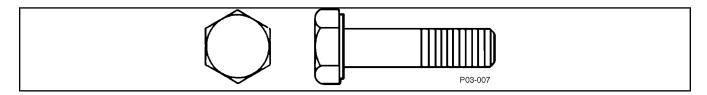
Example of part number:

AN101711 = bolt, 5/8-18, length 1.438, grip .438.

AN102128 = bolt, 5/16-24, length 2.250, grip 1.562, drilled shank.

AN103122 = bolt, 3/8-24, length 1.625, grip .625, drilled head (one hole).

AN104247 = bolt, 1/2-20, length 4.875, grip 3.625, drilled head (six holes).


Material:

Steel, Aeronautical Material Specification AMS6322.

Hardness:

Rockwell C26-C32.

Table 3-6. AN104601 through AN105500, CRES, Hex Head Bolts; AN105501 through AN106400, CRES, Drilled Shank, Hex Head Bolts; AN106401 through AN107300, CRES, Drilled Hex Head (One Hole) Bolts; and AN107301 through AN108200, CRES, Drilled Hex Head (Six Holes) Bolts

	Th	read	Diar	neter
AN Number	Size	Class	Min	Max
AN104601 through AN104700				
AN105501 through AN105600				
AN106401 through AN106500	10-32	NF-3A	.186	.189
AN107301 through AN107400				
AN104701 through AN104800				
AN105601 through AN105700				
AN106501 through AN106600	1/4-28	UNF-3A	.246	.249
AN107401 through AN107500				
AN104801 through AN104900				
AN105701 through AN105800				
AN106601 through AN106700	5/16-24	UNF-3A	.309	.312
AN107501 through AN107600				
AN104901 through AN105000				
AN105801 through AN105900				
AN106701 through AN106800	3/8-24	UNF-3A	.371	.374
AN107601 through AN107700				
AN105001 through AN105100				
AN105901 through AN106000				
AN106801 through AN106900	7/16-20	UNF-3A	.433	.437
AN107701 through AN107800				
AN105101 through AN105200				
AN106001 through AN106100				
AN106901 through AN107000	1/2-20	UNF-3A	.495	.499
AN107801 through AN107900				
AN105201 through AN105300				
AN106101 through AN106200				
AN107001 through AN107100	9/16-18	UNF-3A	.558	.562
AN107901 through AN108000				
AN105301 through AN105400				
AN106201 through AN106300				
AN107101 through AN107200	5/8-18	UNF-3A	.620	.624
AN108001 through AN108100				
AN105401 through AN105500				
AN106301 through AN106400				
AN107201 through AN107300	3/4-16	UNF-3A	.744	.749

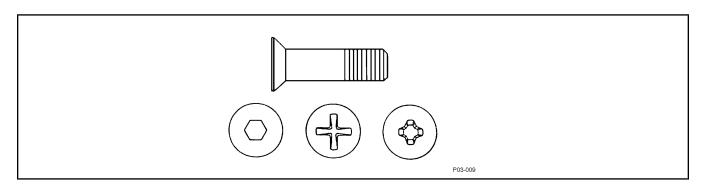
Table 3-6. AN104601 through AN105500, CRES, Hex Head Bolts; AN105501 through AN106400, CRES, Drilled Shank, Hex Head Bolts; AN106401 through AN107300, CRES, Drilled Hex Head (One Hole) Bolts; and AN107301 through AN108200, CRES, Drilled Hex Head (Six Holes) Bolts - Continued

	Thr	ead	Dian	neter
AN Number	Size	Class	Min	Max
AN108101 through AN108200				

Example of part number:

AN104637 = bolt, 10-32, length 3.125, grip 2.562.

AN105734 = bolt, 5/16-24, length 3.000, grip 2.312, drilled shank.


AN107017 = bolt, 9/16-18, length 1.812, grip .438, drilled head (one hole).

AN 107813 = bolt, 1/2-20, length 1.438, grip .188, drilled head (six holes).

Material:

Corrosion-resistant steel, Aeronautical Material Specification AMS7472.

Table 3-7. NAS333 through NAS340, 100-Degree Countersunk Head, Close-Tolerance, High Strength Bolts

					Material
	Th	read	Diameter		Steel
NAS Number	Size	Class	Min	Max	Shear Strength
NAS333	10-32	NF-3A	.1889	.1894	2690
NAS334	1/4-28	UNF-3A	.2487	.2492	4650
NAS335	5/16-24	UNF-3A	.3112	.3117	7300
NAS336	3/8-24	UNF-3A	.3737	.3742	10,500
NAS337	7/16-20	UNF-3A	.4362	.4367	14,300
NAS338	1/2-20	UNF-3A	.4986	.4991	18,650
NAS339	9/16-18	UNF-3A	.5611	.5616	23,600
NAS340	5/8-18	UNF-3A	.6414	.6420	29,150

Code:

Dash number is used to designate grip and length.

-5 after last dash number designates bolt with grip and length .062 longer than designated by length dash number.

C after basic part number designates bolt with cadmium-plated shank.

P after basic part number designates bolt with Phillips recess.

F after basic part number designates bolt with Frearson recess.

No letter indicates hexagon socket.

Table 3-7. NAS333 through NAS340, 100-Degree Countersunk Head, Close-Tolerance, High Strength Bolts - Continued

A after basic part number designates bolt without cotter pin hole.

Example of part number:

NAS334-10 = bolt, 1/4-28, .562 grip, hexagon socket, with cotter pin hole.

NAS334-10-5 = bolt, 1/4-28, .624 grip, hexagon socket, with cotter pin hole.

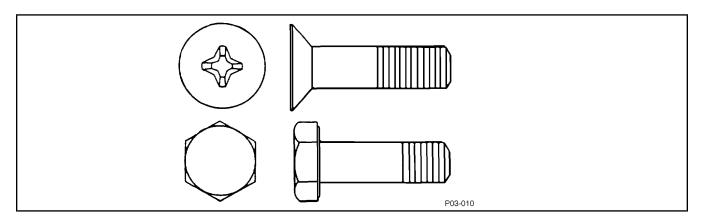
NAS334PA24 = bolt, 1/4-28, 2.062 grip, Phillips recess, without cotter pin hole.

NAS334CF24 = bolt, 1/4-28, 2.062 grip, plated shank, Frearson recess, with cotter pin hole.

Material:

Steel, Military Specifications MIL-S-5000, MIL-S-6049, and MIL-S-6098.

Steel, Military Specification MIL-S-5626.


Chrome-vanadium steel, Military Specification MIL-S-8503.

Steel, Military Specification MIL-S-8695.

Heat treatment:

160,000 to 180,000 PSI tensile strength.

Table 3-8. NAS653 through NAS658, Hex Head, Close-Tolerance, Short Thread, 4AL-4MN Titanium Alloy Bolts; NAS663 through NAS668, 100-Degree Flathead, Close-Tolerance, 4AL-4MN Titanium Alloy Bolts; and NAS673 through NAS678, Hex Head, Close-Tolerance, 4AL-4MN Titanium Alloy Bolts

					Mat	erial
	Thr	ead	Dian	neter	Titaı	nium
NAS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS653						
NAS663	10-32	NF-3A	.1890	.1895	2980	2690
NAS673						
NAS654						
NAS664	1/4-28	UNF-3A	.2490	.2495	5430	4650
NAS674						
NAS655						
NAS665	5/16-24	UNF-3A	.3115	.3120	8680	7300
NAS675						
NAS656						

Table 3-8. NAS653 through NAS658, Hex Head, Close-Tolerance, Short Thread, 4AL-4MN Titanium Alloy Bolts; NAS663 through NAS668, 100-Degree Flathead, Close-Tolerance, 4AL-4MN Titanium Alloy Bolts; and NAS673 through NAS678, Hex Head, Close-Tolerance, 4AL-4MN Titanium Alloy Bolts - Continued

					Mat	erial
	Th	read	Dian	neter	Tita	nium
NAS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS666	3/8-24	UNF-3A	.3740	.3745	13,100	10,500
NAS676						
NAS657						
NAS667	7/16-20	UNF-3A	.4365	.4370	17,800	14,300
NAS677						
NAS658						
NAS668	1/2-20	UNF-3A	.4990	.4995	24,000	18,650
NAS678						

Dash number indicates grip in sixteenths and is used to designate length also.

D after dash number indicates drilled shank (applicable to NAS653 through NAS658 and NAS673 through NAS678 only).

H after dash number indicates drilled head (applicable to NAS673 through NAS678 only).

Example of part number:

NAS664-10 = bolt, 1/4-inch diameter, .625 grip.

NAS654-10D = bolt, 1/4-inch diameter, .625 grip, drilled shank.

NAS674-10DH = bolt, 1/4-inch diameter, .625 grip, drilled shank, drilled head.

Material:

4 Mn-4A1 titanium alloy, Aeronautical Material Specification AMS4425.

3.1.12 Hex Head, Close-Tolerance, 160,000 PSI Tensile Bolts (NAS1303 Through NAS1320); Hex Head, Close-Tolerance, 160,000 PSI Tensile, Short Thread Bolts (NAS1103 Through NAS1120); 100-Degree, Close-Tolerance Head and Shank, 160,000 PSI Tensile, Short Thread Bolts (NAS1202 Through NAS1207); and. 100-Degree. Close-Tolerance Head and Shank, 160,000 PSI Tensile, Short Thread Bolts (NAS1503 Through NAS1510).

CAUTION

Caution must be exercised in use of close tolerance bolts for all critical applications, such as, landing gears, control systems and helicopter rotary controls. Maintenance personnel shall refer to specific aircraft maintenance technical order for special instructions for use of these bolts.

These steel, close-tolerance bolts are similar to the close-tolerance bolts described in paragraph 3.1.11, except that

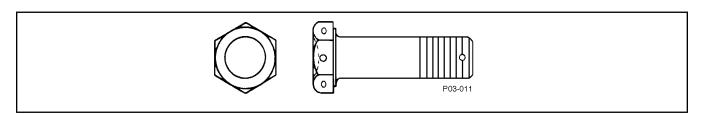
the shank tolerance is double. These bolts are identified by the full part number raised or depressed on the top of the head. (See Table 3-9 and Table 3-10.)

3.1.13 <u>Steel, Internal Wrenching Bolts (NAS144</u> Through NAS158 and NAS172 Through NAS176).

CAUTION

- When installing a self-locking nut on a short thread length bolt be sure at least two thread pitches of length of bolt end extends beyond the nut and that there will be two thread pitches between the nut and the thread run out on the bolt shank.
- Caution must be exercised in use of close tolerance bolts for all critical applications, such as, landing gears, control systems and helicopter rotary controls. Maintenance personnel shall refer to specific aircraft maintenance technical order for special instructions for use of these bolts.

The internal wrenching bolt is a high strength steel bolt used primarily in tension applications. In steel parts, either the bolt hole must be countersunk to seat the large corner radius of the shank at the head, or, as in duralumin, a special heat-treated washer (NAS143C) must be used to fit the head and to provide adequate bearing area. A special, plain washer (NAS143), also heat treated, is used under the nut. Standard AN hex head bolts cannot be substituted for these bolts, as these are heat treated to 160,000 to 180,000 PSI. Special nuts, described in Chapter 5 paragraph 5.6.2, must be used on these bolts. (See Table 3-11.)


3.1.14 Internal Wrenching, 160,000 PSI Tensile Bolts (MS20004 Through MS20024), and Six Hole, Drilled Socket Head Bolts (AN148551 Through AN149350). These bolts are very similar to the internal wrenching bolts in paragrapah 3.1.13 above, except that these bolts are made from different alloys. (See Table 3-12 and Table 3-13). NAS144 through NAS158 and NAS172 through NAS176 are interchangeable with MS20004 through MS20024 in the same thread configuration and grip lengths. AN148551 through AN149350 are no longer

active for new design and have been superseded by MS9088 through MS9094 with the exception of AN149251 through 149350 which has no superseding MS Standard.

3.1.15 Twelve Point, External Wrenching, 180,000 to 200,000 PSI Tensile Bolts (NAS624 Through NAS644). The twelve point external wrenching bolt is a high strength (180,000 to 200,000 PSI tensile strength) steel bolt used primarily in high tensile, high fatigue strength applications. A hole is drilled or formed in the head to lighten the bolt. Standard bolts cannot be substituted for these bolts. (See Table 3-14.)

3.1.16 Twelve Point Head, Heat-Resistant, Machine Bolts (MS9033 Through MS9039), and Drilled Twelve Point Head, Cadmium-Plated Steel, Machine Bolts (MS9088 Through MS9094). These twelve point head machine bolts are similar to the twelve point external wrenching bolts discussed above except that these bolts are made from different steel alloys and their shanks have larger tolerances. (See Table 3-15 and Table 3-16.)

Table 3-9. NAS1303 through NAS1320, Hex Head, Close-Tolerance, 160,000 PSI Tensile Bolts

					Mat	erial
	Thr	ead	Diar	neter	St	eel
NAS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS1303	10-32	NF-3A	.1885	.1895		
NAS1304	1/4-28	UNF-3A	.2485	.2495	6190	4650
NAS1305	5/16-24	UNF-3A	.3110	.3120	9820	7300
NAS1306	3/8-24	UNF-3A	.3735	.3745	15,200	10,500
NAS1307	7/16-20	UNF-3A	.4360	.4370	20,650	14,300
NAS1308	1/2-20	UNF-3A	.4985	.4995	27,400	18,650
NAS1309	9/16-18	UNF-3A	.5605	.5615	34,800	23,600
NAS1310	5/8-18	UNF-3A	.6230	.6240	43,600	39,150
NAS1312	3/4-16	UNF-3A	.7480	.7490	63,200	41,950
NAS1314	7/8-14	UNF-3A	.8730	.8740	86,100	57,100
NAS1316	1-12	UNF-3A	.9980	.9990	114,000	74,600
NAS1318	1-1/8-12	UNF-3A	1.225	1.240	144,000	94,450
NAS1320	1-1/4-12	UNF-3A	1.2475	1.2490	180,000	116,600

Table 3-9. NAS1303 through NAS1320, Hex Head, Close-Tolerance, 160,000 PSI Tensile Bolts - Continued

Code:

Dash number indicates grip in sixteenths and is used to designate length also.

D after dash number designates drilled shank.

H after dash number designates drilled head.

Example of part number:

NAS1308-10D = bolt, 1/2-20, 0.625 grip, drilled shank.

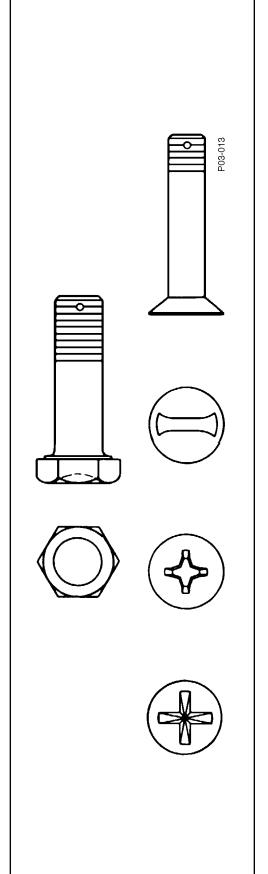
NAS1308-10H = bolt, 1/2-20, 0.625 grip, drilled head.

Material:

Steel, Military Specifications MIL-S-5000, MIL-S-6049, and MIL-S-6098.

Steel, Military Specification MIL-S-5626.

Chrome-vanadium steel, Military Specification MIL-S-8503.


Heat treatment:

160,000 to 180,000 PSI, Military Specification MIL-H-6875 (ASG).

Hardness:

Rockwell C36 - C40.

Table 3-10. NAS1103 through NAS1120, Hex Head, Close-Tolerance, 160,000 PSI, Short Thread Bolts; NAS1202 through NAS1207, 100-Degree, Close-Tolerance Head and Shank, 160,000 PSI, Short Thread Bolts; and NAS1503 through NAS1510, 100-Degree, Close-Tolerance Head and Shank, 160,000 PSI, Short Thread Bolts

					Material	irial
	Th	Thread	Dian	Diameter	Steel	el
NAS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS1202	8-32	NC-3A	.1625	.1635	1740	2005
NAS1103						
NAS1203	10-32	NF-3A	.1885	.1895	2490	2690
NAS1503						
NAS1104						
NAS1204	1/4-28	UNF-3A	.2485	.2495	4520	4650
NAS1504						
NAS1105						
NAS1205	5/16-24	UNF-3A	.3110	.3120	7240	7300
NAS1505						
NAS1106						
NAS1206	3/8-24	UNF-3A	.3735	.3745	10,950	10,500
NAS1506						
NAS1107						
NAS1207	7/16-20	UNF-3A	.4360	.4370	14,800	14,300

Close-Tolerance Head and Shank, 160,000 PSI, Short Thread Bolts; and NAS1503 through NAS1510, 100-Degree, Close-Tolerance Head and Shank, Table 3-10. NAS1103 through NAS1120, Hex Head, Close-Tolerance, 160,000 PSI, Short Thread Bolts; NAS1202 through NAS1207, 100-Degree, 160,000 PSI, Short Thread Bolts - Continued

NAS Number					Mate	Material
NAS Number	Thr	Thread	Dian	Diameter	Steel	eel
	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS1507						
NAS1108						
NAS1508	1/2-20	UNF-3A	.4985	.4995	19,950	18,650
NAS1109						
NAS1509	9/16-18	UNF-3A	.5605	.5615	25,300	23,600
NAS1110						
NAS1510	5/8-18	UNF-3A	.6230	.6240	31,950	29,150
NAS1112	3/4-16	UNF-3A	.7480	.7490	46,550	41,450
NAS1114	7/8-14	UNF-3A	0£28.	.8740	63,600	57,100
NAS1116	1-12	UNF-3A	0866	0666:	82,800	74,600
NAS1118	1-1/8-12	UNF-3A	1.1225	1.1240	106,900	94,450
NAS1120	1-1/4-12	UNF-3A	1.2475	1.2490	134,000	116,000

Dash number indicates grip in sixteenths and is used to designate length also.

D after dash number designates drilled shank (applicable to NAS1103 through NAS1120 only).

F in place of dash designates Freason recess (applicable to NAS1202 through NAS1207 only).

Example of part number:

NAS1104-10D = bolt, hex head, 1/4-inch diameter, 0.625 grip, drilled shank.

NAS1204-8 = bolt, 1/4-inch diameter, 0.500 grip, Phillips recess.

NAS1204F8 = bolt, 1/4-inch diameter, 0.500 grip, Frearson recess.

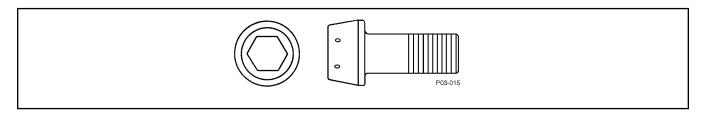
NAS1504-8 = bolt, 1/4-inch diameter, 0.500 grip, hi-torque slot.

Material:

Steel, Military Specifications MIL-S-5000, MIL-S-6049, and MIL-S-6098.

Steel, Military Specification MIL-S-5626.

Chrome-vanadium steel, Military Specification MIL-S-8503.


Steel, Military Specification MIL-S-8695.

Heat treatment:

Table 3-10. NAS1103 through NAS1120, Hex Head, Close-Tolerance, 160,000 PSI, Short Thread Bolts; NAS1202 through NAS1207, 100-Degree, Close-Tolerance Head and Shank, 160,000 PSI, Short Thread Bolts; and NAS1503 through NAS1510, 100-Degree, Close-Tolerance Head and Shank, 160,000 PSI, Short Thread Bolts - Continued

160,000 to 180,000 PSI, Military Specification MIL-H-6875 (ASG).

Table 3-11. NAS144 through NAS158, and NAS172 through NAS176, Steel, Internal Wrenching Bolts

					Mat	erial
	Thre	ead	Dian	neter	St	eel
NAS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS144	1/4-28	UNF-3A	.246	.249	5000	4650
NAS145	5/16-24	UNF-3A	.3085	.3115	8200	7300
NAS146	3/8-24	UNF-3A	.371	.374	12,700	10,500
NAS147	7/16-20	UNF-3A	.4330	.4365	17,100	14,300
NAS148	1/2-20	UNF-3A	.4955	.4990	23,400	18,650
NAS149	9/16-18	UNF-3A	.5575	.5615	29,800	23,600
NAS150	5/8-18	UNF-3A	.620	.624	38,000	29,150
NAS152	3/4-16	UNF-3A	.7445	.7490	55,600	41,950
NAS154	7/8-14	UNF-3A	.869	.874	76,200	57,100
NAS156	1-14	NF-3A	.9935	.9990	102,500	74,600
NAS158	1-1/8-12	UNF-3A	1.118	1.124	128,800	94,450
NAS172	1-1/4-12	UNF-3A	1.243	1.249	162,600	116,600
NAS174	1-3/8-12	UNF-3A	1.368	1.374	200,300	141,050
NAS176	1-1/2-12	UNF-3A	1.493	1.499	241,600	167,900

Dash number indicates grip in sixteenths and is used to designate length also.

DH after part number designates drilled head.

A after part number designates drilled shank (applicable to NAS144 through NAS158 only).

Example of part number:

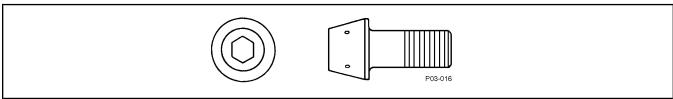
NAS145-25 = bolt, 1-9/16 long, not drilled.

NAS145DH-25 = bolt, 1-9/16 long, drilled head.

NAS145ADH-25 = bolt 1-9/16 long, drilled head, drilled shank.

Material.

Steel, Military Specifications MIL-S-5000 and MIL-S-6049.


Chrome-vanadium steel, Military Specification MIL-S-8503.

Steel, Aeronautical Material Specifications AMS6332 and AMS6330.

Heat treatment:

160,000 to 180,000 PSI, National Aircraft Standards Committee Procurement Specification NAS159.

Table 3-12. MS20004 through MS20024, 160,000 PSI, Internal Wrenching Bolts

					Mat	erial
	Thread		Diar	neter	St	eel
MS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
MS20004	1/4-28	UNF-3A	.2477	.2492	6190	4650
MS20005	5/16-24	UNF-3A	.3102	.3117	9820	7300
MS20006	3/8-24	UNF-3A	.3727	.3742	15,200	10,500
MS20007	7/16-20	UNF-3A	.4347	.4367	20,600	14,300
MS20008	1/2-20	UNF-3A	.4971	.4991	27,400	18,650
MS20009	9/16-18	UNF-3A	.5596	.5616	34,800	23,600
MS20010	5/8-18	UNF-3A	.6220	.6240	43,600	29,150
MS20012	3/4-16	UNF-3A	.7468	.7488	63,200	41,950
MS20014	7/8-14	UNF-3A	.8707	.8737	86,100	57,100
MS20016	1-14	NF-3A	.9955	.9985	114,000	74,600
MS20018	1-1/8-12	UNF-3A	1.121	1.124	144,000	94,450
MS20020	1-1/4-12	UNF-3A	1.246	1.249	180,000	116,600
MS20022	1-3/8-12	UNF-3A	1.370	1.374	219,000	141,050
MS20024	1-1/2-12	UNF-3A	1.495	1.499	263,000	167,900

Dash number indicates grip in sixteenths and is used to designate length also.

H before dash number designates drilled head.

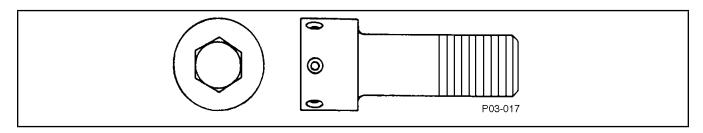
Example of part number:

MS20004-8 = bolt, 1/4-inch diameter, 0.562 grip.

MS20004-H9 = bolt, 1/4-inch diameter, 0.562 grip, drilled head.

Material:

Steel, Military Specifications MIL-S-5000, MIL-S-6049, and MIL-S-6098.


Steel, Military Specification MIL-S-5626.

Chrome-vanadium steel, Military Specification MIL-S-8503.

Heat treatment:

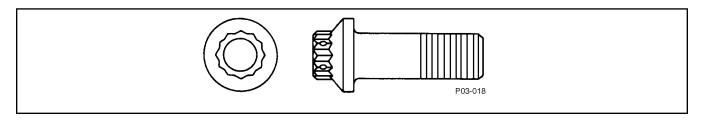
160,000 to 180,000 PSI, Military Specification MIL-H-6875 (ASG).

Table 3-13. AN148551 through AN149350, Six Hole, Drilled Socket Head Bolts

	Threa	d	Diam	neter
AN Number	Size	Class	Min	Max
AN148551 through AN148650	10-32	NF-3A	.186	.189
AN148651 through AN148750	1/4-28	UNF-3A	.246	.249
AN148751 through AN148850	5/16-24	UNF-3A	.309	.312
AN148851 through AN148950	3/8-24	UNF-3A	.371	.374
AN148951 through AN149050	7/16-20	UNF-3A	.433	.437
AN149051 through AN149150	1/2-20	UNF-3A	.495	.499
AN149151 through AN149250	9/16-18	UNF-3A	.558	.562
AN149251 through AN149350	5/8-18	UNF-3A	.620	.624

Example of part number:

AN148974 = bolt, 7/16-20, drilled socket head (six holes), length 1.625, grip 0.500.


Material:

Steel, Aeronautical Material Specification AMS6322.

Hardness:

Rockwell C32 - C36.

Table 3-14. NAS624 through NAS644, Twelve Point, External Wrenching, 180,000 PSI Bolts

					Material			
	Th	read	Diar	neter	St	eel		
NAS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength		
NAS624	1/4-28	UNF-3A	.2485	.2495	6960	5350		
NAS625	5/16-24	UNF-3A	.3110	.3120	11,050	8350		
NAS626	3/8-24	UNF-3A	.3735	.3745	17,100	12,050		
NAS627	7/16-20	UNF-3A	.4360	.4370	23,175	16,400		
NAS628	1/2-20	UNF-3A	.4985	.4995	30,825	21,400		
NAS629	9/16-18	LINE-3A	5605	5615	39 150	27 100		

Table 3-14. NAS624 through NAS644, Twelve Point, External Wrenching, 180,000 PSI Bolts - Continued

					Mat	erial
	Thi	read	Dian	neter	St	eel
NAS Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
NAS630	5/8-18	UNF-3A	.6230	.6240	49,050	33,450
NAS632	3/4-16	UNF-3A	.7480	.7490	71,100	48,100
NAS634	7/8-14	UNF-3A	.8730	.8740	96,860	66,600
NAS636	1-12	UNF-3A	.9980	.9990	126,250	85,600
NAS636A	1-14	NS-3A	.9980	.9990	128,250	85,600
NAS638	1-1/8-12	UNF-3A	1.1225	1.1240	162,000	106,000
NAS640	1-1/4-12	UNF-3A	1.2475	1.2490	202,500	133,800
NAS642	1-3/8-12	UNF-3A	1.3725	1.3740	246,375	162,000
NAS644	1-1/2-12	UNF-3A	1.4975	1.4990	295,875	192,500

Dash number indicates grip in sixteenths and is used to designate length also.

H after dash designates drilled head.

Example of part number:

NAS624-8 = bolt, 1/4-28 UNF-3A thread, 0.500 grip.

NAS628-H13 = bolt, 1/2-20 UNF-3A thread, 0.812 grip, drilled head.

Material:

Steel, Military Specifications MIL-S-5000, MIL-S-6049, and MIL-S-6098.

Steel, Military Specification MIL-S-5626.

Chrome-vanadium steel, Military Specification MIL-S-8503.

Steel, Aeronautical Material Specifications AMS6332 and AMS6330.

Heat treatment:

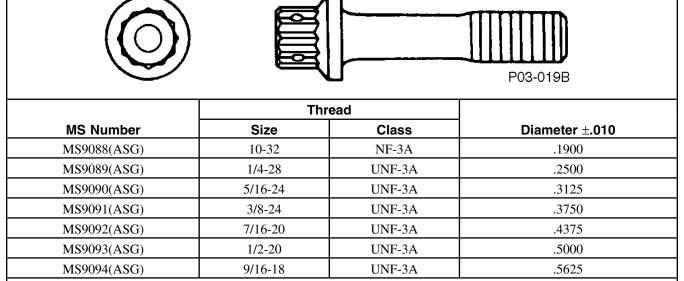
180,000 to 200,000 PSI, Military Specification MIL-H-6875 (ASG).

Hardness:

Rockwell C39 - C43.

Table 3-15. MS9033 through MS9039, Twelve Point Head, Heat-Resistant Machine Bolts

	Thre	ad	Diam	eter
MS Number	Size	Class	Min	Max
MS9033	10-32	NS	.1810	.1870
MS9034	1/4-28	NS	.2405	.2470
MS9035	5/16-24	NS	.3023	.3095
MS9036	3/8-24	NS	.3648	.3720
MS9037	7/16-20	NS	.4264	.4345
MS9038	1/2-20	NS	.4889	.4970
MS9039	9/16-18	NS	.5508	.5595


Code:

Dash number is used to designate grip and length.

Table 3-15. MS9033 through MS9039, Twelve Point Head, Heat-Resistant Machine Bolts - Continued

	Thread		Diameter					
MS Number	Size	Class	Min	Max				
Example of part number:	Example of part number:							
MS9033-18 = bolt, 10-32 NS,	length 1.250, grip .6	25.						
MS9039-14 = bolt, 9/16-18 N	S, length 1.500, grip	.125.						
Material:								
Corrosion and heat-resistant s	teel, Aeronautical Mat	erial Specification AM	IS5735.					

Table 3-16. MS9088 through MS9094, Drilled Twelve Point Head, Cadmium-Plated Steel, Machine Bolts

Dash number is used to designate grip and length.

Example of part number:

MS9091-17 = bolt, 3/8-24 UNF-3A, length 1.438, grip .438.

MF9093-26 = bolt, 1/2-20 UNF-3A, length 2.625, grip 1.375.

Material:

Steel, Aeronautical Material Specification AMS6322.

Hardness:

Rockwell C26 - C32.

3.1.17 Close-Tolerance Shear Bolts (NAS464). These steel close-tolerance shear bolts are designed for use where stresses normally are in shear only. They have a relatively long grip and few threads. (See Table 3-17.)

3.1.18 <u>Full Threaded, Fully Identified Head Bolts</u> (NAS563 Through NAS572).

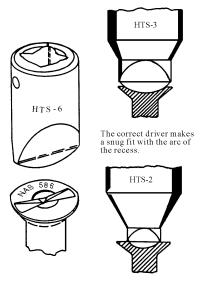
CAUTION

Caution must be exercised in use of close tolerance bolts for all critical applications, such as, landing gears, control systems and helicopter rotary controls. Maintenance personnel shall refer to specific aircraft maintenance technical order for special instructions for use of these bolts.

This full threaded bolt is fabricated from steel alloy, heattreated to 160,000 to 180,000 PSI tensile strength. It is marked on top of the head by the complete NAS number. (See Table 3-18.)

- 3.1.19 Clevis Bolts (AN21 Through AN36). The clevis bolts are used in applications subject to shearing stress only, and are often used as mechanical pins in control systems, etc. The head is round and slotted. (See Table 3-19.)
- 3.1.20 Eyebolts (AN42 Through AN49). The eyebolt is used to carry external tension loads for the attachment of devices such as the fork of a turnbuckle, a clevis, or a cable shackle. (See Table 3-20.)

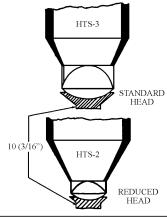
3.1.21 Nonstandard Bolts.


- 3.1.22 External Wrenching Bolts, EWB22 (220,000 PSI Minimum). The EWB22 (External Wrenching Bolt Standard Pressed Steel Company Number 22) external wrenching bolt has not had a military designation assigned to it. This bolt has an increase over conventional bolts in fatigue resistance, tensile strength, and ductility. The diameter of the washer face under the head is increased to maintain the same bearing stress as the MS20004 series bolts. The across-flats dimension of the twelve point head is increased to provide greater wrenching service. (See Table 3-21.)
- 3.1.23 <u>Hi-Torque Bolts</u>. The Hi-Torque bolts have not had a military designation assigned to them. These bolts use a variety of steel alloys and titanium. The recess is a single slot, narrower at the center than the outer portions at either end. This, and the center dimple, make the recess readily identifiable by its "bow tie" appearance. The recess is undercut in a taper from the center of the recess to the outer boundaries, producing an inverted keystone shape in cross-section. (See Table 3-22.)
 - a. TOOLING. A solid head driver conforming to MS33750 shall be used for installation. The driver number will identify the proper driver size for standard 100° head bolts (HTS-5 driver; 5/16 diameter bolt). In addition, the proper driver for a particular bolt has approximately the same tip diameter as that of the bolt head. This is applicable to both the standard 100° flush head as well as the reduced 100° flush head. However, the reduced head has a recess one size smaller than the standard and requires the next size smaller driver. The

- dimple provides for self-engagement of the driver into the recess, and as torque is applied the driver tip locks into the recess walls eliminating the need for end thrust by the operator.
- b. INSTALLATION. All installation, either by hand or with power tools, shall be accomplished with a torque limiting or torque measuring device to insure that the installation torques specified by the aircraft manufacturer are met. Over-torquing must be avoided. Any additional clockwise movement after the bolt has been properly seated can increase the torque required for removal by more than 50% in excess of normal requirements.
- c. REMOVAL. Normal practice will remove most properly installed Hi-Torque bolts. However, sometimes as a result of increased sheet bearing on the shank, nut galling or over-torquing on installation, excessive removal. torque must be applied. If such is the case, the recess should be loaded in a smooth uniform motion as torque is increased, maintaining the solid driver "in-line" with the bolt centerline. End load may be applied. DO NOT SNAP LOAD!

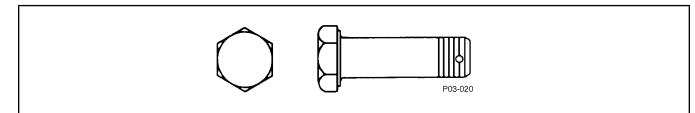
NOTE

If the recess is cammed out during installation, the removal surfaces of the recess are still intact.


- d. MAINTENANCE. The recess should be cleared of foreign material before installation or removal. The shallow, curved bottom of the recess facilitates cleaning with any narrow instrument. The solid Hi-Torque driver has a normal life of approximately 5,000 installations and removal cycles. If after normal usage the edge of the driver becomes burred, increasing the tip width (Dimension E, Sheet 3, MS33750) over the maximum allowed, the driver should be discarded. Flattening of the tip radius in excess of 1X-width will also be basis for replacement.
 - (1) A solid head Hi-Torque driver conforming to MS 33750 or MIL-B-9946/2 may be used for installation of the Hi-Torque fastener. The proper driver for a particular bolt has the same tip diameter as that of the bolt head.

Too small a driver does not fit the recess are which results in damage to recess, even at low torque values.

NOTE


Reduced flush head bolts require a driver one size smaller than the driver for the standard head bolt, as shown in diagram below. Installation torque should be reduced accordingly.

Driver Selection Chart STANDARD HEAD									
NOM. BOLT DIA.	DRIVER NO.	NOM. BOLT DIA.	DRIVER NO.						
#8	**HTS-2	7/8	HTS-14						
#10 (3/16)	**HTS-3	1	HTS-16						
1/4	HTS-4	1-1/8	HTS-18						
5/16	HTS-5	1-1/4	HTS-20						
3/8	HTS-6	1-3/8	HTS-22						
7/16	HTS-7	1-1/2	HTS-24						
1/2	HTS-8	1-5/8	HTS-26						
9/16	HTS-9	1-3/4	HTS-28						
5/8	HTS-10	1-7/8	HTS-30						
3/4	HTS-12	2	HTS-32						

^{**}The tip thickness of the HTS-2 and HTS-3 are the same but they do not have the same radius and are therefore not interchangeable.

Table 3-17. NAS464 Close-Tolerance Shear Bolt

					Material	
	Thread		Diameter		Steel	
First Dash Number	Size	Class	Min	Max	Tensile Strength	Shear Strength
-3	10-32	NF-3	.1889	.1894	1105	2620
-4	1/4-28	NF-3	.2487	.2492	2040	4650
-5	5/16-24	NF-3	.3112	.3117	3250	7300
-6	3/8-24	NF-3	.3737	.3742	5050	10,500
-7	7/16-20	NF-3	.4362	.4367	6800	14,300
-8	1/2-20	NF-3	.4986	.4991	9250	18,650
-9	9/16-18	NF-3	.5611	.5616	11,800	23,600
-10	5/8-18	NF-3	.6234	.6240	15,050	29,150
-12	3/4-16	NF-3	.7481	.7488	22,000	41,950
-14	7/8-14	NF-3	.8729	.8737	30,000	57,100
-16	1-14	NF-3	.9975	.9985	40,350	74,600

A after first dash number designates bolt without cotter pin hole.

First dash number designates nominal diameter in sixteenths.

Second dash number designates grip in sixteenths and is used to designate length.

Example of part number:

NAS464-3-12 = bolt, 12/16 grip, with cotter pin hole.

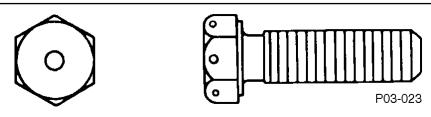
NAS464-4A-16 = bolt, 1 grip, without cotter pin hole.

Material:

Steel, Military Specifications MIL-S-5000, MIL-S-6049, and MIL-S-6098.

Steel, Military Specification MIL-S-5626.

Chrome-vanadium steel, Military Specification MIL-S-8503.


Steel, Military Specification MIL-S-8695.

Heat treatment:

160,000 to 180,000 PSI, Military Specification MIL-H-6875 (ASG).

Use NAS6203 thru NAS6220 standard for future procurement.

Table 3-18. NAS563 through NAS572, Full Threaded, Fully Identified, Head Bolts

					Material	
	Th	read	Diam	neter	Steel	
NAS Number	Size	Class	Min	Max	Tensile Strength	
NAS563	10-32	NF-3A	.1670	.1900	3170	
NAS564	1/4-28	UNF-3A	.2243	.2500	5790	
NAS565	5/16-24	UNF-3A	.2827	.3125	9260	
NAS566	3/8-24	UNF-3A	.3450	.3750	14,000	
NAS567	7/16-20	UNF-3A	.4019	.4375	18,900	
NAS568	1/2-20	UNF-3A	.4643	.5000	25,500	
NAS569	9/16-18	UNF-3A	.5230	.5625	32,400	
NAS570	5/8-18	UNF-3A	.5854	.6250	40,900	
NAS572	3/4-16	UNF-3A	.7056	.7500	59,500	

Last digit of basic number indicates nominal diameter in sixteenths (NAS563 through NAS570 only).

Dash number indicates length in thirty-seconds (NAS563 through NAS572 bolts are available in sixteenth increments only).

Example of part number:

NAS564-15 = bolt, full threaded, 1/4-28, length 15/32.

NAS570-49 = bolt, full threaded, 5/8-18, length 1-17/32.

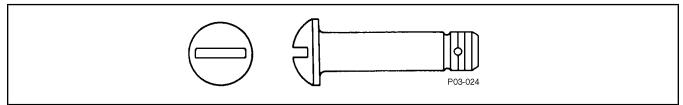
Material:

Steel, Military Specifications MIL-S-6049, MIL-S-6050, MIL-S-6098, and MIL-S-18732 (ASG).

Steel, Military Specifications MIL-S-5626 and MIL-S-6758.

Steel, Military Specification MIL-S-8695.

Aluminum alloy, Federal Specifications QQ-A-267 and QQ-A-268.


Heat treatment:

160,000 to 180,000 PSI, Military Specification MIL-H-6875 (ASG).

Hardness:

Rockwell C36 - C40.

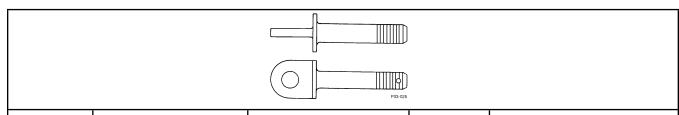
Table 3-19. AN21 through AN36, Celvis Bolts

				Material		
	TI	nread		Steel		
AN Number	Size	Class	Diameter	Tensile Strength	Shear Strength	
AN21	6-40	NF-3	.136	510	1060	
AN22	8-36	NF-3	.162	760	1500	
AN23	10-32	NF-3	.186	1105	2125	
AN24	1/4-28	NF-3	.248	2040	3680	
AN25	5/16-24	NF-3	.311	3250	5750	
AN26	3/8-24	NF-3	.373	5050	8800	
AN27	7/16-20	NF-3	.436	6800	11,250	
AN28	1/2-20	NF-3	.497	9250	14,700	
AN29	9/16-18	NF-3	.560	11,800	18,700	
AN30	5/8-18	NF-3	.622	15,050	23,000	
AN32	3/4-16	NF-3	.747	22,000	33,150	
AN34	7/8-14	NF-3	.871	30,000	45,050	
AN36	1-14	NF-3	.996	40,350	58,900	

Dash number is used to designate grip and length.

A after dash number for bolt without drilled hole in shank.

Example of part number:


AN23-8 = bolt, 17/32 long, with cotter pin hole.

AN23-8A = bolt, 17/32 long, without cotter pin hole.

Material:

Noncorrosion-resistant steel, Military Specification MIL-B-6812.

Table 3-20. AN42 through AN49, Eyebolts

						Material	
	Thread		Dian	Diameter		St	eel
AN Number	Size	Class	Min	Max	Eye Diameter	Tensile Strength of Eye	Yield Strength of Eye
AN42B	10-32	NF-3A	.1865	.1890	.190	1150	880
AN43B	1/4-28	UNF-3A	.246	.249	.190	2450	1880
AN44	5/16-24	UNF-3A	.309	.312	.250	3910	3000
AN45	5/16-24	UNF-3A	.309	.312	.313	5290	4055
AN46	3/8-24	UNF-3A	.371	.374	.375	7010	5375
AN47	7/16-20	UNF-3A	.4355	.4390	.375	9200	7055
AN48	1/2-20	UNF-3A	.4955	.4990	.438	14,375	11,020
AN49	9/16-18	UNF-3A	.558	.562	.500	20,125	15,430

Dash number is used to designate grip and length.

A after dash number for bolt without drilled hole in shank.

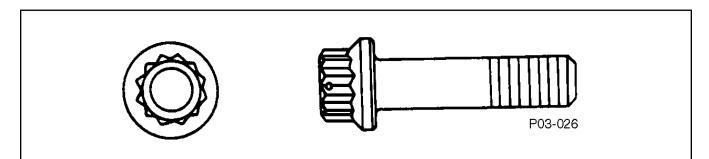
C before dash number for corrosion-resistant steel bolt.

Example of part number:

AN44-7 = bolt, 5/16-24, .250 eye, grip 7/16, length 31/32, noncorrosion-resistant steel, drilled hole in shank.

AN42BC-7A = bolt, 10-32, .190 eye, grip 1/2, length 29/32, corrosion-resistant steel, solid shank.

Material:


Steel, Military Specifications MIL-S-6049, MIL-S-6050, MIL-S-6098, and MIL-S-18732 (ASG).

Steel, Military Specifications MIL-S-5626 and MIL-S-6758.

Steel, Military Specification MIL-S-8695.

Aluminum alloy, Federal Specifications QQ-A-267 and QQ-A-268.

Table 3-21. EWB22, External Wrenching, 220,000 PSI Minimum, Bolt (Available by Manufacturer's Part Number) (SPS)

					Mat	erial
	Thread		Diameter		St	eel
First Dash Number	Size	Class*	Min	Max	Tensile Strength	Shear Strength
-4	1/4-28		.2485	.2495	8800	6500
-5	5/16-24		.3110	.3120	14,000	9900
-6	3/8-24		.3735	.3745	20,500	14,000
-7	7/16-20		.4360	.4370	28,300	19,300
-8	1/2-20		.4985	.4995	37,200	25,200
-9	9/16-18		.5605	.5615	48,000	31,800
-10	5/8-18		.6230	.6240	60,000	39,100
-12	3/4-16		.7480	.7490	86,200	57,800
-14	7/8-14		.8730	.8740		
-16	1-14		.9980	.9990		
-18	1-1/8-12		1.1225	1.1240		
-20	1-1/4-12		1.2475	1.2490		
-22	1-3/8-12		1.3725	1.3740		
-24	1-1/2-12		1.4975	1.4990		

^{*}All threads are UNF-3A modified with tabulated "HiR" root radius.

First dash number designates diameter in sixteenths.

Second dash number designates grip in sixteenths and is used to designate length also.

H after first dash number designates drilled head.

Example of part number:

EWB22-16-14 = bolt, 1-14, grip 0.875, length 2.563.

EWB22-16H-20 = bolt, 1-14, grip 1.250, length 2.938, drilled head.

Material:

Manganese-silicon-nickel steel, Military Specification MIL-S-7108 (ASG).

Table 3-22. Hi-Torque Bolts Available by Manufacturer's Part Number

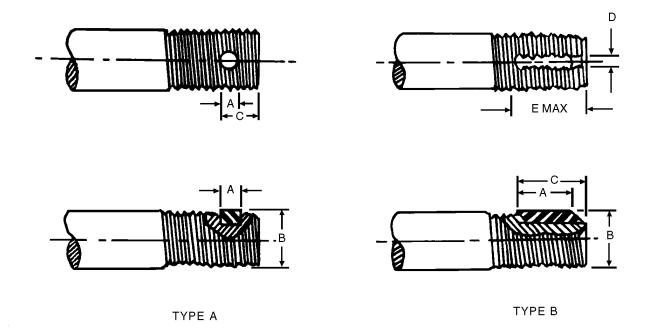
				Tolerances	nces		
Hi-Torque Bolt Part Number	Head Marking	Material	Heat Treat	Head Height	Shank Diameter	Suggested Maximum Temp For Use	Characteristics
HT3D through HT10D	er Fills	17-4PH Stain- less steel	120,000 PSI Shear mini- mum	.002 to .003	.0005	800°F	Has good dynamic characteristics at room temperature and excellent physical properties up to a suggested maximum temperature.
HT3E through HT10E	HT3E	Type-431 Stainless steel	125,000 PSI Shear mini- mum	.002 to .003	.0005	900°F	Compatible with 17-7PH and similar stainless steel materials currently being used in aircraft and missiles.
HT3H through HT6H	HE LH	AM 350 Stain- less steel	120,000 PSI Shear mini- mum	.002	.0005	900°F	Corrosion-resistant.
HT31M through HT101M	HT31	Steel	160,000 - 180,000 PSI Tensile	.002 to .003	.0009	450°F	Salvage 1/64 oversize for NAS58S series.
HT32M through HT102M	HT32 N-6	Steel	160,000 - 180,000 PSI Tensile	.002 to .003	6000	450°F	Salvage 1/32 oversize for NAS583 series.
HT3N through HT6N	HT3N -7	A-286 High temp alloy	95,000 PSI Shear mini- mum	.002	.0005	1100°F	Has excellent corrosion resistance and is compatible to stainless steel materials.
HT3P through HT8P	STH SE	AMS5668 Inconel X	160,000 PSI Tensile mini- mum	.002 to .003	.0005	1200°F	Considered to be one of the few available materials useful to 1500°F.
HT3SA through HT8SA	HT38 -9	Type 431 Stainless steel	125,000 PSI Shear mini- mum	.002 to .003	.001	Subject to O- ring limitation	Sealing bolt with general purpose aromatic fuel resistant O-ring.
HT31SA through HT81SA	S - 10	Type 431 Stainless steel	125,000 PSI Shear mini- mum	.002 to .003	.001	Subject to O- ring limitation	Salvage 1/64 oversize for HT3SA through HT8SA.

Table 3-22. Hi-Torque Bolts Available by Manufacturer's Part Number - Continued

				Tolerances	ınces		
Hi-Torque Bolt Part Number	Head Marking	Material	Heat Treat	Head Height	Shank Diameter	Suggested Maximum Temp For Use	Characteristics
HT32SA through HT82SA	HT3Z S-II	Type 431 Stainless steel	125,000 PSI Shear mini- mum	.002 to .003	.001	Subject to O- ring limitation	Salvage 1/32 oversize for HT3SA through HT8SA.
HT3T through HT10T	H131 - 12	6-4 Titanium	95,000 PSI Shear mini- mum	.002 to .003	.0005	700°F	Used in high performance aircraft where weight conservation is critical. It has a short thread length and is a weight-saving direct substitute for the NAS1503 series in shear applications.
HT3W through HT10W	H13W	6-4 Titanium	95,000 PSI Shear mini- mum	.002 to .003	.0005	700°F	Like the HT3T through HT10T series, this titanium bolt is used where weight conservation is critical. It has a standard thread length and is a weight-saving direct substitute for the NAS583 and NAS333 series.

3.1.24 Self-Locking Bolts. These bolts are manufactured to regular standards such as MS20004 through MS20024, NAS333 through NAS340 and NAS1303 through NAS1320 except that they incorporate a nylon pellet or strip forced into a hole or slot in the body of the threads. (See Figure 3-2.) The nylon pellet or strip is compressed when the bolt is wrenched into a tapped hole. As a result of the nylon's resilient "memory" the pellet or strip constantly fights to return to its original shape. This action creates a pressure which locks the bolt. Used selflocking bolts will be suitable for reuse provided the bolt is in a serviceable condition and the nylon pellet is not loose or broken and extends at least to the outermost edge or apex of the threads and insures sufficient friction for locking capability. MS33648 provides design information for externally threaded fasteners incorporating self-locking elements. (See Figure 3-2.)

3.1.25 Impedance Self-Retaining Bolt.

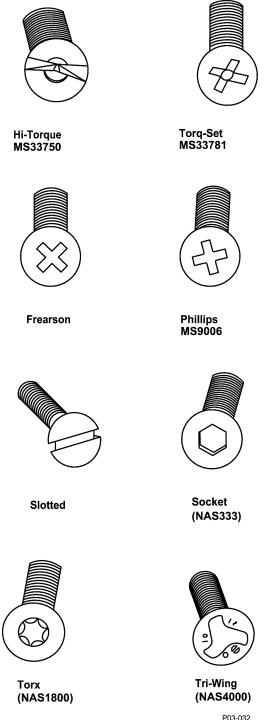

CAUTION

These types of self-locking bolts are necessarily restricted to temperature applications not in excess of 250 degrees Fahrenheit.

If self-retaining impedance type bolt is required, reference should be made to MS 27576 for specified requirements. Procurement specifications are cited in MIL-B-83050.

- 3.1.26 <u>Torq-Set Wrenching Recess</u>. (See Figure 3-3.) The Torq-Set wrenching recess is incorporated in the head of some bolts and screws. These bolts and screws have not had a military designation assigned to them. The four driving wings of the recess are radial to the vertical axis of the bolt or screw, rather than tangent with respect to the axis. Also, there is no taper in the walls of the recess. This recess permits higher installation and removal torques with no tendency for the driver to slip or cam out.
 - a. Tooling. A solid driver conforming to design standard MS33781 shall be used for installation and removal. The driver number will identify the proper driver size for all Torq-Set screw heads (10 driver size, 10 screw size). (See Figure 3-4.) However, the reduced 100° flush head has a recess one size smaller than the standard and requires the next size smaller driver (8 driver, 10 screw size).

- b. Maintenance. The recess should be cleared of any foreign material before installation or removal. Discard screws and driver bits that show excessive wear. Worn drivers may cam out and ruin the recess making it difficult, if not impossible, to remove the screw even with a brand new driver.
- Installation. All installation, either by hand or with power tools, shall be accomplished with a torque limiting or torque measuring device to insure that the installation torques specified by the aircraft manufacturer are met. Select the right size driver. Although one size larger driver will not enter a particular recess, a one size smaller will, but will not give the performance of the proper size driver. Keep the driver lined up with the recess. (No off angle driving.) Use moderate end pressure (15-20 lbs) to hold the driver in the recess and apply torque only when the driver is fully seated in the recess. Do not overtorque when installing screws. When using impact or power tools, make sure the torque control is accurately set, held the tool firmly and seat the driver bit firmly into the recess before turning on the tool. Do not attempt to engage the driver bit in the recess while the driver bit is running.
- d. Removal. Normal practice will remove most properly installed Torq-Set screws. However, sometimes as a result of galling, oxidation, corrosion or over-torquing on installation, excessive removal torque must be applied. If such is the case, the recess should be loaded in a smooth uniform motion as torque is increased maintaining the solid drive "in-line" with the bolt centerline. End load may be applied. Do not snap load.
- 3.1.27 Hardness-Testing Aircraft Bolts. Since a relationship exists between the tested hardness, the tensile strength, and the specified heat treatment of the material, the heat treatment and consequent tensile strength of the bolt material can be checked by means of a hardness-testing machine, usually a Rockwell, Brinell, or Vickers type. Prepare bolts for hardness testing by filing, grinding, and polishing to remove the softer plating, decarburized material, and all scratches and variations that may affect the reading. If a bolt has been tested on the shank, it should be discarded. This does not give the actual strength of the bolt because head configuration and threads effect the loads a bolt can carry.



GOVERNMENT	THREAD		INSERT			3					
DESIGNATION	SIZE	TYPE	MATERIAL	Α	MAX	MIN	С)	Е
1	4-40 NC	Α	ZYTEL 101	0625 ± 0100	445	.106	.141 ±	.020			
2	4-40 NO	В	PLASKON	2187 ± 0312	.115	.100	.2500±	.0312	.035	.040	.2969
3	6-32 NC	Α	ZYTEL 101	0781 ± 0100	.141	.131	.164 ±	.020			
4	6-32 NC	В	PLASKON	2500 ± 0312		.131	.3125 ±	.0312		.010	.3594
5		Α	ZYTEL 101	0625 ± 0100	.164		.172	.010			
6	5-32 NC	_ ^	ZIILL IOI	0937 ± 0100	.167	.157	.172	.020			
7		В	PLASKON	3125 ± 0312	.107		.3750	.0312	.040	.010	.4375
8	10-32 NF-3	Α	ZYTEL 101	0937 ± 0100	.193	.184	.188	.020			
9	10-32 NF-3	В	PLASKON	3125 ± 0312	.193	.164	.3750	.0312	.040	.010	.4219
10	1/4-28 UNF-3	Α	ZYTEL 101	1094 ± 0100	.253	.243	.211	.020			
11	1/4-20 ONI -3	В	PLASKON	2812 ± 0312	.203	.243	.3750	.0312	.035	.010	.4219
12		Α	ZYTEL 101	1406 ± 0100			.242	.020			
13	5/16-24 UNF-3		21122 101	1400 ± 0100	.315	.305	.258				
14		В	PLASKON	3750 ± 0312			.4375	.0312	.035	.010	.5156
15					070		.250	.020			
16	3/8-24 UNF-3				.378	.368	.264	.020			
17					.385		.20	.010			
18	7/16-20 UNF-3	Α	ZYTEL 101	1562 ± 0100	.439	.42		.020			
19					.448	. 4 2	.281	.010			
20	1/2-20 UNF-3				.502	.492	.201	.020			
21	1/2 20 0111 -0				.510	.432		.010			

F03-002

Figure 3-2. Drawing MS33648(ASG)

3.1.28 <u>Bolt Identification Markings</u>. Bolts are marked with a code to identify their physical characteristics and contents. See <u>Table 2-1</u> for these code markings.

- 3.1.29 <u>Internal Wrenching Fasteners</u>. A variety of externally threaded, internal wrenching fasteners are used in airframe manufacturing. Some have not, as yet, had a military designation assigned to them. Some examples of the various wrenching recesses are shown below.
- 3.1.30 The Hi-Torque recess is a single, curved-bottom slot, narrower at the center than at the ends. This, and the center dimple, make the recess readily identifiable by its "bow tie" appearance. The slot sides are undercut, producing an inverted keystone shape in the cross section.
- 3.1.31 The Torq-Set recess is distinctive in appearance in that the four driving wings are not centered on the vertical axis of the fastener, but, rather, are offset such that the installing side of the wing passes through the axis. Also, there is no taper to the sides of the driving wings.

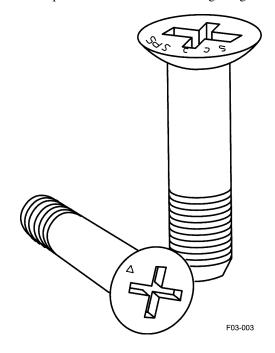


Figure 3-3. Torq-Set Wrenching Recess

- 3.1.32 The Frearson recess and the Phillips recess are similar in appearance (both have four driving wings). However, the Frearson recess has square-cut comers at the head surface and the comers of the Phillips recess are slightly chamfered.
 - The slotted or common is the most universally used recess and is distinctive because of its single, flatbottomed groove or slot.
 - b. The socket recess is a normal six-sided hexagon (Allen wrench type recess).

SCREW SIZE	RECESS AND DRIVER SIZE	W WING DIA.	N WING THICK	T RECESS DEPTH	GAGE PENET	SCREW SIZE	RECESS AND DRIVER SIZE	W WING DIA.	N WING DIA.	T RECESS DEPTH	GAGE PENET
0						0	0	0.073 0.063		0.026 0.016	0.0180 0.0100
1						1	1	0.087 0.077	0.018 0.016	0.031 0.021	0.0215 0.0130
2						2	2	0.102 0.092		0.036 0.026	0.0250 0.0610
3						3	3	0.116 0.106	0.021 0.018	0.041 0.031	0.0285 0.0190
4						4	4	0.131 0.121	0.023 0.020	0.046 0.036	0.0320 0.0220
5						5	5	0.146 0.136	0.026 0.023	0.051 0.041	0.0355 0.0255
6						6	6	0.160 0.150	0.029 0.026	0.055 0.045	0.0390 0.0285
8						8	8	0.190 0.180	0.034 0.031	0.065 0.055	0.0470 0.0355
10	8	0.215 0.205	0.034 0.031	0.078 0.068	0.0595 0.0480	10	10	0.219 0.209	0.039 0.036	0.075 0.065	0.0540 0.0415
1/4	10	0.248 0.238	0.039 0.0 36	0.090 0.080	0.0685 0.0560	1/4	1/4	0.286 0. 276	0.051 0.048	0.098 0.088	0.0695 0.0555
5/16	1/4	0.325 0.315	0.051 0.048	0.118 0.108	0.0890 0.0750	5/16	5/16	0.357 0.347	0.064 0.061	0.122 0.112	0.0860 0.0700
3/8	5/16	0.357 0.347	0,064 0.061	0.122 0.112	0.0860 0.0700	3/8	3/8	0.427 0.417	0.076 0.073	0.145 0.135	0.1030 0.0850
7/16	3/8	0.427 0.417	0.076 0.073	0.145 0.135	0.1030 0.0850	7/16	7/16	0.498 0.488	0.089 0.0 86	0.169 0.159	0.1205 0.1005
1/2	7/16	0.498 0.488	0.089 0.086	0.169 0.159	0.1205 0.1005	1/2	1/2	0.568 0.558	0.102 0.098	0.193 0.183	0.1375 0.1155
9/16	1/2	0.568 0.558	0.102 0.098	0.1 93 0.1 83	0.1375 0.1155	9/16	9/16	0.638 0.628	0.115 0.111	0.217 0.207	0.1545 0.1305
5/8	9/16	0.638 0.628	0.115 0.111	0.217 0.207	0.1545 0.1305	5/8	5/8	0.708 0.698	0.127 0.123	0.241 0.231	0.1710 0.1450

F03-004

Figure 3-4. Screw Head and Driver Size

- c. The Torx recess is distinctive in appearance in that it has six short driving wings with rounded comers, similar to the impression of a six-tooth gear or sprocket.
- d. The Tri-Wing recess is distinct because of its three driving wings.
- 3.1.33 <u>Installation</u>. All installations should be accomplished using the proper bit configuration.

CAUTION

OVER-TORQUING MUST BE AVOIDED

NOTE

Use only that driver bit which is designated for the recess involved. That is, do not use the following bits interchangeably within their groups: Phillips, Frearson, and Torq-Set; Socket (Hex) and Torx; Slotted and Hi-Torque.

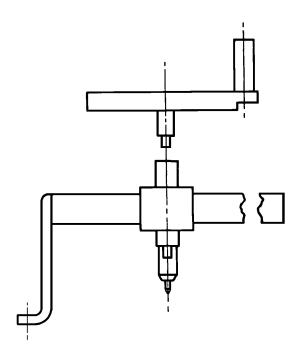
- a. The typical torque values shown in Table 3-23 are in accordance with NAS1737 for 160 ksi tensile strength fasteners; also, proper torque values can be found in the dash 3 of the applicable System Technical Order. Any additional clockwise movement after the fastener has been properly seated can increase the torque required for removal beyond normal requirements, which may be beyond the material capability of the fastener and result in cam-out.
- b. Fasteners may be installed using screw drivers, ratchet, or speed wrenches as long as bits of the

proper configuration are used. In all cases, sufficient end load must be applied, care must be taken to avoid "wobble," and the driver must be kept "in-line" with the fastener centerline to prevent "cam-out" of the fastener recess and damage to the driver. When using speed wrenches, care must be exercised so that the bit does not become disengaged from the recess, thereby damaging the recesses and scratching or marring the surrounding structure.

3.1.34 Removal. Foreign material, including paint, must be cleared from the recess prior to attempted fastener removal. In general this may be accomplished with the aid of a scribe or awl. When this technique is employed, care must be exercised to insure that the tool does not slip, thereby damaging the recess or scratching or gouging adjacent surfaces. Once foreign material is removed from the recess areas, fasteners can be removed by the simultaneous application of end load and torque. Care should be exercised to insure that the end load is great enough to avoid driver bit "cam-out" and that the driver is "in-line" with the fastener. Torque should be applied in a smooth, uniform manner. DO NOT SNAP LOAD. As in the case of proper fastener installation, screw drivers, ratchet, and speed wrenches (with proper bits) may be used for fastener removal. However, extreme caution should be exercised to avoid tool "wobble" and bit "cam- out."

3.1.35 Occasionally it will be impossible to remove a fastener using normal practices. Generally this problem occurs when it is impossible to apply adequate end load and/or torque or when the fastener recess has been damaged due to bit "cam-out." When these conditions occur, fastener removal tools, or fastener extractors may be used.

Table 3-23.	Typical	Installation	Torque	Values


	Torque (Inch-P	Pounds)
Nominal Size (Inch)	100° Flush and Protruding Head	100° Reduced Head
3/16	30 - 40	20 - 25
1/4	80 - 100	30 - 40
5/16	160 - 200	80 - 100
3/8	220 - 270	160 - 200
7/16	440 - 550	220 - 270
1/2	680 - 850	450 - 550
9/16	960 - 1200	680 - 850
5/8	1300 - 1620	960 - 1200

3.1.36 Fastener Removal Tool.

CAUTION

The use of impact procedures damages aircraft structure or skin. Use only an in-line screw removal tool or center drill the fastener and use an "easy out" to remove stuck fasteners.

These tools are available at some bases and provide a means of applying higher end loads and removal torques, while maintaining the tool "in-line" with the fastener. The foot of the tool is held in place at an adjacent fastener location and the span is adjusted so that the (proper) bit is located directly over, and in line with, the fastener to be removed. End load is applied at the handle and torque is applied through the "T" handle.

Fastener Removal Tool
(AF Drawing No. 77101-10 or Equivalent)
P03-034A

3.1.37 <u>Fastener Extractor (Drill and Remove)</u>. When the fastener recess is distorted to a degree that the above techniques cannot be employed, fastener extractors should be used. Proper removal can be accomplished by the following steps:

- a. Locate and, if necessary, punch the center of the fastener.
- b. Select the proper drill size from Table 3-24.

- c. Drill pilot hole in screw. Drill fixtures should be used to insure that the hole follows the center of the screw.
- d. Select the proper extractor from Table 3-24.
- e. Drive the extractor into the drilled hole.
- f. Turn extractor to remove fastener.

Avoid scratching or gouging adjacent structure.

g. Always use the largest extractor possible.

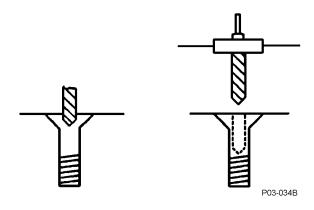
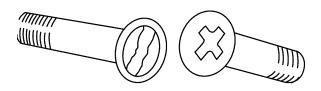
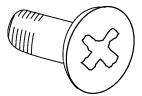
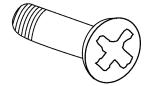



Table 3-24. Drill and Extractor Sizes

Extractor Number	For Fastener Sizes (Inches)	Size Drill to Use
1	3/16 to 1/4	5/64
2	1/4 to 5/16	7/64
3	5/16 to 7/16	5/32
4	7/16 to 9/16	1/4
5	9/16 to 3/4	17/64
6	3/4 to 1	13/32
7	1 to 1 3/8	17/32
8	1 3/8 to 1 3/4	13/16
9	1 3/4 to 2 1/8	1 1/16
10	2 1/8 to 2 1/2	1 5/16
11	2 1/2 to 3	1 9/16
12	3 to 3 1/2	1 15/16

3.2 MAINTENANCE.

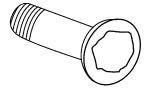

The recess should be cleared of all foreign material (including paint) before installation or removal. If the driver or the fastener recess is burred, twisted, or damaged (see paragraph 3.3) due to overtorque or other reasons, it should be discarded.


Damaged Hi-Torque Recess (Do Not Use)

Damaged Torq-Set Recess (Do Not Use)

P03-035A

Damaged Phillips Recess (Do Not Use)



Damaged Frearson Recess (Do Not Use)

P03-035B

Damaged Slotted Recess (Do Not Use)

Damaged Socket Recess (Do Not Use)

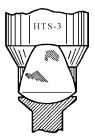
P03-035C

P03-035D

3.3 TOOLING.

Drivers conforming to the proper dimensions shall be used for installation and removal. The driver number will identify the proper driver size for standard protruding and 100° flush head fasteners. However, the reduced 100° flush head has a recess one size smaller than the standard head and requires the next size smaller driver.

Solid Head Hi-Torque Driver (MIL-B-9946/1)

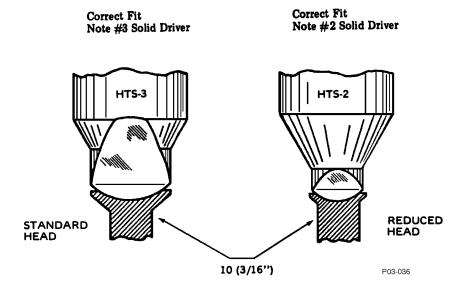

Damaged Solid Head Driver (Do Not Use)

P03-035E

CAUTION

Check tables for correct size driver.

a. The proper solid driver for a particular Hi-Torque recess has the same tip diameter as that of the standard 100° or protruding head outside diameter.



The correct driver makes a snug fit with the arc of the recess.

Too small a driver results in damage to recess, even at a low torque values.

NOTE

Reduced flush head fasteners require a driver one size smaller than the driver for the standard head fasteners, as shown in diagram below. Installation torque should be reduced accordingly.

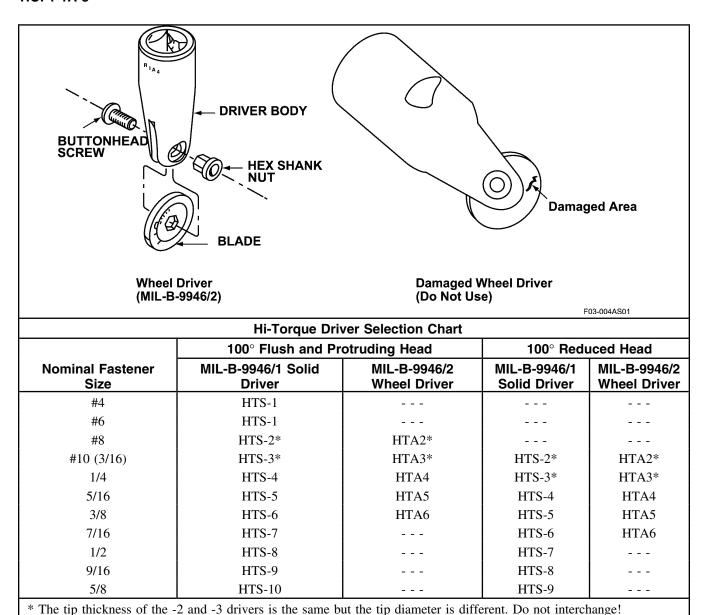


Figure 3-5. Driver Selection (Sheet 1 of 6)

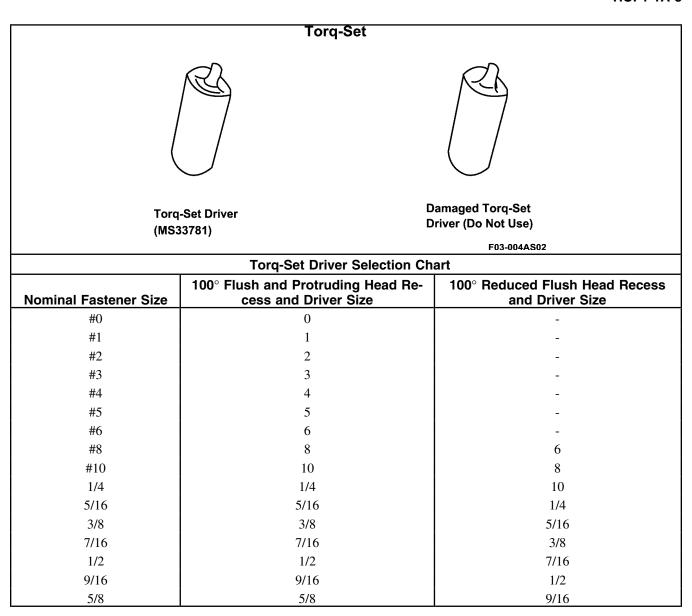


Figure 3-5. Driver Selection (Sheet 2)

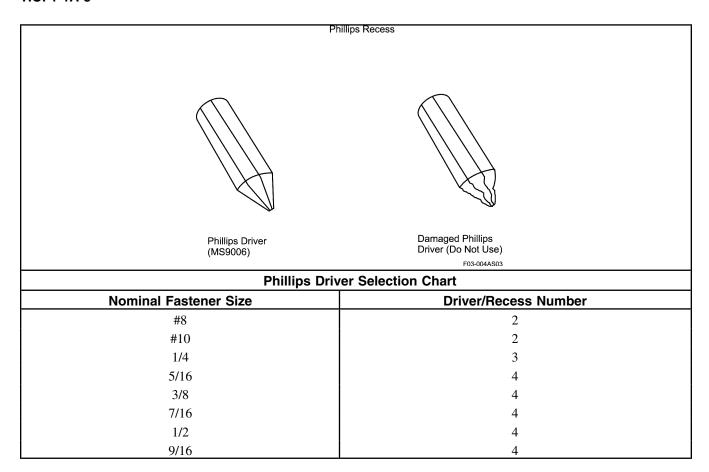


Figure 3-5. Driver Selection (Sheet 3)

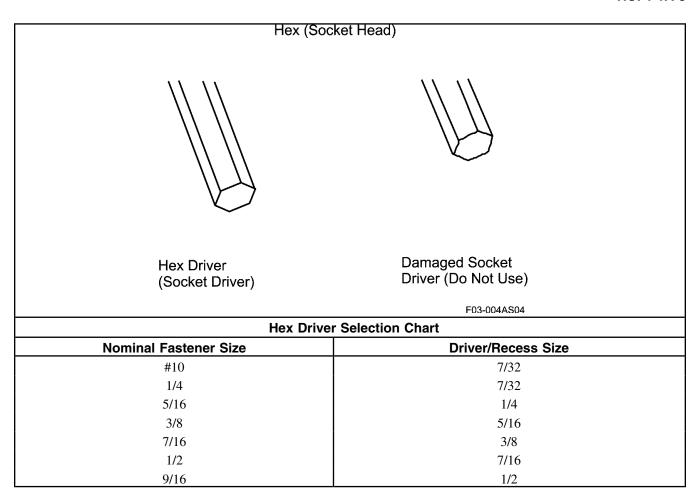


Figure 3-5. Driver Selection (Sheet 4)

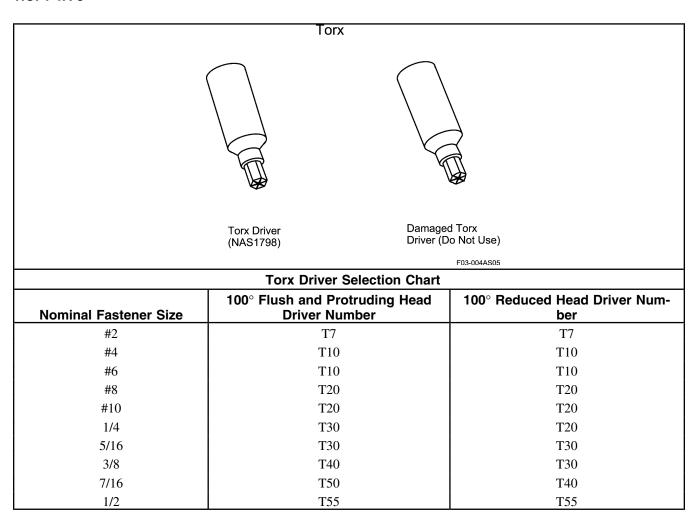


Figure 3-5. Driver Selection (Sheet 5)

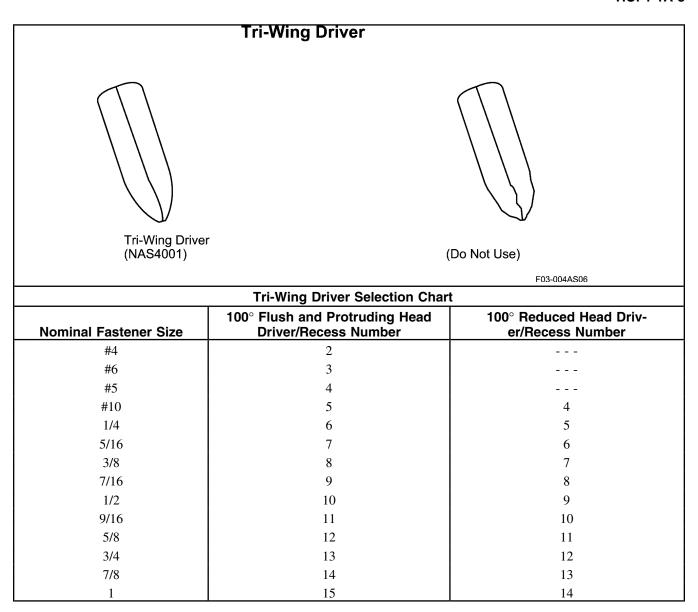


Figure 3-5. Driver Selection (Sheet 6)

CHAPTER 4 STUDS

4.1 STUDS.

(See Table 4-2 through Table 4-9.) The types of studs used in aircraft structure are coarse thread studs, fine thread studs, stepped studs, necked stepped studs, wrench pad necked stepped studs, lockring studs, and self tapping lockring studs. Studs are available either drilled or non-drilled on the nut end of the stud. For identification markings on studs, see Figure 4-9. Refer to Figure 4-10 for torque values for studs.

4.1.1 Installing New Stud (Figure 4-1).

CAUTION

Excessive amounts of lubricants shall be avoided, especially in blind holes. Use only sufficient lubricant to cover the sides of the threads with a thin coating.

NOTE

Unless otherwise specified, antiseize compound composed of (by weight) 75 percent petrolatum (melting point 120 to 140°F) and 25 percent graphite (powdered flake) shall be applied in the tapped hole.

- a. Select proper size stud and install with driver and remover and collet and pin.
- b. Use torque wrench to determine the torque at required height of stud.
- c. If correct torque is not obtained at required stud height, remove stud with driver and remover and install another stud. Refer to Figure 4-10 for correct torque values.

4.1.2 Removing Bent or Damaged Stud (Figure 4-2).

- a. Place adapter in stud remover.
- b. Drive adapter down over threads of stud.
- c. Remove stud by turning stud remover with a wrench. If threads in parent material pick up and stud remover cannot be turned, remove stud remover from adapter.
- d. Place stud remover block and puller on adapter and remove adapter from stud.

e. Cut off stud close to parent material and remove stud as outlined in paragraph 4.1.4.

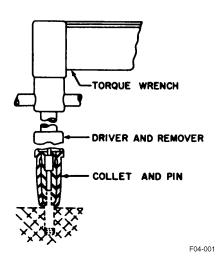


Figure 4-1. Installing New Stud

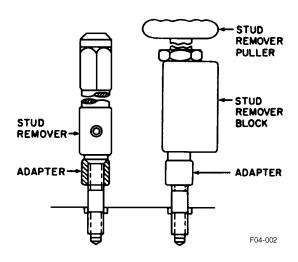


Figure 4-2. Removing Bent or Damaged Stud

4.1.3 <u>Drilling Pilot Hole in Broken Stud (Figure 4-3)</u>.

NOTE

A drill jig is recommended for moderate use when drilling broken studs where it is impractical to have a complete set of stud replacement jigs. a. Drill a pilot hole in stud, using 1/8-inch diameter by 5-1/8 inch drill.

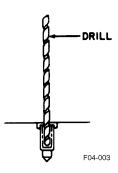


Figure 4-3. Drilling Pilot Hole in Broken Stud

- If stud has a diameter of 7/16 inch or greater, enlarge pilot hole in stud, using 1/4-inch diameter drill.
- c. Re-drill hole in stud, using proper drill for stud size.

4.1.4 Removing Broken Stud (Figure 4-4).

- a. Select proper removing tool for stud size.
- b. Drive removing tool into drilled hole in stud.
- c. Remove stud, using tap wrench.

4.1.5 Retapping for New Stud (Figure 4-5).

- a. When replacing a stud with another stud of the same size, run proper size tap into hole to clean up threads without removing any metal.
- b. When retapping for next oversize stud, use proper tap for die-cut studs. If stud cannot be driven at torque specified in Figure 4-10, retap with tap for rolled thread studs of same size.

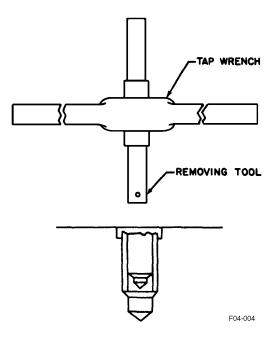


Figure 4-4. Removing Broken Stud

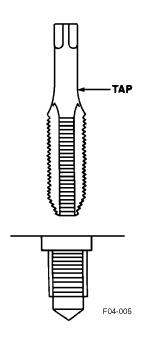


Figure 4-5. Retapping for New Stud

4.1.6 Lockring Studs (Figure 4-6). Locking standard and self-tapping studs can be installed in any material which can be drilled and tapped. Lockring studs eliminate the necessity of undersize and oversize studs commonly in use. The lockring prevents the stud from coming loose

under any conditions, including vibrations, stress, and temperature change. Placing the lockring over the stud automatically engages the inner serrations of the lockring with those of the stud. When driven, the outer serrations accurately broach their way into the parent material without distortion or concentrated stress. This creates not only a secure lock, but also a perfect fit between the serrations of the lockring and the parent material. Although lockring studs have a special pitch diameter on the stud end threads, they require only a national class 3 tapped hole for installation. The special pitch diameter of the threads results in maximum incidence of line-to-line or slight interference fit between the stud and the parent material. Installation of the lockring stud can be accomplished with standard tools, although special installation and removal tools are available.

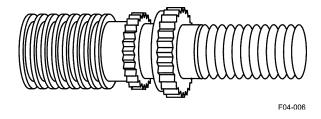


Figure 4-6. Lockring Threaded Stud

4.1.7 Installation of Lockring Stud (Figure 4-7).

- a. Drill, counterbore, chamfer 45 degrees by outside diameter of counterbore, and tap a class 3 hole. (See A, Figure 4-7.)
- b. Install stud with stud wrench. (See B, Figure 4-7.)
- Press in lockring. Check that inner serrations of lockring align with serrations of stud. (See C, Figure 4-7.)

4.1.8 Removal of Lockring Stud (Figure 4-8).

- a. Mill out inner serrations of lockring and serrated collar of stud. (See A, Figure 4-8.)
- b. Unscrew stud from parent material. (See B, Figure 4-8.)
- c. If lockring fails to come out, collapse remaining portion of ring with punch. (See C, Figure 4-8.)

4.2 STUD TOOLS.

Table 4-1 contains the nomenclature and Air Force special tool part number of tools commonly used in the installation and removal of studs.

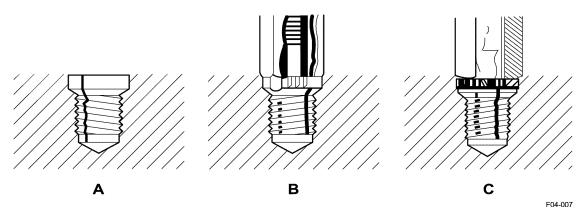


Figure 4-7. Installation of Lockring Stud

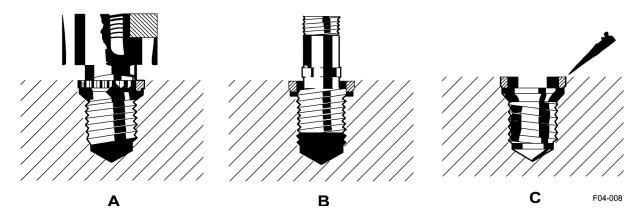
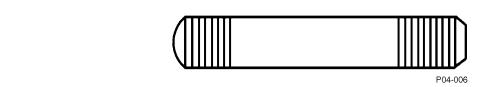


Figure 4-8. Removal of Lockring Stud

Table 4-1. Special Tools for Stud Installation and Removal

Table 4-1. Special Tools for Stud Installation and Removal - Continued

	Special Tool Part Num-	Tool Nomenclature	Special Tool Part Num- ber
Tool Nomenclature	ber	Removing Adapter (7/16 in. dia	803999
Drill (1/8 in. dia x 5-1/8 in., Cleveland Twist Drill Co., No. 950)	801550	stud)	
Drill (No. 19, .166 in. dia, Cleve-	801151	Removing Adapter (1/2 in. dia stud)	806548
land Twist Drill Co., No. 918, or	001131	Tap (1/4 - 20 thd)	84510
equivalent)		Tap (1/4 - 20 thd, .003 in. OS)	84848
Drill (No. 3, .213 in. dia, Cleveland	801152	Tap (1/4 - 20 thd, .007 in. OS)	84231
Twist Drill Co., No. 918, or equiva-		Tap (1/4 - 20 thd, .012 in. OS)	84232
lent)	0.4077	Tap (5/16 - 18 thd)	84444
Drill (1/4 in. dia, Cleveland Twist Drill Co., No. 917, or equivalent)	84277	Tap (5/16 - 18 thd, .003 in. OS)	84849
Drill (9/32 in. dia, Cleveland Twist	84904	Tap (5/16 - 18 thd, .007 in. OS)	84233
Drill Co., No. 917, or equivalent)	01701	Tap (5/16 - 18 thd, .012 in. OS)	84234
Drill (5/16 in. dia, Cleveland Twist	801155	Tap (3/8 - 16 thd)	83717
Drill Co., No. 917, or equivalent)		Tap (3/8 - 16 thd, .003 in. OS)	84850
Drill (3/8 in. dia, Cleveland Twist	801157	Tap (3/8 - 16 thd, .007 in. OS)	84505
Drill Co., No. 917, or equivalent)		Tap (3/8 - 17 thd, .012 in. OS)	84506
Removing Tool (1/4 in. dia stud)	801158	Tap (7/16 14 thd)	83851
Removing Tool (5/16 in. dia stud)	801159	Tap (7/16 - 14 thd, .003 in. OS)	801089
Removing Tool (3/8 in 16 thd	801160	Tap (7/16 - 14 thd, .007 in. OS)	801090
stud)	000150	Tap (7/16 - 14 thd, .012 in. OS)	801091
Removing Tool (7/16 in. dia stud)	802150	Tap (1/2 - 13 thd)	803527
Removing Tool (1/2 in. dia stud)	801163	Tap (1/2 - 13 thd, .003 in. OS)	803224
Removing Tool (9/16 in. dia stud)	801165	Tap (1/2 - 13 thd, .007 in. OS)	803225
Damaged Stud Remover	923247	Tap (1/2 - 13 thd, .012 in. OS)	803226
Removing Puller	923460	Tap (1/4 - 20 thd, .003 in. OS)	806438
Removing Adapter (1/4 in. dia stud)	803996	Tap (1/4 - 20 thd, .007 in. OS)	806439
Removing Adapter (5/16 in. dia	803997	Tap (1/4 - 20 thd, .012 in. OS)	806440
stud) Removing Adenter (2/8 in die stud)	902009	Tap (5/16 - 18 thd, .003 in. OS)	806441
Removing Adapter (3/8 in. dia stud)	803998	Tap (5/16 - 18 thd, .007 in. OS)	806442


Table 4-1. Special Tools for Stud Installation and Removal - Continued

equivalent)

Table 4-1. Special Tools for Stud Installation and Removal - Continued

Tool Nomenclature	Special Tool Part Num- ber	Tool Nomenclature	Special Too Part Num- ber
Tap (5/16 - 18 thd, .012 in. OS)	806443	Installing Collet and Pin (1/2 - 20	805997
Tap (3/8 - 16 thd, .003 in. OS)	806444	thd, use with driver and remover	
Tap (3/8 - 16 thd, .007 in. OS)	806445	805990, Service Tool Co., Bi-Way	
Tap (3/8 - 16 thd, .012 in. OS)	806446	Studder Collet and Pin No. C-33, or equivalent)	
Tap (7/16 - 14 thd, .003 in. OS)	806447	Installing Collet and Pin (7/16 - 20	805996
Tap (7/16 - 14 thd, .007 in. OS)	806448	thd, use with driver and remover	003770
Tap (7/16 - 14 thd, .012 in. OS)	806449	805990, Service Tool Co., Bi-Way	
Tap (1/2 - 13 thd, .003 in. OS)	806450	Studder Collet and Pin No. C-32)	
Tap (1/2 - 13 thd, .007 in. OS)	806451	Installing Collet and Pin (3/8 - 24	805995
Tap (1/2 - 13 thd, .012 in. OS)	806452	thd, use with driver and remover 805990, Service Tool Co., Bi-Way	
Tap (9/16 - 12 thd)	806549	Studder Collet and Pin No. C-31, or	
Tap (9/16 - 12 thd, .003 in. OS)	806550	equivalent)	
Tap (9/16 - 12 thd, .007 in. OS)	806551	Installing Collet and Pin (3/8 - 24	805994
Tap (9/16 - 12 thd, .012 in. OS)	806552	thd, use with driver and remover 805989, Service Tool Co., Bi-Way	
Driver and Remover (1/4 - 28 thd and 5/16 - 24 thd, Service Tool Co.,	805988	Studder Collet and Pin No. C-36, or equivalent)	
Bi-Way Studder No. 220, or equivalent)		Cleaning Tool (3/8 in 24 thd, 5/16 in 24 thd and 1/4 in 28 thd)	803203
Driver and Remover (5/16 - 24 thd	805989	Die (1/4 in 28 thd)	803204
and 3/8 - 24 thd, Service Tool Co.,		Die (5/16 in 24 thd)	803205
Bi-Way Studder No. W-334, or equivalent)		Die (3/8 in 24 thd)	803206
Driver and Remover (3/8 - 24 thd,	805990	Drill Jig	804640
7/16 thd, and 1/2 - 20 thd, Service		Drill Bushing (1/8 in. dia)	804640D4
Tool Co., Bi-Way Studder No. 330,		Drill Bushing (.166 in. dia)	804640D5
or equivalent)	005001	Drill Bushing (.213 in. dia)	804640D6
Installing Collet and Pin (1/4 - 28 thd, use with driver and remover	805991	Drill Bushing (1/4 in. dia)	804640D7
805988, Service Tool Co., Bi-Way		Drill Bushing (9/32 in. dia)	804640D8
Studder Collet and Pin No. C-21, or		Drill Bushing (5/16 in. dia)	804640D9
equivalent)		Nut (1/4 in. dia)	804640D10
Installing Collet and Pin (5/16 - 24	805992	Nut (5/16 in. dia)	804640D11
thd, use with driver and remove 805988; Service Tool Co., Bi-Way Studder Collet and Pin No. C-22, or equivalent)		Nut (3/8 in. dia)	804640D12
Installing Collet and Pin (5/16 - 24 thd, use with driver and remover 805989, Service Tool Co., Bi-Way Studder Collet and Pin No. C-35, or equivalent)	805993		

Table 4-2. NAS183 Coarse Thread Studs

Thread ((Nut End)	Diam	eter	Thread (St	tud End)
Size	Class	Min	Max	Size	Class
10-32	NF-3	.186	.189	10-24	NF-3
1/4-28	NF-3	.246	.249	1/4-20	NF-3
5/16-24	NF-3	.309	.312	5/16-18	NF-3
3/8-24	NF-3	.371	.374	3/8-16	NF-3
7/16-20	NF-3	.433	.437	7/16-14	NF-3
1/2-20	NF-3	.495	.499	1/2-13	NF-3

Code:

First dash number indicates diameter in 1/16-inch increments.

Second dash number indicates length in 1/8-inch increments.

Letter A following dash numbers indicates undrilled stud.

Example of part number:

NAS183-5-23 = stud, coarse thread, 5/16-inch diameter, 2-7/8 inches long, drilled hole in stud.

NAS183-5-23A = stud, coarse thread, 5/16-inch diameter, 2-7/8 kinches long, undrilled.

Material:

Steel - 2330, Military Specification MIL-S-18732 or Government approved equivalent.

Heat treatment:

125,000 to 145,000 PSI, Military Specification MIL-H-6875.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 4-3. NAS184 Fine Thread Studs

Full Thre	ad (Nut End)	Dian	neter	Full Thread	(Stud End)
Size	Class	Min	Max	Size	Class
10-32	NF-3	.186	.189	10-32	NF-3
1/4-28	NF-3	.246	.249	1/4-28	NF-3
5/16-24	NF-3	.309	.312	5/16-24	NF-3
3/8-24	NF-3	.371	.374	3/8-24	NF-3
7/16-20	NF-3	.433	.437	7/16	NF-3
1/2-20	NF-3	.495	.499	1/2-20	NF-3

Table 4-3. NAS184 Fine Thread Studs - Continued

Code:

First dash number indicates diameter in 1/16-inch increments.

Second dash number indicates length in 1/8-inch increments.

Letter A following dash number indicates undrilled stud.

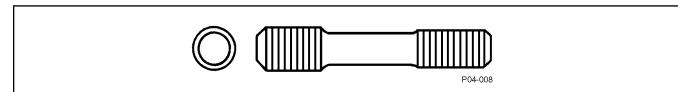
Example of part number:

NAS184-5-23 = stud, fine thread, 5/16-inch diameter, 2-7/8 inches long, drilled hole in stud.

NAS184-5-23A = stud, fine thread, 5/16-inch diameter, 2-7/8 inches long, undrilled.

Material:

Steel - 2330, Military Specification MIL-S-18732 or Government approved equivalent.


Heat treatment:

125,000 to 145,000 PSI, Military Specification MIL-H-6875.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 4-4. Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement

					1	
	Full T	hread	Dian	neter	Min Ful	l Thread
AN Number	Size	Class	Min	Max	Size	Class
AN150501 through AN150800	.250-20	NS	.164	.174	.190-32	NF-3A
AN154701 through AN155000						
AN150801 through AN151100	.3125-18	NS	.221	.231	.250-28	UNF-3A
AN155001 through AN155300						
AN151101 through AN151400	.375-16	NS	.279	.289	.3125-24	UNF-3A
AN155301 through AN155600						
AN151401 through AN151700	.4375-14	NS	.342	.352	.375-24	UNF-3A
AN155601 through AN155900						
AN151701 through AN152000	.500-13	NS	.399	.409	.4375-20	UNF-3A
AN155901 through AN156200						
AN152001 through AN152300	.5625-12	NS	.461	.471	.500-20	UNF-3A
AN156201 through AN156500						
AN152301 through AN152600	.625-11	NS	.520	.530	.5625-18	UNF-3A
AN156501 through AN156800						

Material:

Steel, Aeronautical Material Specification AMS6322.

Hardness:

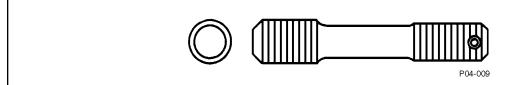

Rockwell C26-32.

Table 4-4. Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement - Continued

Finish:

Cadmium plate, Aeronautical Material Specification AMS2400.

Table 4-5. Drilled Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement

	Full T	hread	Diar	meter	Min Full	Thread
AN Number	Size	Class	Min	Max	Size	Class
AN152601 through AN152900	.250-20	NS	.164	.174	.190-32	NF-3A
AN156801 through AN157100						
AN152901 through AN153200	.3125-18	NS	.221	.231	.250-28	UNF-3A
AN157101 through AN157400						
AN153201 through AN153500	.375-16	NS	.279	.289	.3125-24	UNF-3A
AN157401 through AN157700						
AN153501 through AN153800	.4375-14	NS	.342	.352	.375-24	UNF-3A
AN157701 through AN158000						
AN153801 through AN154100	.500-13	NS	.399	.409	.4375-20	UNF-3A
AN158001 through AN158300						
AN154101 through AN154400	.5625-12	NS	.461	.471	.500-20	UNF-3A
AN158301 through AN158600						
AN154401 through AN154700	.625-11	NS	.520	.530	.5625-18	UNF-3A
AN158601 through AN158900						

Material:

Steel, Aeronautical Material Specification AMS6322.

Hardness:

Rockwell C26-32.

Finish:

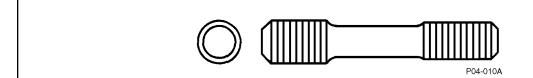

Cadmium plate, Aeronautical Material Specification AMS2400.

Table 4-5. Drilled Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement - Continued

Hole size:

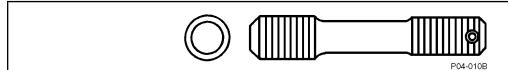
No. 51 (.065-.072).

Table 4-6. Necked Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement

	Full Ti	hread	Dian	neter	Min Full	Thread
AN Number	Size	Class	Min	Max	Size	Class
AN158901 through AN159200	.4375-14	NS	.307	.311	.375-24	UNF-3A
AN161301 through AN161600						
AN159201 through AN159500	.500-13	NS	.357	.361	.4375-20	UNF-3A
AN161601 through AN161900						
AN159501 through AN159800	.5625-12	NS	.417	.421	.500-20	UNF-3A
AN161901 through AN162200						
AN159801 through AN160100	.625-11	NS	.470	.474	.5625-18	UNF-3A
AN162201 through AN162500						

Material:

Steel, Aeronautical Material Specification AMS6322.


Hardness:

Rockwell C26-32.

Finish:

Cadmium plate, Aeronautical Material Specification AMS2400.

Table 4-7. Drilled Necked Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement

	Full T	hread	Dian	neter	Min Ful	Thread
AN Number	Size	Class	Min	Max	Size	Class
AN160101 through AN160400	.4375-14	NS	.307	.311	.375-24	UNF-3A
AN162501 through AN162800						
AN160401 through AN160700	.500-13	NS	.357	.361	.4375-20	UNF-3A
AN162801 through AN163100						
AN160701 through AN161000	.5625-12	NS	.417	.421	.500-20	UNF-3A
AN163101 through AN163400						
AN161001 through AN161300	.625-11	NS	.470	.474	.5625-18	UNF-3A

Table 4-7. Drilled Necked Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement - Continued

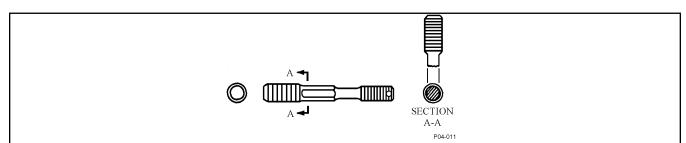
	Full T	hread	Dian	neter	Min Full	Thread
AN Number	Size	Class	Min	Max	Size	Class
AN163401 through AN163700				,		

Material:

Steel, Aeronautical Material Specification AMS6322.

Hardness:

Rockwell C26-32.


Finish:

Cadmium plate, Aeronautical Material Specification AMS2400.

Hole size:

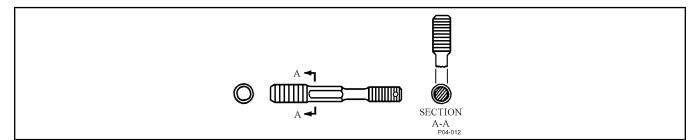
No. 41 (.094-.101).

Table 4-8. Wrench Pad Necked Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement

		hread Pad End)	Dian	neter		hread d End)
AN Number	Size	Class	Min	Max	Size	Class
AN163701 through AN164000	.3125-18	NS	.180	.184	.250-28	UNF-3A
AN167301 through AN167600						
AN164001 through AN164300	.375-16	NS	.229	.233	.3125-24	UNF-3A
AN167601 through AN167900						
AN164301 through AN164600	.4375-14	NS	.285	.289	.375-24	UNF-3A
AN167901 through AN168200						
AN164601 through AN164900	.500-13	NS	.331	.335	.4375-20	UNF-3A
AN168201 through AN168500						
AN164901 through AN165200	.5625-12	NS	.387	.391	.500-20	UNF-3A
AN168501 through AN168800						
AN165201 through AN165500	.625-11	NS	.437	.441	.5625-18	UNF-3A
AN168801 through AN169100						

Material:

Steel, Aeronautical Material Specification AMS6322.


Hardness:

Rockwell C26-32.

Finish:

Cadmium plate, Aeronautical Material Specification AMS2400.

Table 4-9. Wrench Pad Drilled Necked Stepped Studs, 1.5 Diameter and 2.0 Diameter Engagement

		Thread Pad End)	Dian	neter	-	Thread d End)
AN Number	Size	Class	Min	Max	Size	Class
AN165501 through AN165800	.3125-18	NS	.180	.184	.250-28	UNF-3A
AN169101 through AN169400						
AN165801 through AN166100	.375-16	NS	.229	.233	.3125-24	UNF-3A
AN169401 through AN169700						
AN166101 through AN166400	.4375-14	NS	.285	.289	.375-24	UNF-3A
AN169701 through AN170000						
AN166401 through AN166700	.500-13	NS	.331	.335	.4375-20	UNF-3A
AN170001 through AN170300						
AN166701 through AN167000	.5625-12	NS	.387	.391	.500-20	UNF-3A
AN170301 through AN170600						
AN167001 through AN167300	.625-11	NS	.437	.441	.5625-18	UNF-3A
AN170601 through AN170900						

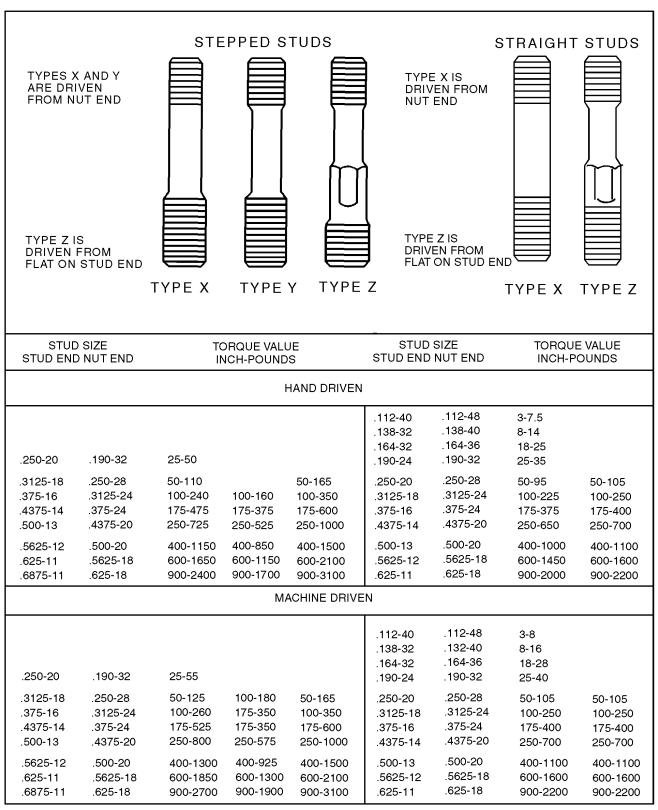
Material:

Steel, Aeronautical Material Specification AMS6322.

Hardness:

Rockwell C26-32.

Finish:


Cadmium plate, Aeronautical Material Specification AMS2400.

Hole size:

No. 30 (.126-.133).

MATERIAL MARKINGS	SIZE	PHYSICAL CHARACTERISTICS	MATERIAL	CLASSIFICATION OR SPECIFICATION
(E)		Rockwell Hardness: C26-32	Steel, Alloy, Medium Carbon	AMS6320 for SAE8735
(EI)		Rockwell Hardness: C26-32	Steel, Alloy, Medium Carbon	AMS6322 for SAE8740
	1	UNDERSIZE AND OVERSIZE IDENTIFICATION MARKINGS USED ON THE ABOVE STUDS	USED ON THE AB	OVE STUDS
	(-3)	.003 Undersize		
	O ite the	Standard		
	stud oppos	.003 Oversize		
	(N) the control of the Material	.006 Oversize		
	ods nO	.009 Oversize		
	(IS	.012 Oversize		

Figure 4-9. Military Material Identification Markings on Studs

F04-098

Figure 4-10. Torque Values For Studs

CHAPTER 5 NUTS

5.1 NUTS.

The performance of a mechanically fastened joint depends upon the type of joint, the strength of the fastener and joint material, and the static and dynamic loads on the joint. The primary function of fasteners is to transmit the full design load to the joined members.

- 5.1.1 The purpose of any nut is to properly load the bolted assembly. To do this there must be a mating condition of the thread. While the thread form of a nut is accurate it cannot be made identical to that of the bolt. The nut must be plastic enough to allow the threads to slightly deform upon tightening and adjust to distribute the load over all threads rather than just the first few. A tough non-heat-treated nut can do this while a heat-treated nut cannot since it will not conform to the bolt threads. Hardened nuts can actually damage the bolt threads to which they are applied, resulting in low tension and loss of holding power vital to fastener performance. A nut should be no harder than is necessary to fully load the fastener assembly.
- 5.1.2 Loose assemblies often spell disaster both to man and equipment. Neglecting to apply or maintain enough of a preload leaves fasteners wide open to early fatigue. Using a strong bolt is not enough. Only when you tighten the bolt beyond the working load do you get a factor of safety. The greater the clamping force (pre-load) developed, the less will be the tendency of parts to creep or shift, also the possibility of a nut backing off or loosening in service is greatly reduced.
- **5.1.3** Therefore to increase performance of the fastener assembly, one simple rule must be observed: Tighten assemblies beyond their working loads and keep them tight, for if the preload applied is greater than the service load encountered there can be no fatigue failure.
- **5.1.4** The ideal point for tightening a fastener assembly is just below the yield strength. This provides a cushion for working load variations and prevents loosening.

5.2 FASTENER FATIGUE FAILURE.

Fatigue failures account for over 75% of all fastener problems. Fatigue breaks are caused by insufficient tightening and lack of proper preload or clamping force. This results in movement between the parts of the assembly in use, and bending back-and-forth or cyclic stressing of the screw. Eventually a tiny crack forms at the high stress point and as the vibration, movement and bending are continued, a second crack, then a third, fourth and so on are formed. These tiny cracks which occur progressively as the bending takes place, cause the part to become weaker until it can no

longer support the load. At this point the screw or bolt breaks in tension or pulls apart.

5.3 TORQUE.

The correct torque to apply when tightening an assembly is a difficult decision because there are so many variables. The screw or bolt takes two stresses when it is tightened, (1) Torsion, and (2) Tension. Tension is the desired stress. Torsion is the necessary evil due to friction. A large percentage of applied torque goes to overcome friction, yet only tension remains after tightening. About 50% of the torque is absorbed in overcoming friction on the working faces of the bolt and nut while 40% is taken up by thread friction leaving only 10% to apply bolt tension (pre-load).

5.3.1 Standard torque charts have been established for average dry unplated conditions but surface variations such as thread roughness, scale, paint, lubrication, (oil, grease, etc.) hardening and plating may alter these values considerably. Also nuts that are reused will require higher torque reading. Torque values will also vary with manufacturers.

NOTE

When torque values are included in a technical manual for a specific end item, these values shall be used in lieu of information contained in this manual.

5.3.2 To obtain the correct recommended torque value on self-locking nuts, the nut must be run down until it is one turn from the beginning of seating. At this point, the prevailing torque should be noted. If the prevailing torque is less than one-third of the recommended torque, it should be disregarded and the nut tightened to the recommended torque value. If the prevailing torque is one-third or more than one-third of the recommended torque, it should be added to the recommended torque. Example: The recommended torque is 50 to 70 inch-pounds. The prevailing torque at one turn from the beginning of seating is 30 inch-pounds. The correct torque wrench reading would be 80 to 100 inch-pounds.

5.4 DEFINITIONS.

For the use of "shall," "will," "should," and "may" in this section see Introduction.

5.4.1 <u>Torque</u>. The turning effort or force required to apply tension to a fastener assembly; normally expressed in inch-pounds or foot-pounds. A one pound weight suspended on a lever arm one foot long exerts one foot-pound of torque. Torquing is the act of tightening a fastener assembly to a specific value.

Table 5-1. Cross Reference on Nuts Replaced by MS21042

632 632 6 832 832 8 1032 1032 11 428 428 4 524 524 5		֚֚֚֚֚֚֚֡֝֝֝֝֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֡֡֓֡֓֡֓֡֓	AN365	MS20364	364	MS2	MS20365	MS21040		NAS679		MS21042
632 832 1032 428 524 624				Rep	Replaced Dash Numbers	sh Numk	ers					Replacement Dash Numbers
632 832 1032 428 524 624		440	440C			440	440C	40	A04	A04W	X04	04
832 1032 428 524 624	532C	632	632C	632	632C	632	632C	90	A06	A06W	90X	90
1032 428 524 624	332C	832	832C	832	832C	832	832C	80	A08	A08W	X08	80
428 524 624	1032C	1032	1032C	1032	1032C	1032	1032C	3	A3	A3W	X3	8
524 624	128C	428	428C	428	428C	428	428C	4	A4	A4W	X4	4
624	524C	524	524C	524	524C	524	524C	5	A5		X5	S
	524C	624	624C	624	624C	624	624C	9	9W		9X	9
								L04	C04M	C04MW		L04
								P00	C06M	C06MW		T06
								F08	C08M	C08MW		L08
								L3	C3M	C3MW		L3
								L4	C4M	C3MW		174
								L5	C5M			L5
								FQ	C6M			FQ

- 5.4.2 <u>Tension</u>. The amount of clamping force developed in an assembly. When a bolt is tightened by torquing, it develops a "holding together" (tension) force on the assembly. The greater the tension, the greater the "holding together" effect.
- 5.4.3 <u>Fatigue</u>. The result of varying stresses or workloads. The simplest form of fatigue occurs when metal is bent back and forth until it is broken.
- 5.4.4 Pre-Loading. Tightening.
- 5.4.5 <u>Tensile Strength</u>. The amount of load required to break or fracture a material, usually expressed in pounds per square inch (P.S.I.) A 3/4-10 cap screw contains 0.3340 square inches of stress area. Made from a 150,000 (P.S.I.) material, it would have a strength of 150,000 x 0.3340 or 50,100 pounds of actual strength. Torque charts and ratings are based on actual minimum tensile strengths for given class of product.
- 5.4.6 <u>Shear Strength</u>. The opposite from tensile strength in that it is caused by push or pull 90 degrees from the axis while tensile strength is determined by longitudinal pull. In the fastener fields shear strength can be roughly calculated as 60 per cent of the ultimate tensile strength of the screw or bolt.

5.5 GENERAL.

The types of nuts used in aircraft structure are plain nuts, castle nuts, check nuts, plate nuts, channel nuts, barrel nuts, internal wrenching nuts, shear nuts, sheet spring nuts, and wing nuts. Many are available in either self-locking or nonself-locking style.

- 5.5.1 During the past few years the government has experienced a trend toward increased usage of lightweight self-locking nuts. The lightweight series nuts have come into prominence because of the increasing strength/weight ratio requirements of modem high-performance aerospace vehicles. When correctly applied, these nuts provide service equal to the old heavyweight nuts, with weight savings which can be substantial when the number of fasteners per aerospace vehicle are considered.
- 5.5.2 Field personnel have experienced numerous problems in the correct identification and application of self-locking nuts. These problems exist because of the multiple types of locking devices, sizes, materials of construction, temperature ratings and thread lubricants, added to the fact that most of the nuts do not have identification markings. These problems have been increased by the introduction of the lightweight series into the government inventory.

5.6 1200 DEGREE NUT IDENTIFICATION.

The purpose of this paragraph is to enable its reader to recognize 1200°F. hexagon, self-locking nuts on sight.

- a. The temperature limit of a nut is the most critical of its parameters. Critical because the result of exceeding it is a failed nut and, more so, because this type of failure occurs, not at installation, but during system operation. It is very important that a 1200° nut be installed where one is specified. This also applies to the other temperature ratings.
- b. 1200° nuts have certain family traits that help identify them as such.
 - (1) Configuration: There are three somewhat different shapes. Two are in the MS20500 series and are illustrated in Figure 5-10 of this chapter. The third is a commercial series produced by several nut manufacturers. It is similar to the top illustration in Figure 5-10 but has much longer tines (slotted part). Among these the height of the tines is greater than the height of the hexagon flats.
 - (2) Plating: Silver. The procurement Specification, MIL-N-7873 requires that the threads be silver plated and optionally allows the entire nut to be plated. This being more economical overall, the nuts are silver plated inside and out. The plating acts as a lubricant and prevents seizing. Silver plating alone is not an indication that the nut is 1200° rated. Nuts rated at 800° and above are also silver plated. One good purpose served is that any nut not silver plated is not a high temperature type.
 - (3) Markings: One flat of the hexagon is stamped 12, H4, H4-R, or H19. The 12 represents MS20500 series nuts. The others represent commercial nuts.
- 5.6.1 It can readily be seen by referring to Table 5-1 through Table 5-6 that a considerable reduction in the number of items stocked will be attained through use of the new superseding standards. This reduction of items will provide greater overall efficiency and economy in the management, procurement, warehousing and storage, and cataloging of self-locking nuts.
- 5.6.2 Concurrent with the development of lightweight nuts, Military Standards (MS) were established to reflect supersedure of many of the old AN, MS, and NAS nuts used in application which do not require lightweight nuts. Cross reference standards are included in Table 5-3 through Table 5-6.
- 5.6.3 It should be noted that due to the reduced height of the lightweight nuts, installations originally designed for lightweight nuts have studs or bolts of shorter length than required for regular weight nuts. Thus, in these applications, regular weight nuts cannot be substituted for lightweight nuts because the locking element (usually near the top portion of the nut) might not engage. For this reason, the lightweight and regular weight nuts are not universally

interchangeable; the lightweight nuts can replace the regular weight nuts, but the regular weight nuts cannot replace the lightweight nuts in all applications.

Table 5-2. Cross Reference on Nuts Replaced by MS21043

N.A	S679	MS21043		
	ced Dash mbers	Replacement Dash Number		
C04	C04W	04		
C06	C06W	06		
C08	C08W	08		
C3	C3W	3		
C4	C4W	4		
C5	C5	5		
C6	C6	6		

NOTE

Although the lightweight series nuts are considered suitable replacement for the regular, weight nuts, this does not hold true for some critical engine applications. Regular weight nuts will be retained for these applications.

5.7 MILITARY STANDARDS (MS) NUTS.

These nuts have a one piece design except for the non-metallic locking feature in some 250°F. nuts and in the free spinning nuts. These standards leave the shape of the top of the nuts and specific locking design optional. Therefore, different manufacturers make nuts with various top shapes and locking designs which meet the same military standards. There are also numerous commercial nuts which do not conform to military standards but which are specified by the aerospace component manufacturers original design.

5.7.1 Due to the numerous MS drawings it is not considered practical to cover all these drawings in this technical manual. However, following subparagraphs are a partial listing of these MS drawings with a brief explanation.

NOTE

The following paragraph 5.7.1, step a through paragraph 5.7.1, step g are intended as general information only and are not intended to authorize substitution or inter-changeability between nuts. Consult I&S Group listings for authorized substitutes.

- a. MS21042 is a lightweight 450°F. external wrenching hex nut having reduced height, reduced hex and a ring base which gives a bearing surface equal to the bearing surface of the nuts it replaces. MS21042 nuts can universally replace AN363, AN364, AN365, MS20365, MS20364, and MS21040 non-corrosion resistant steel nuts of like thread size, and which are either all metal or have non-metallic inserts (see Table 5-1 and Figure 5-2 for head styles).
- b. MS21043 is a lightweight 800°F. nut having reduced height, reduced hex and a ring base which gives a bearing surface equal to the bearing surface of the nuts it replaces. It is available only in corrosion and heat resistant steel, silver plated with external type wrenching. MS21043 replaces NAS 679 nuts of similar material (800°F. temperature rating), both internal and external wrenching types (Table 5-2 and Figure 5-2).
- c. MS21044 is a 250°F. regular series, regular height nut. It is available with non-metallic insert locking feature or in the all-metal series. It is available in carbon steel, aluminum alloy, copper base alloy, or corrosion resistant steel. The material determines the strength rating, which is 60,000 PSI or 125,000 PSI. Except for 7/16-20, 8-32, 10-32, and 1/4-28 sizes in AN365 and MS20365, MS21044 nuts can universally replace AN365, MS20365, and NAS1021 (original issue dated 31 July 1956) nuts of like material and plating, thread size and locking design (all metal or with non-metallic insert). See Table 5-3 and Figure 5-3.

Table 5-3. Cross Reference on Nuts Replaced by MS21044

AN365	MS20365	NAS1021	MS21044
	Replaced Dash Numbers		Replacement Dash Number
440A	440A	N04	N04
632A	632A	N06	N06
		N08	N08
		N3	N3
		N4	N4

Table 5-3. Cross Reference on Nuts Replaced by MS21044 - Continued

AN365	MS20365	NAS1021	MS21044
	Replaced Dash Numbers		Replacement Dash Number
524A	524A	N5	N5
624A	624A	N6	N6
		N7	N7
820A	820A	N8	N8
918A	918A	N9	N9
1018A	1018A	N10	N10
1216A	1216A	N12	N12
1414A	1414A	N14	N14
1614A	1614A	N16	N18
1812A	1812A	N18	N18
2012A	2012A	N20	N20
B440A	B440A	B04	B04
B632A	B632A	B06	B06
		B08	B08
		В3	В3
		B4	B4
B524A	B524A	BS	B5
B624A	B624A	В6	В6
		B7	B7
B820A	B820A	B8	B8
B918A	B918A	В9	В9
B1018A	B1018A	B10	B10
B1216A	B1216A	B12	B12
B1414A	B1414A	B14	B14
B1614A	B1614A	B16	B16
B1812A	B1812A	B18	B18
B2012A	B2012A	B20	B20
B440C	B440C	E04	E04
B632C	B632C	E06	E06
		E08	E08
		E3	E3
		E4	E4
B524C	B524C	E5	E5
B624C	B624C	86	E8
		E7	E7
B820C	B820C	E8	E8
B918C	B918C	E9	E9
B1018C	B1018C	E10	#10
B1216C	B1216C	E12	E12
B1414C	B1414C2	E14	#14
B1614C	B1614C	E16	#16
B1812C	B1812C	E18	E18

Table 5-3. Cross Reference on Nuts Replaced by MS21044 - Continued

AN365	MS20365	NAS1021	MS21044
	Replaced Dash Numbers		Replacement Dash Number
B2012C	B2012C	E20	E20

Table 5-4. Cross Reference on Nuts Replaced by MS21044

AN365	MS20365	NAS1021	MS21044
			Replacement Dash
	Replaced Dash Numbers		Number
D440A	D440A	D04	D04
D632A	D632A	D06	D06
		D08	D08
		D3	D3
		D4	D4
D524A	D524A	D5	D5
D624A	D624A	D6	D6
		D7	D7
D820A	D820A	D8	D8
D918A	D918A	D9	D9
D1018A	D1018A	D10	D10
D1216A	D1216A	D12	D12
D1414A	D1414A	D14	D14
D1614A	D1614A	D16	D16
D1812A	D1812A	D18	D18
D2012A	D2012A	D20	D20
D440C	D440C	H04	H04
D632C	D632C	H06	H06
		H08	H08
		Н3	Н3
		H4	H4
D524C	D524C	Н5	H5
D624C	D624C	Н6	Н6
		H7	H7
D820C	D820C	Н8	Н8
D918C	D918C	Н9	Н9
D1018C	D1018C	H10	H10
D1216C	D1216C	H12	H12
D1414C	D1414C	H14	H14
D1614C	D1614C	H16	H16
D1812C	D1812C	H18	H18
D2012C	D2012C	H20	H20

d. MS21045 is a 450°F. regular height, regular series external wrenching hex nut having a 125,000 PSI

strength rating. It is available in plain steel, cadmium plating or corrosion resisting steel. Except

for the 7/16-20 thread size nuts in AN363, AN365, and MS20365, MS21045 nuts can universally replace the all-metal AN363, AN365, MS20365, and NAS1021 (original issue dated 31 July 1956) nuts of like material, plating and thread size (Table 5-5 and Figure 5-7).

e. MS21046 is a 800°F. regular series, regular height external wrenching hex nut available only in corrosion resistant steel, silver plated. MS21046 nuts replace AN363 and NAS1021 corrosion resistant steel nuts (Table 5-6 and Figure 5-8).

CAUTION

Self-locking castellated nuts require cotter pins or safety wire.

f. Self-locking castellated nuts MS17825 and MS17826 were developed to meet the need for an extra "fail safe" feature in certain critical applications such as joints in aircraft control systems, installation of bearings, bushing, pulleys, cranks, linkages, cam followers, etc., where an externally threaded part would serve as an axle or axis of rotation for another part. These nuts are briefly described as follows:

- (1) MS17825 nuts (Figure 5-9 (A)) are self-locking, castellated, 250°F. external wrenching hex nuts of regular height and regular weight. They are available only in alloy steel, cadmium plated and have non-metallic inserts.
- (2) MS17826 nuts (Figure 5-9) are similar to MS-17825 nuts except that MS17826 types are light-weight, lower torque, reduced height nuts.
- g. MS20500 is a 1200° F. nut. These nuts are bought according to MS20500 (ASG) and its procurement Specification MIL-N-7873, "Nut, Self-Locking, 1200 Degrees Fahrenheit." These are regular height, regular weight, external wrenching hex nuts. They are available only in corrosion resistant and heat resistant steel with silver plating or other approved coating or finish which will prevent nutbolt seizure at 1200°F. They can be identified by the number 12 stamped on one side of each nut. (Figure 5-10).
- h. MS21244 is a 450°F, nut castellated, hexagon counter bored assembled washer (Figure 5-9 (C)) is used with (self-retaining bolts) MS21244 specifies design requirements and procurement specification are cited in FF-N-836.

Table 5-5. Cross Reference on Nuts Replaced by MS21045

AN363	AN365	MS20365	NAS1021	MS21045	
	Replaced Dash Numbers			Replacement Dash Number	
	440C	440C	A04	04	
632	632C	632C	A06	06	
832	832C	832C	A08	08	
1032	1032C	1032C	A3	3	
428	428C	428C	A4	4	
524	524C	524C	A5	5	
624	624C	624C	A6	6	
			A7	7	
820	820C	820C	A8	8	
918	918C	918C	A9	9	
1018	1018C	1018C	A10	10	
1216	1216C	1216C	A12	12	
	1414C	1414C	A14	14	
	1614C	1614C	A16	16	
	1812C	1812C	A18	18	
	2012C	2012C	A20	20	
C632				C04	
C832				C08	

Table 5-5. Cross Reference on Nuts Replaced by MS21045 - Continued

AN363	AN365	MS20365	NAS1021	MS21045
	Replaced Dash Numbers			Replacement Dash Number
C1032				C3
C428				C4
C524				C5
C624				C6
				C 7
C820				C8
C918				C9
C1018				C10
C1216				C12
				C14
				C16
				C18
				C20

Table 5-6. Cross Reference on Nuts Replaced by MS21046

AN363 Replaced D	NAS1021 Dash Numbers	MS21046 Replacement Dash Number
	C04	C04
C632	C06	C06
C832	C08	C08
C1032	C3	C3
C428	C4	C4
C524	C5	C5
C624	C6	C6
C720	C7	C7
C820	C8	C8
C918	C9	C9
C1018	C10	C10
C1216	C12	C12
	C14	C14
	C16	C16
	C18	C18
	C20	C20

5.8 WRENCHING PROBLEMS.

Some manufacturers, Kaynar for example, produce nuts similar to certain MS nuts except for slightly smaller wrenching dimensions. When installation is attempted using standard tools, the corners of the nuts will become rounded off and full installation torque will not be attained. Figure 5-14 lists special Kaynar tools required for these nuts. Figure 5-14 also lists Kaynar internal wrenching tools required to install the internal/external wrenching nuts formerly procured under NAS679 and MS21040 when these nuts are installed in close corners where internal wrenching is required. These NAS679 and MS21040 nuts (Figure 5-11) are not longer procured by the Air Force. See Table 5-1 and Table 5-2 for replacement MS Standard Nuts. The replacement nuts are all external wrenching.

5.9 SELF-LOCKING NUTS.

These nuts provide tight connections which will not loosen under vibration. Self-locking nuts approved for use on aerospace vehicles meet critical specifications as to strength corrosion resistance and temperature.

5.9.1 Application of Self-Locking Nuts.

New self-locking nuts shall be used each time components are installed in critical areas throughout the aerospace vehicle. Self-locking nuts shall not be used with bolts or screws on jet engines aircraft in locations where the loose nut, bolt or screw could fall or be drawn into the engine air intake duct unless otherwise specified by engine manual.

Self-locking nuts shall not be used at joints in control systems of aerospace vehicle structure when movement of the joint may result in motion of the nut relative to the surface against which it is bearing. They may be used with antifriction bearings and control pulleys provided the inner race of the bearing is clamped to the supporting surfaces by the nut and bolt. The nuts which are attached to the structure shall be attached in a positive manner to eliminate the possibility of their rotating or misaligning when the tightening is to be accomplished by rotating the bolts or screws. The manner of attachment must permit removal without injury to the structure and the replacement of the nuts.

5.9.2 Thread Protrusion. In all installations, bolts, studs or screws must extend through nut for at least two threaded pitches. This applies to both self-locking and plain nuts, and includes any chamfer at the bolt end. The requirement for thread protrusion is based on a principle applicable to a bolt and nut assembly when overloaded to the point of failure. The principle is simply that the failure should not consist of thread stripping. The preferred mode of failure is separation of the shank. Accordingly, nuts are manufactured to the precise height (thickness) which provides the necessary length of thread engagement to develop a stripping strength slightly greater than the tensile strength of its intended bolt. The bolt on the other hand has a chamfered end which results in the first two threads being smaller than the rest. These lead threads are to provide easier mating of the nut and bolt but are not intended for engagement because they do not provide a proper fit with the nut threads. The significance of the two lead threads changes with nut size and thread pitch variations. A one inch, UNF thread regular height nut, for example, contains 10.5 threads. In this nut, two threads account for 19 percent of the available thread. A 1/4 inch, UNC, regular height nut has only 4.4 threads and two threads would constitute 45 percent of the threads available for engagement. In the case of non-metallic insert self-locking nut types, the two threads protrusion are required to insure that the thread lock engage only full size threads, as it is designed to do. The lead threads do not provide the proper locking torque. Although there is no set limit to the number of protruding threads in excess of two, these should be kept at a practical minimum. Excess bolt length adds weight, costs more, and contributes nothing to the strength or locking ability of the nut-bolt set. If a bolt is too long, the nut may bottom out against the grip length (unthreaded portion) of the bolt before reaching its proper load. Metal and non-metallic insert type locking nuts 3/8 inch and smaller may be checked by the "finger tight" method. If a nut can be run down with the fingers after the locking feature engages the bolt or stud, indicating the locking friction does not exist, it shall be replaced. The minimum prevailing torque values established for use with a standard torque wrench on used self-locking nuts over 3/8 inch are given in Table 5-7. Freespinning nuts, which require pressure on the bearing face to effect the locking action, are not affected by the limits of torque values shown in Table 5-7.

NOTE

Minimum prevailing torque reading is established when the bolt or stud fully engages the locking insert.

5.9.3 <u>Types</u>. There are two major types of self-locking nuts. These are the prevailing torque type and the free-spinning type. The free-spinning type turns freely until seated whereupon further tightening results in a locking action. The more widely used prevailing torque types require wrenching throughout the entire cycle after the bolt or screw has engaged the frictional part of the nut.

5.9.4 <u>Prevailing Torque Nuts</u>. These may have locking elements described as follows:

- a. Non-metallic nuts (Figure 5-1 (A)). These nuts have a nylon insert of smaller inside diameter than bolt major diameter, which exerts a compressive locking force against the bolt. (Non-metallic nuts formerly had a fiber insert; however, fiber nuts are no longer procured for AF use.) If these nuts are reused, they shall be checked to see if the locking insert has lost its locking friction or become brittle. The non-metallic, locking insert shall never be tapped. Non-metallic insert, self-locking nuts shall not be subjected to temperatures in excess of 250°F in accordance with Military Specification MIL-N-25027.
- b. Slotted or Beam Nuts (Figure 5-1 (B)). This type nut has a tapered and slotted (or split) top. Each portion between slots acts as a beam and is depressed inward to form a functional locking element.
- c. Deformed Thread Type (Figure 5-2). This type nut has a portion of the threads formed in an oval, triangular or square shape rather than round; locking is accomplished by the frictional force developed when the bolt forces these threads into a round shape.
- d. Interrupted Thread Type (Figure 5-3). This nut is basically two nuts combined. The lower portion carries the load while the top provides the locking. The top threads are offset axially downward so that they do not coincide exactly with an imaginary extension of the lower threads. When a bolt enters the top portion it springs these threads into the correct position and the springing action locks the nut.

5.9.5 <u>Free-Spinning Nuts</u>. The free-spinning nuts are divided in three types as follows:

a. Free-Spinning On-Off Type (Figure 5-4). This type consists of a split, tapered, threaded core keyed

into a metal shell with mating tapered core. The small end of the taper is at the bottom of the nut. When the outer shell contacts the bearing surface of the mating part, further rotation of the nut (tightening) forces the core downward to produce collect-type locking action. It is free-spinning on until contact is made with the bearing surface and free-spinning off after being backed away from the bearing surface.

Table 5-7. Minimum Prevailing Torque Values for Reused Self-Locking Nuts

	Fine Thread Series		Course Thread Series
Nut Size	Minimum Prevailing Torque	Nut Size	Minimum Prevailing Torque
7/16-20	8 inch-pounds	7/16 - 14	8 inch-pounds
1/2 - 20	10 inch-pounds	1/2-13	10 inch-pounds
9/16 - 18	13 inch-pounds	9/16 12	14 inch-pounds
5/8-18	18 inch-pounds	5/8-11	20 inch-pounds
3/4 - 16	27 inch-pounds	3/4 - 10	27 inch-pounds
7/8-14	40 inch-pounds	7/8-9	40 inch-pounds
1-12	55 inch-pounds	1-8	51 inch-pounds
1-1/8-12	73 inch-pounds	1-1/8-7	68 inch-pounds
1-1/4 - 12	94 inch-pounds	1-1/4 - 7	88 inch-pounds

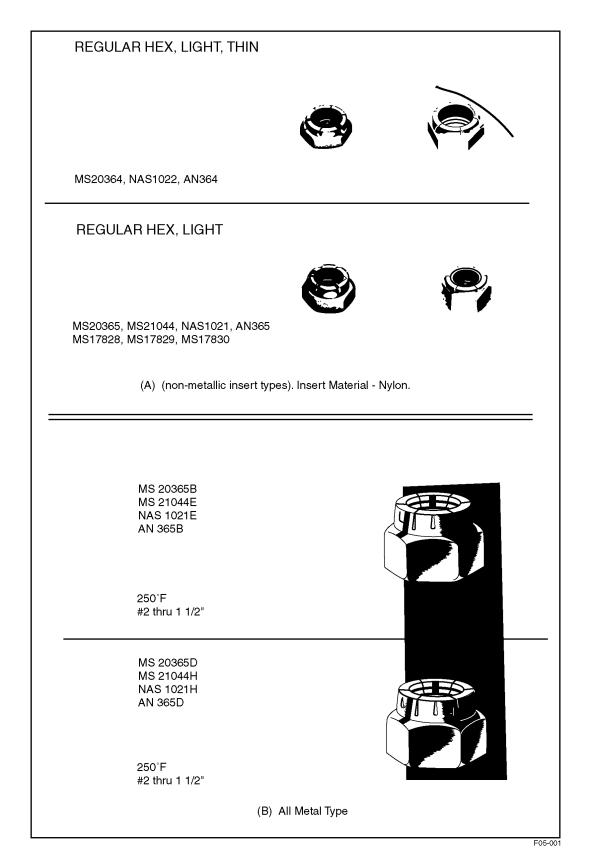


Figure 5-1. Non-Metallic and All-Metal Self-Locking Types

REDUCED DIMENSION HEX

(A)

MS21042, MS21043, NAS1291

6 POINT NUT, REDUCED HEIGHT

NAS1291

MS21042 MS21043

NOTE: Dished out area between wrenching points.

MS 21043 NAS 1291C

FEATHERWEIGHT -Steel MS21042

Figure 5-2. Typical Head Types

b. Free-spinning On Residual Torque off Type (Figure 5-5). This nut has a split core which floats inside a metal shell. The shell dimple seats in the core groove and the nut is free-spinning while being installed until the shell bottoms on the bearing surface. After the shell bottom, further rotation moves the core down and it is compressed into locking position by the shell dimples moving out of the shell groove. The nut retains high prevailing torque while being backed out until, after three turns, a firm blow on the nut will re-seat the shell dimple into the core groove, allowing free-spinning removal.

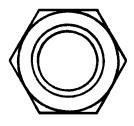


Figure 5-3. Interrupted Thread Type

c. Stressed Nuts (Figure 5-6). These are free-spinning on-off but have a higher seating torque than ordinary free-spinning nuts. These nuts have a ground washer at the bottom which is pressed around the outside circumference of the lower portion of the nut. When seated and torqued, the washer compresses causing a compressive locking force on the inner threaded section.

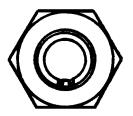
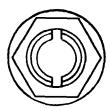
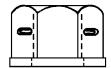


Figure 5-4. Free-Spinning On-Off Type

NOTE

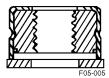

- Free-spinning nuts were designed for exhaust flange attachments and shall be used only as specified in the applicable technical orders of the equipment affected. These nuts are not considered suitable for general aerospace vehicle use.
- The minimum acceptable torque required to remove a free-spinning nut when in the locked position is 10 inch-pounds. Any of these nuts that require less than 10 inchpounds torque to break away when in the locked position shall be disposed of. If the nuts have been correctly torqued, they may be reused, provided there is no indication of internal or external deformation or damage.

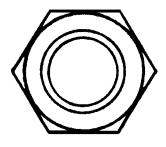

5.10 FINISHES.

Several types of finishes are used on self-locking nuts. The particular type of finish is dependent on the requirement and temperature application. The most generally used types of finishes are described briefly as follows:

- a. Cadmium plating is an electrolytically deposited silver-gray plating which provides exceptionally good protection against corrosion particularly in salt atmosphere. Additional finishes or refinements to the basic cadmium can be applied such as:
 - (1) Chromic Clear Dip Cadmium surfaces are passivated and cyanide from the plating solution is neutralized. The protective film formed gives a bright, shiny appearance, resists staining and finger marks.

(2) Olive Drab Dichromate - Cadmium plated work is dipped in solution of chromic, nitric and acetric acid and a dye which produces corrosion resistance.




Figure 5-5. Free-Spinning On Residual Torque Off
Type

- (3) Indescent Dichromate Cadmium plated work is dipped in solution of sodium dichromate and takes on surface film of basic chromium chormate which resists corrosions. Finish is yellow to brown in color. It must be remembered that cadmium plated nuts are restricted for use in temperature applications not to exceed 450 degrees Fahrenheit. When used in temperatures in excess of 450 degrees fahrenheit, the cadmium will diffuse into the base material causing it to become very brittle and subject to early failure.
- b. Silver Plating. Silver plating is applied to lock nuts for use at higher temperatures. Important advantages are its resistance to extreme heat (1400°F) and its excellent lubricating characteristics. Silver gives high load carrying capacity, resists galling and seizing of mating parts when they are subjected to heat or heavy pressure.

- c. Anodizing for Aluminum. An inorganic oxide coating is formed on the metal by connecting the metals as anodes in a suitable electrolyte. The coating offers excellent corrosion resistance and can be dyed in a number of colors.
- d. Solid Film Lubricant Coating. Lock nuts are also furnished with molybdenum disulphide for lubrication purposes. It provides a clean, dry, permanently bonded coating to prevent seizing and galling of threads. Molybdenum disulphide is applied to both cadmium and silver plated parts.
- Many other types of finishes are available but for the type of self-locking nuts described in this manual the aforementioned finishes are the most widely used.

5.11 STYLES.

5.11.1 <u>Plain Nuts</u>. These nuts are available as self-locking nuts or non self-locking. When the non self-locking plain nuts are used they shall be locked with an auxiliary locking device such as a checknut or lockwasher.

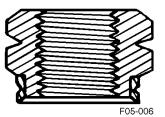
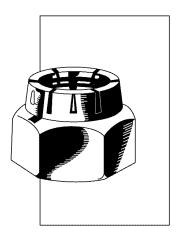



Figure 5-6. Stressed Nuts

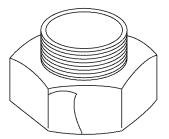
Series

MS 20365 MS 21045 NAS 1021A AN 363, AN 365

(A)

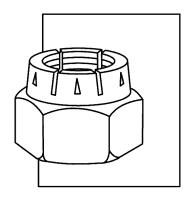
REGULAR HEX

MS20365,

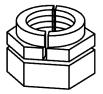

MS21045,

NAS1021, AN363

(B)


H55 Series

(C) F05-007


Figure 5-7. MS21045 Head Styles

NAS 1021C AN 363C MS 21045C MS 21046C

REGULAR HEX

MS20365, MS21046, NAS1021, AN363

H56 Series

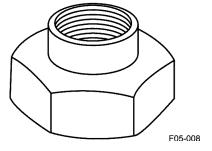
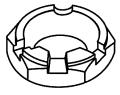


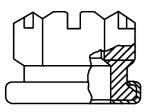
Figure 5-8. MS21046 Head Styles

CASTELLATED HEX, SELF-LOCKING


MS17825

(A)

CASTELLATED HEX, THIN, SELF-LOCKING

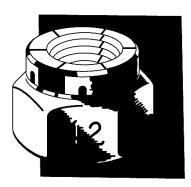

MS17826

(B)

CASTELLATED HEX, COUNTERBORED, ASSEMBLED WASHER

MS21244

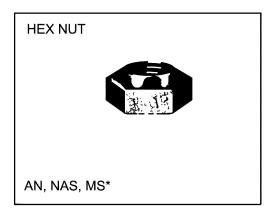
(C)


Figure 5-9. Castellated Self-locking and Counterbored Nuts

REGULAR HEX

MS20500

MS 20500



F05-010


Figure 5-10. MS20500 Head Styles

- 5.11.2 <u>Castle Nuts</u>. These nuts are used with drilled shank, hexhead bolts, cleavis bolts, and drilled head studs. These nuts are designed to be secured with cotter pins or safety wire.
- 5.11.3 <u>Checknuts</u>. These nuts are used as locking devices for non self-locking plain nuts, set-screws, and threaded rod ends.

5.11.4 Plate Nuts. These nuts are used for blind mounting in inaccessible locations and for easier maintenance. They are available in a wide range of sizes and shapes. One lug, two lug, and right-angle shapes are available to accommodate the specific physical requirements of the individual nut location. Floating-type nuts provide a controlled amount of nut movement to compensate for subas-sembly misalignment. They can be either self-locking or plain.

MS21040, NAS 679 Internal Wrenching

MS21040 - External Wrenching

Figure 5-11. Internal and External Wrenching Types

- 5.11.5 Channel Nuts. These nuts are used in applications requiring anchored nuts equally spaced around openings such as access and inspection doors and removable leading edges. Straight or curved channel nut strips offer a wide range of nut spacings and provide a multiple nut unit that has all the advantages of float-type nuts. They are usually self-locking.
- 5.11.6 <u>Barrel Nuts</u>. These nuts are installed in regular, drilled holes. The round portion of the nut fits in the drilled hole providing a self-wrenching effect. They are usually self-locking.
- 5.11.7 <u>Internal Wrenching Nuts</u>. These nuts are generally used where a nut with a high tensile strength is required or where space is limited and the use of external

- wrenching nuts would not facilitate the use of conventional wrenches for installation and removal, usually where the bearing surface is counterbored. These nuts have a non-metallic insert which provides a locking action. They are usually self-locking.
- 5.11.8 Point Wrenching Nuts. These nuts are generally used where a nut with a high tensile strength is required. These nuts are installed with a smaller socket wrench than would normally be used for a hexagon nut. They are usually self-locking.
- 5.11.9 Shear Nuts. These nuts are designed for use with devices such as drilled clevis bolts and threaded taper pins which are normally subjected to shearing stress only. They are usually self-locking.

5.11.10 Sheet Spring Nuts. (See Figure 5-12.) These nuts are used with standard and sheet metal self-tapping screws to support line clamps, conduit clamps, electrical equipment, access doors, etc. The most common types are the flat, the two-lug anchor and the one-lug anchor type. The nuts have an arched spring lock which prevents the screw from working loose. They should be used only where originally used in the fabrication of the aircraft.

5.11.11 Wingnuts. These nuts are used where the desired tightness is obtained by the use of the fingers and where the assembly is frequently removed.

5.11.12 Klincher Locknuts. These locknuts are used to insure a permanent and vibration-proof, bolted connection that holds solidly and resists thread wear. It will withstand extremely high or low temperatures and exposure to lubricants, weather, and compounds without impairing the effectiveness of the locking element. The nut is installed with the end that looks like a double washer toward the metal being fastened. The end that looks like a double hexagon nut is away from the metal being fastened. (See Figure 5-13.)

5.12 <u>SELF-LOCKING NUTS FOR AIRCRAFT</u> ENGINES AND ACCESSORIES.

Self-locking nuts may be used to secure rocker box covers for all air-cooled engines. They are also used on any engine in locations that are specified by the manufacturer on his assembly drawings, parts lists and bills of material, or where their use is shown in the Illustrated Parts Breakdown for a particular type and model of engine or accesssory.

5.12.1 Non-metallic self-locking nuts may be used on engines to secure all engine-driven accessories except where applicable technical orders or other instructions require a specific nut.

5.12.2 Self-locking nuts of number 10 and 1/4-inch size shall not be used with drilled studs.

5.13 TIGHTENING NUTS AND BOLTS.

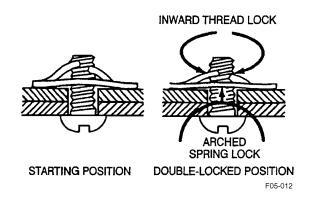


Figure 5-12. Using Sheet Spring Nut

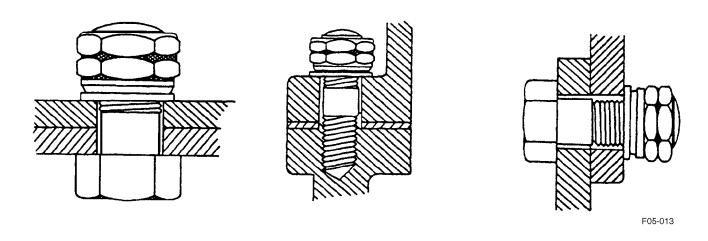


Figure 5-13. Typical Installation of the Klincher Locknut

Tap Size Min (In. - Lb.) Max (In. - Lb.) 10 - 32No. 28 34 75 85 1/4 - 285/16 - 24 160 180 3/8 - 24240 260 500 7/16 - 20450 1/2 - 20550 750 9/16 - 18 900 1100 5/8 - 18 1200 1400 3/4 - 162700 2300 7/8 - 142700 3300

Table 5-8. Torque Values For Free Spinning Self-Locking Plain Nut

Torque Values. These values are to be used when no values are given in the Maintenance Technical Manual of the specific aerospace vehicle.

5000

5.13.1 Failure in aerospace equipment has occurred because of improper tightening of bolts and nuts. To avoid over stressing bolts, the nuts shall be torqued. Table 5-9 gives the recommended torque values for both the fine and coarse thread series of nuts. These values shall be followed unless Maintenance Technical Manual for a specific aircraft requires a specific torque value for a given nut

NOTE

Threads shall not be oiled, as the torque values of Table 5-9 were derived with oil-free threads.

5.13.2 When bolts are tightened, the high limit of the torque values of columns 2 and 3 of Table 5-9 shall be used.

5.13.3 MS, NAS, and AN Drawings. Drawings for these nuts are included in this Technical Manual for your information.

5.14 TORQUE WRENCHES.

1 - 14

When adapters or extensions are used on torque wrenches, the difference in mechanical value must be considered in determining the reading which will give the specified torque at the nut being tightened. The formula shown in Figure 5-15 is used to determine dial reading or torque setting to achieve desired torque:

- S equals Handle Setting
- T equals Torque Applied at End of Adapter

- L_a equals Length of Handle in Inches
- E a equals Length of Extension in Inches

5.14.1 For example, if it is desired to exert 100 inchpounds at the end of the wrench and extension, when $L_{\bf a}$ equals 12 inches and $E_{\bf a}$ equals 6 inches, it is possible to determine the handle setting by making the following calculation:

6000

$$S = T \times L_a$$

 $L_a + E_a$

$$S = \frac{100 \times 12}{(12 + 6)}$$

$$S = \frac{1200}{18}$$

S = 66.6 inch-pounds

5.14.2 Whenever possible, attach the extension in line with the torque wrench. When necessary to attach the extension at an angle to the torque wrench as shown in Figure 5-16, the effective length of the assembly will be $L_a + E_b$ as shown in Figure 5-16. In this instance, length E_b must be substituted for length E_a in the formula.

NOTE

- An extension shall not be used on the grip end of a torque handle.
- Torque tools shall not be used to break loose previously tightened bolts.
- A torque tool shall not be used to apply a greater amount of torque than the rated capacity of the tool.
- Do not attempt to change setting when handleis in a locked position.
- Do not attempt to use an extension on the end of a torque wrench at an angle less than 90 degrees.
- A universal jointed adapter should not be used while using a torque wrench.

5.15 IDENTIFICATION MARKINGS ON NUTS.

Table 5-11 contains the identification markings used on nuts. Location of markings will be as specified in procurement specifications.

5.15.1 In addition to these markings, temperature limitations of nuts can often be determined by visual inspection as follows:

- a. Non-metallic insert nuts are limited to 250°F.
- Cadmium plated nuts are limited to 450°F. These nuts have a whitish color and bright luster when new.
- c. Corrosion resistant or stainless steel nuts are limited to 800°F. There should be no problem in recognizing stainless steel. This nut additionally may be coated with silver flashing, which gives the part a yellowish color and dull luster. Twelve hundred degrees fahrenheit nuts are also silver coated or plated. There is no general rule which can be followed in identifying the 800°F nut with silver coating from the 1200°F nut except in some cases the number 12 may be stamped on one hex.

NUT	SIZE	WRENCH SIZE	WRENCH P/N	WRENCH ILLUSTRATIONS	WRENCH APPLICATIONS
	NC-3B	. 188	W10-04-1	INTERNAL HEX	Used on H10, H01 and H31 in-
	NC-3B	. 233 . 265	W10-05-1 W10-08-1	WRENCH	ternal wrench hex
	NC-3B				nuts.
10-32U	NF-3B	.296	W10-3-1		(NAS 679 and MS
1/4-28	UNF-3B	.348	W10-4-1		21040 nut series)
				W 10	
2-56UN	IC-3B	1/8	W14-046	BOX WRENCH SOCKET WRENCH	Used on *reduced wrench hex nut
4-40UN	IC-3B	1/8	W14-046	SOCKET WRENCH	H14-04 and
4-40UN	₹C-3B	5/32	W14-046		H-14-06.
5-32UN	IC-3B	5/32	W14-046		
4-40UN	IC-3B	1/8	WS14-04		
6-32UN	1C-3B	5/32	WS14-06	W14 WS14	
				MINIATURE DRIVER	
2.56Ut	4C- 3B	3/32	WD 15-3	WRENCH	Used on *Reduced
4- 40UN	4C-3B	1/8	WD 15-4		wrench hex nuts H14, H42, HW14, HW41, HW42.
5-32UN	IC-3B	5/32	WD 15-5		1111 - 14 22 11 F
	NC-3B	3/16	WD15-6		

SPECIAL WRENCHES REQUIRED FOR SOME KAYNAR, LOCKNUTS.

F05-014A

Figure 5-14. Special Wrenches Required for Some Kaynar Locknuts

^{*}Reduced wrench hex nuts are 1/32-in less across flats than similar nuts covered by the appropriate MS Standard.

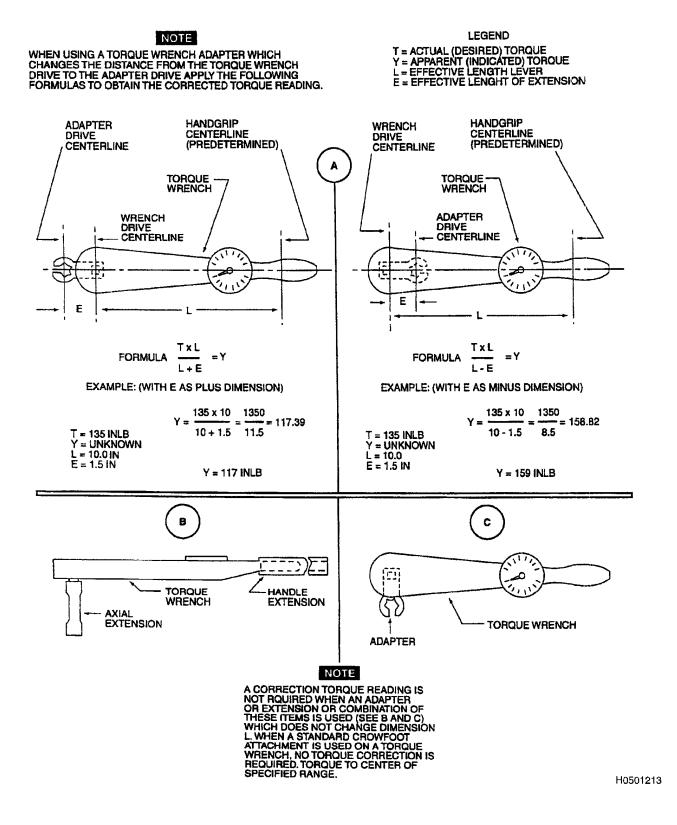
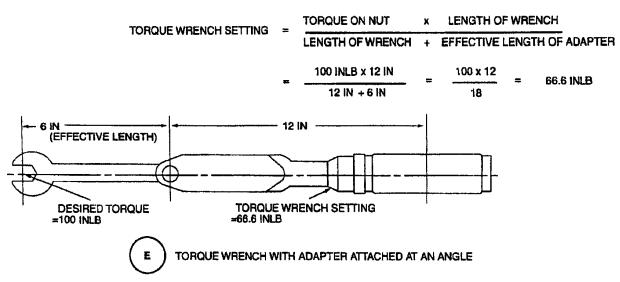
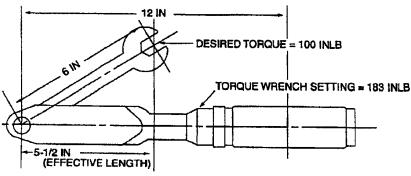



Figure 5-15. Using Torque Wrench Adapters (Sheet 1 of 3)

D TORQUE WRENCH WITH ADAPTER ATTACHED IN LINE

EXAMPLE PROBLEM:


- 1. FIND TORQUE WRENCH SETTING TO APPLY 100 INLB ON NUT, BOLT, OR FITTING.
- 2. GIVEN: a. TORQUE WRENCH LENGTH = 12 IN b. ADAPTER EFFECTIVE LENGTH = 6 IN

EXAMPLE PROBLEM:

- 1. FIND TORQUE WRENCH SETTING TO APPLY 100 INLB ON NUT, BOLT, OR FITTING.
- 2. GIVEN: a. TORQUE WRENCH LENGTH = 12 IN b. ADAPTER EFFECTIVE LENGTH = 5-1/2 IN

TORQUE WRENCH SETTING =
$$\frac{\text{TORQUE ON NUT} \times \text{LENGTH OF WRENCH}}{\text{LENGTH OF WRENCH}} + \frac{100 \text{ INLB} \times 12 \text{ IN}}{12 \text{ IN} + 5 \cdot 1/2 \text{ IN}} = \frac{100 \times 12}{6 \cdot 1/2} = 183 \text{ INLB}$$

H0501214

Figure 5-15. Using Torque Wrench Adapters (Sheet 2)

F TORQUE WRENCH WITH ADAPTER ATTACHED AT AN ANGLE

EXAMPLE PROBLEM:

- 1. FIND TORQUE WRENCH SETTING TO APPLY 100 INLB ON NUT, BOLT, OR FITTING.
- 2. GIVEN: a. TORQUE WRENCH LENGTH = 12 IN b. ADAPTER EFFECTIVE LENGTH = 5-1/2 IN



Figure 5-15. Using Torque Wrench Adapters (Sheet 3)

Table 5-9. Recommended Torque Values (Inch-Pounds)

THE FOLLOWING TORQUE VALUES ARE DERIVED FROM OIL FREE CADMIUM PLATED THREADS.								
		mmended For Installa- d Primarily In Shear)		owable Tightening que Limits				
Tap Size	Tension type nuts MS20365 and AN310 (40,000 PSI in bolts)	Shear type nuts MS20364 and AN320 (24,000 PSI in bolts)	Nuts MS20365 and AN310 (90,000 PSI in bolts)	Nuts MS20364 and AN320 (54,000 PSI in bolts)				
		FINE THREAD SERIES						
8-36	12-15	7-9	20	12				
10-32	20-25	12-15	40	25				
1/4-28	50-70	30-40	100	60				
5/16 - 24	100-140	60-85	225	140				
3/8-24	160-190	95-110	390	240				
7/16-20	450-500	270-300	840	500				

Table 5-9. Recommended Torque Values (Inch-Pounds) - Continued

CAUTION

THE FOLLOWING TORQUE VALUES ARE DERIVED FROM OIL FREE CADMIUM PLATED THREADS.

		mmended For Installa- d Primarily In Shear)	Maximum Allowable Tightening Torque Limits			
Tap Size	Tension type nuts MS20365 and AN310 (40,000 PSI in bolts)	Shear type nuts MS20364 and AN320 (24,000 PSI in bolts)	Nuts MS20365 and AN310 (90,000 PSI in bolts)	Nuts MS20364 and AN320 (54,000 PSI in bolts)		
1/2-20	480-690	290-410	1100	660		
9/16-18	800-1000	480-600	1600	960		
5/8-18	1100-1300	600-780	2400	1400		
3/4-16	2300-2500	1300-1500	5000	3000		
7/8-14	2500-3000	1500-1800	7000	4200		
1-14	3700-5500	2200-3300*	10,000	6000		
1-1/8-12	5000-7000	3000-4200*	15,000	9000		
1-1/4 - 12	9000-11,000	5400-6600*	25,000	15,000		
	С	OARSE THREAD SERIES				
8-32	12-15	7-9	20	12		
10-24	20-25	12-15	35	21		
1/4-20	40-50	25-30	75	45		
5/16-18	80-90	48-55	160	100		
3/8-16	160-185	95-100	275	170		
7/16-14	235-255	140-155	475	280		
1/2-13	400-480	240-290	880	520		
9/16-12	500-700	300-420	1100	650		
5/8-11	700-900	420-540	1500	900		
3/4-10	1150-1600	700-950	2500	1500		
7/8-9	2200-3000	1300-1800	4600	2700		

The above torque values may be used for all cadmium-plated steel nuts of the fine or coarse thread series which have approximately equal number of threads and equal face bearing areas.

Table 5-10. Torque Values for Sheet Spring Nuts

Table 5-10. Torque Values for Sheet Spring Nuts - Continued

	TYPE I		TYPE II		
		MAX (In	4	6	8
Screw Size	MIN (In Lb.)	Lb.)	6	10	12
4	2	3	8	14	18
6	5	7	10	25	30
8	8	10	1/4	50	60
10	14	16	1/4	30	00
1/4	25	35			

^{*}Estimated corresponding values.

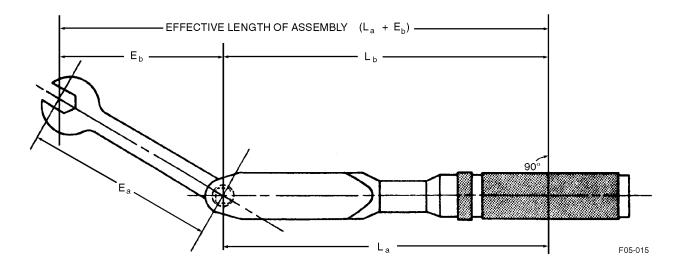
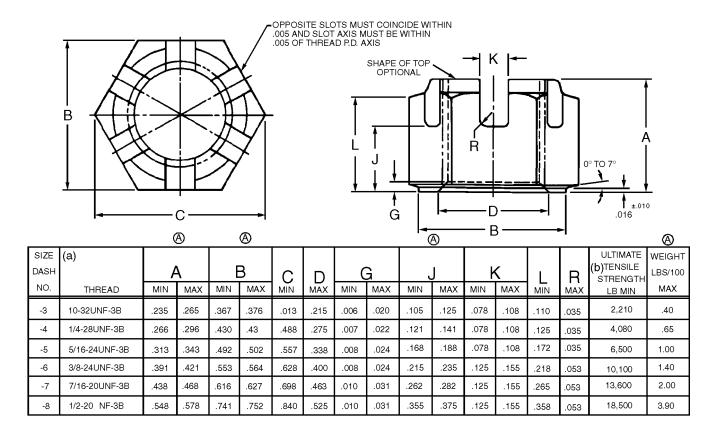


Figure 5-16. Typical Torque Wrench with Typical Extension Attached at an Angle

Table 5-11. Identification Markings on Nuts

	Mili	tary Marking	
Marking	Physical Characteristics	Material	Classification or Specification
1	70,000 PSI Proof Load 120,000 PSI 150,000 PSI	Steel	
E1	RH: C19-26	Steel, Cr, N1	Aeronautical Material Specification AMS6320 for SAE 8735
	Heat Treated - TS: 105,000 PSI RH: C19-26		Aeronautical Material Specification AMS6325 for SAE 8740
E11	RH: C19-26	Steel, Cr, N1	Aeronautical Material Specification AMS6322 for SAE 8740
EC2		Steel, Con Res	Aeronautical Material Specification AMS5628 for SAE 51431
12		Steel, Corr and Ht Res	Military Specification MIL-B-7873, 1200°F
S12		Steel, Corr and Ht Res	Free Spinning, Military Specification MIL-N- 8056, 1200°F
NONE			High Temperature, 550°F Self Locking, Military Specification MIL-N-25027


Table 5-11. Identification Markings on Nuts - Continued

Military Marking							
Marking	Physical Characteristics	Material	Classification or Specification				
Н	Type II 180 Brinell Hardness, Min or 89 Rockwell B Hardness Minimum Heat Treat	Steel, Carbon	Military Specification MIL-S-1222				
4	200 Brinell Hardness Minimum or 94 Rockwell B Hardness Minimum (.40 500) Heat Treat	Steel, Carbon	Military Specification MIL-S-1222				
	AS	TM Marking					
1	RH: B70 MIN	Steel, Carbon	(1) (.15 C-MIN)				
1B	RH: B70 MIN	Steel, Carbon	(2) (.15 C-MIN)				
2	RH: B84 MIN	Steel, Carbon	(1) (.40 C-MIN)				
2B	RH: B84 MIN	Steel, Carbon	(2) (.40 C-MIN)				
2H	RH: C24-37	Steel, Carbon	(3) (.40 C-MIN)				
2HB	RH: C24-37	Steel, Carbon	(4) (.40 C-MIN)				
3	RH: C24-37	Steel, Carbon	(3) (.35 C-MIN)				
3B	RH: C24-37	Steel, Carbon	(4) (.35 C-MIN)				
4	RH: C24-37	Steel, Carbon	(3) (.4050 C-MIN)				
4B	RH: C24-37	Steel, Carbon	(4) (.4050 C-MIN)				
6	RH: C24-37	Steel, CR	(3) A1S1-416 or 416 SE (.12 CK)				
6B	RH: C24-37	Steel, CR	(4) A1S1-416 or 416 SE (.12 CR)				
8	RH: B81 MIN	CRES	(5) A1S1-304 (.18 Cl .08 NI)				
8F	RH: B81 MIN	CRES	(6) A1S1-304 (.18 CI .08 NI)				
8C	RH: B81 MIN	CRES	(5) CB Stabilized, A1S1-347 (18-8)				
8CB	RH: B81 MIN	CRES	(6). CB Stabilized, A1S1-347 (18-8)				
8T	RH: B81 MIN	CRES	(5) TI Stabilized, AlS 321 (18-8)				
8TB	RH: B81 MIN	CRES	(6) TI Stabilized, AlS 321 (18-8)				
8F	RH: B81 MIN	CRES	(5) Free cutting, A1S 303 (18-8)				
8FB	RH: B81 MIN	CRES	(6) Free cutting, A1S 303 (18-8)				

- (1) Nuts hot forged or cold punched
- (2) Nuts machined from bar stock
- (3) Nuts hot forged or cold punched, heat treated
- (4) Nuts machined from bar stock, heat treated
- (5) Nuts hot forged or cold punched, annealed
- (6) Nuts machined from bar stock, annealed

Table 5-11. Identification Markings on Nuts - Continued

Military Marking Physical Classification o								
Marking	Physical Characteristics	Material	Specification of					
	ı	NOTE						
Mark	ing may be at any position on top of	of nut. Marking of nut on side is	s not permitted.					

(a) THREADS IN ACCORDANCE WITH MIL-S-7742.

(b) ULTIMATE TENSILE STRENGTH FIGURES ARE NOT IN ACCORDANCE WITH MIL-N-25027(ASG). A

MATERIAL: BODY, L

(a) THREADS IN ACCORDANCE WITH MIL-S-7742.
(b) ULTIMATE TENSILE STRENGTH FIGURES ARE NOT IN ACCORDANCE WITH MIL-N-25027(ASG). A

BODY, ALLOY STEEL (SEE PROCUREMENT SPECIFICATION). INSERT, NYLON OR EQUIVALENT. MATERIAL:

PLATING: CADMIUM PLATING IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS WHICH MIGHT BECOME DISLODGED UNDER USAGE. SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 SHALL NOT EXCEED 125 RHR. DIMENSION IN INCHES GENERAL:

DESIGN INFORMATION:

THESE NUTS MAY BE USED AT TEMPERATURES 250°F AND BELOW IN THOSE TYPES OF APPLICATIONS FOR WHICH SLOTTED OR CASTELLATED NUTS ARE APPROVED FOR USE; AND IF SUCH APPLICATIONS CONFLICT WITH ANY LIMITATIONS ON THE USE OF SELF-LOCKING NUTS, AS CITED BY MS33588, THIS STANDARD TAKES PRECEDENCE. NUTS ARE TO BE INSTALLED IN ACCORDANCE WITH MS33540.

EXAMPLE OF PART NUMBER:

MS17 25-4 - 1/4-28 NUT, CADMIUM PLATED, NON-METALLIC INSERT.

PERFORMANCE: PER MIL-N-25027 EXCEPT FOR:

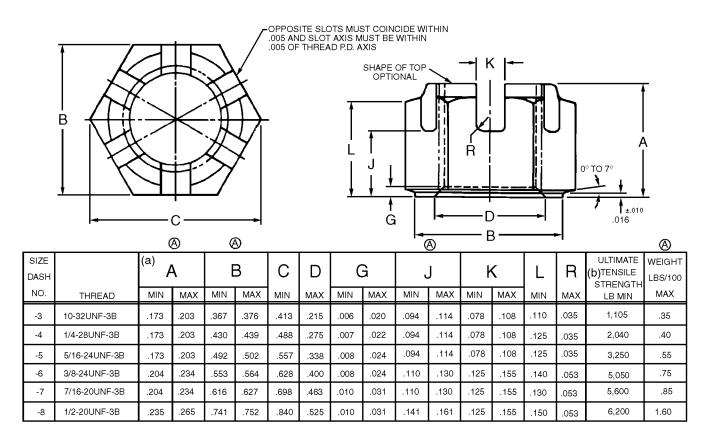
1 - TABULATED ULTIMATE TENSILE STRENGTH VALUES.

2 - VIBRATION TIME FOR NUT SIZES SMALLER THAN 5/16 SHALL BE IN ACCORDANCE WITH MIL-N-25027

3 - VIBRATION TIME FOR NUT SIZES 5/16 AND LARGER SHALL BE 120 MINUTES MINIMUM.

4 - LOCKING TORQUE VALUES APPLICABLE FOR ONE CYCLE AT ROOM TEMPERATURE ONLY.

5 - WRENCH TORQUE TEST VALUES TO BE DIRECTLY PROPORTIONAL TO THE ULTIMATE TENSILE STRENGTH.


QUALIFIED PRODUCTS: ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE IISED FOR DESIGN

CERTAIN PROVISIONS TO APPLY TO THE ACROSS FLATS DIMENSION OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT ABC AIR STD 17/2. WHEN REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICE SO THAT APPROPRIATE ACTION WILL BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

FOR DESIGN FEATURE PURPOSES, THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

Figure 5-17. Drawing MS17825(ASG)

(a) THREADS IN ACCORDANCE WITH MIL-S-7742.
(b) ULTIMATE TENSILE STRENGTH FIGURES ARE NOT IN ACCORDANCE WITH MIL-N-25027(ASG).

BODY, ALLOY STEEL (SEE PROCUREMENT SPECIFICATION). INSERT, NYLON OR EQUIVALENT.

PLATING: CADMIUM PLATING IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

GENERAL: BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS WHICH MIGHT BECOME DISLODGED UNDER

USAGE.
SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 SHALL NOT EXCEED 125 RHR.
DIMENSION IN INCHES.

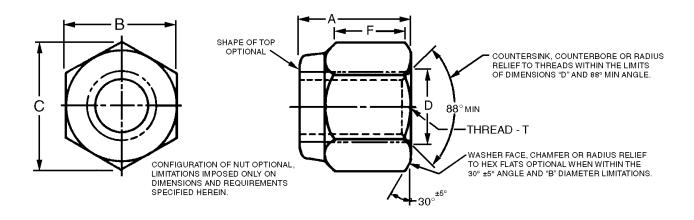
THESE NUTS MAY BE USED AT TEMPERATURES 250°F AND BELOW IN THOSE TYPES OF APPLICATIONS FOR WHICH SLOTTED OR CASTELLATED NUTS ARE APPROVED FOR USE; AND IF SUCH APPLICATIONS CONFLICT WITH ANY LIMITATIONS ON THE USE OF SELF-LOCKING NUTS, AS CITED BY MS33588, THIS STANDARD TAKES PRECEDENCE. NUTS ARE TO BE INSTALLED IN ACCORDANCE WITH MS33540. DESIGN INFORMATION:

EXAMPLE OF PART NUMBER:

MATERIAL:

MS17826-4 - 1/4-28 NUT, CADMIUM PLATED, NON-METALLIC INSERT.

- PERFORMANCE: PER MIL-N-25027 EXCEPT FOR;
 1 TABULATED ULTIMATE TENSILE STRENGTH VALUES.
 2 VIBRATION TIME FOR NUT SIZES SMALLER THAN 5/16 SHALL BE IN ACCORDANCE WITH MIL-N-25027.
 3 VIBRATION TIME FOR NUT SIZES 5/16 AND LARGER SHALL BE 120 MINUTES MINIMUM.
 4 LOCKING TORQUE VALUES APPLICABLE FOR ONE CYCLE AT ROOM TEMPERATURE ONLY.
 5 WRENCH TORQUE TEST VALUES TO BE DIRECTLY PROPORTIONAL TO THE ULTIMATE TENSILE STRENGTH.


QUALIFIED PRODUCTS: ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED FOR DESIGN.

CERTAIN PROVISIONS TO APPLY TO THE ACROSS FLATS DIMENSION OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT ABC AIR STD 17/2. WHEN REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICE SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

FOR DESIGN FEATURE PURPOSES, THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN.

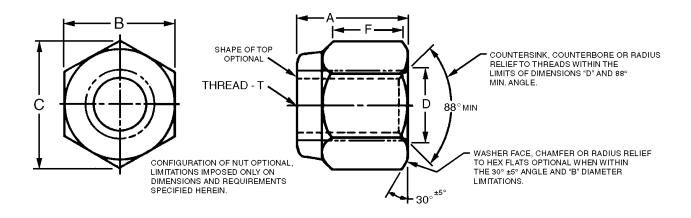

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID

Figure 5-18. Drawing MS17826(ASG)

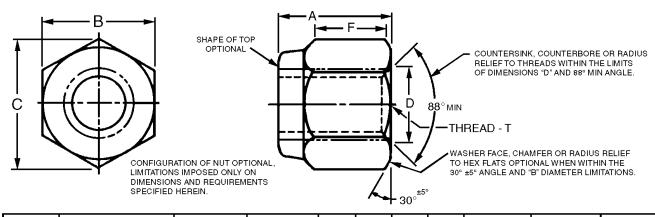
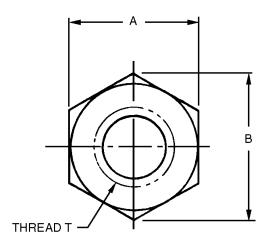
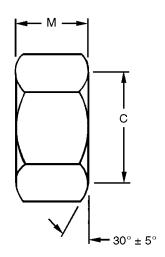

SIZE	DAGU		١.	E	3	С	D	F		THREAD STRIPPING STRENGTH MINIMUM	ULTIMATE WRENCH TORQUE MINIMUM	WEIGHT
NUMBER	THREAD T	MAX	MIN	MAX	MIN	RĔF	±.020	MIN	Х	(POUNDS)	(IN/LBS)	LB/100 MAX
-4C -4F	1/4-20UNC-3B 1/4-28UNF-3B	0.360	0.240	0.440	0.428	0.506	0.273	0.116	0.007	3,900 4.000	40 50	0.90
-5C	5/16-18UNC-3B									6,000	85	
-5F	5/16-24UNF-3B	0.360	0.271	0.502	0.490	0.580	0.336	0.123	0.007	6,400	110	1.30
-6C	3/8-16UNC-3B	0.469	0.318	0.565	0.553	0.650	0.398	0.153	0.008	9,600	140	1.95
-6F	3/8-24UNF-3B	0.469	0.516	0.565	0.553	0.650	0.596	0.153	0.008	10,750	190	1.95
-7C	7/16-14UNC-3B	0.469	0.435	0.690	0.678	0.790	0.467	0.178	0.008	12,000	245	2.30
-7F	7/16-20UNF3B	0.400	0.400	0.000	0.070	0.700	0.407	0.170	0.000	13,070	325	2.00
-8C	1/2-13UNC-3B	0.610	0.575	0.752	0.740	0.870	0.531	0.221	0.009	19,100	440	4.35
-8F	1/2-20UNF-3B	0.0.0	0.0.0	••=	011 10	0.0.0				19,600	500	
-9C -9F	9/16-12UNC-3B	0.704	0.623	0.877	0.865	1.010	0.594	0.243	0.010	22,200 25.000	550 710	7.15
	9/16-18UNF-3B 5/8-11UNC-3B									25,000 28,900	710 750	
-10C -10F	5/8-110NC-3B 5/8-18UNF-3B	0.766	0.732	0.940	0.928	1.080	0.656	0.274	0.010	30.300	1.000	8.73
-12C	3/4-10UNC-3B									38,700	1,225	
-12F	3/4-16UNF-3B	0.891	0.855	1.065	1.052	1.230	0.782	0.316	0.010	39.300	1.725	12.38
-14C	7/8-9UNC-3B				1 000					56,700	2,225	
-14F	7/8-14UNF-3B	1.016	0.965	1.252	1.239	1.440	0.918	0.570	0.011	61,300	2,775	19.46
-16C	1-8UNC-3B	4 4 4 4	1 010	1,440	1.427	1.660	1.044	0.635	0.012	66,700	3,675	00.50
-16F	1-12UNF-3B	1.141	1.010	1.440	1.427	1.660	1.044	0.635	0.012	71,500	4,125	28.52
-18C	1 1/8-7UNC-3B	1.266	1.130	1.627	1.614	1.880	1.171	0.710	0.013	81,900	5,350	41.95
-18F	1 1/8-12UNF-3B	1.200	1.150	1.027	1.014	1.000	1.171	0.710	0.013	90,400	5,975	41.95
-20C	1 1/4-7UNC-3B	1.454	1.300	1.815	1.801	2.090	1.295	0.795	0.014	115,700	7,350	60.37
-20F	1 1/4-12UNF-3B	11.101	1.000	11010	11001	2.000	11200	0.700	0.014	119,800	8,375	00.07
-22C	1 3/8-6UNC-3B	1.609	1.547	2.008	1.973	2.310	1.447	0.890	0.015	137,300	9,900	80.00
-22F	1 3/8-12UNF-3B									143,400	11,200	
-24C	1 1/2-6UNC-3B	1.640	1.578	2.197	2.159	2.525	1.568	0.980	0.016	167,000	13,100	105.00
-24F	1 1/2-12UNF-3B	0.070	0.050	0.700	0.745	0.475	4 040	4.050	0.010	174,000	20,000	050.00
-28C	1 3/4-5UNC-3B	2.376 2.469	2.250	2.762 3.137	2.715	3.175 3.610	1.818	1.250	0.018	255,000 290.000	20,000 20,000	250.00
-32C -36C	2-4 1/2UNC-3B 2 1/4-4 1/2UNC-3B				3.086 3.457	4.040	2.328	1.800	0.020	390,000	20,000	325.00
-36C -40C	2 1/4-4 1/2UNC-3B 2 1/2-4UNC-3B	2.876 3.204	2.750 3.078	3.514 4.015	3.457	4.040	2.328	1.600	0.020	500.000	20,000	500.00
-400	2 1/2-40NO-3B	3.204	3.078	4.015	3.675	4.020	2.5/8	1.000	0.020	300,000	20,000	700.00

Figure 5-19. Drawing MS17828(SHIPS)

SIZE DASH	THREAD		١	E		С	D	F		STRIPPING MINIMUM	MINIMUM ULTIMATE WRENCH	WEIGHT LB/100
NUMBER	Ť	MAX	MIN	MAX	MIN	REF	+.020	MIN	Х	STRENGTH	TORQUE	MAX
-4C	1/4-20UNC-3B	.360	.240	.440	.428	.506	.273	.116	.007	4,770	85	.90
-4F	1/4-28UNF-3B	.360	.240	.440	.428	.506	.273	.116	.007	5,460	115	.90
® -5C	5/16-18UNC-3B	.360	.271	.502	.490	.580	.336	.123	.007	7,860	185	1.30
-5F	5/16-24UNF-3B	.500	.271	.502	.400	.500	.000	.120	.007	8,700	260	1.00
-6C	3/8-16UNC-3B	.469	.318	.565	.553	.650	.398	.153	.008	11,620	315	1.95
-6F	3/8-24UNF-3B	. 100	.010	.000	.000	.000	.000	.100	.000	13,170	450	1.00
-7C	7/16-14UNC-3B	.469	.435	.690	.678	.790	.467	.178	.008	15,940	550	2.30
-7F	7/16-20UNF3B									17,800	885	
-8C	1/2-13UNC-3B	.610	.575	.752	.740	.870	.531	.221	.009	21,300	1,000	4.35
-8F	1/2-20UNF-3B			- '' '						24,000	1,250 1,300	
-9C -9F	9/16-12UNC-3B	.704	.623	.877	.865	1.010	.594	.243	.010	27,300 30,400	1,300	7.15
-9F -10C	9/16-18UNF-3B 5/8-11UNC-3B									33,900	1,725	
-10C	5/8-18UNF-3B	.766	.732	.940	.928	1.080	.656	.274	.010	38,400	2,725	8.73
-12C	3/4-10UNC-3B									50,100	2,875	
-12F	3/4-16UNF-3B	.891	.855	1.065	1.052	1.230	.782	.316	.010	56,000	4,775	12.38
-14C	7/8-9UNC-3B									69,300	5,300	
-14F	7/8-14UNF-3B	1.016	.965	1.252	1.239	1.440	.918	.570	.011	76,400	7,575	19.48
-16C	1-8UNC-3B									90,900	8,750	
-16F	1-12UNF-3B	1.141	1.010	1.440	1.427	1.660	1.044	.635	.012	99,400	10,900	28.52
-18C	1 1/8-7UNC-3B	4 000	4 400	1.627	1 014	4 000	נ די נ	740	.013	114,000	13,100	44.05
-18F	1 1/8-12UNF-3B	1.266	1.130	1.627	1.614	1.880	1.171	.710	.013	128,400	14,800	41.95
-20C	1 1/4-7UNC-3B	1.454	1.300	1.815	1.801	2.090	1.295	.795	.014	145,000	17,600	60.37
-20F	1 1/4-12UNF-3B	1.454	1.300	1.615	1.801	2.090	1.295	.795	.014	161,000	20,000	60.37
-22C	1 3/8-6UNC-3B	1.609	1.547	2.008	1.973	2.310	1.447	.890	.015	173,000	20,000	80.00
-22F	1 3/8-12UNF-3B	1.009	1.547	2.008	1.973	2.510	1.447	.090	.013	197,000	20,000	80.00
-24C	1 1/2-6UNC-3B	1.640	1.578	2.197	2.159	2.525	1.568	.980	.016	211,000	20,000	105.00
-24F	1 1/2-12UNF-3B									237,200	20,000	
-28C	1 3/4-5UNC-3B	2.376	2.250	2.762	2.715	3.175	1.818	1.250	.018	285,000	20,000	250.00
-32C	2-4 1/2UNC-3B	2.469	2.343	3.137	3.086	3.610	2.065	1.350	.020	375,000	20,000	325.00
-36C	2 1/4-4 1/2UNC-3B	2.876	2.750	3.514	3.457	4.040	2.328	1.600	.020	487,500	20,000	500.00
-40C	2 1/2-4UNC-3B	3.204	3.078	4.015	3.875	4.620	2.578	1.800	.020	600,000	20,000	700.00

Figure 5-20. Drawing MS17829(SHIPS)




SIZE D A SH	(a) THREAD		_	E		C	D	F	(b)	(c) MINIMUM STRIPPING	MINIMUM (d) ULTIMATE WRENCH	WEIGHT LB/100
NUMBER		MAX	MIN	MAX	MIN	REF	±.020	MIN	X	STRENGTH	TORQUE	MAX
-4C	1/4-20UNC-3B	.360	.240	.440	.428	.506	.273	.116	.007	1,750	40	
-4F	1/4-28UNF-3B	.360	.240	.440	.428	.506	.213	.116	.007	2,000	50	.90
-5C	5/16-18UNC-3B	.360	.271	.502	.490	.580	.336	.123	.007	2,880	85	1.30
-5F	5/16-24UNF-3B		.=							3,190	110	
-6C -6F	3/8-16UNC-3B 3/8-24UNF-3B	.469	.318	.565	.553	.650	.398	.153	.008	4,260 4,830	140 190	1.95
-6F -7C	7/16-14UNC-3B	_								5,850	245	
-7C	7/16-20UNF-3B	.469	.435	.690	.678	.790	.467	.178	.008	6,530	325	2.30
-8C	1/2-13UNC-3B									7,800	440	
-8F	1/2-20UNF-3B	.610	.575	.752	.740	.870	.531	.221	.009	8,790	500	4.35
-9C	9/16-12UNC-3B	.704	.623	.877	.865	1.010	.594	.243	.010	10,010	550	7.15
-9F	9/16-18UNF-3B	.704	.023	.077	.005	1.010	.594	.240	.010	11,160	710	7.15
-10C	5/8-11UNC-3B	.766	.732	.940	.928	1.080	.656	.274	.010	12,400	750	8.73
-10F	5/8-18UNF-3B	., 00	.,,	.0 10	.020	1.000	.000		.0.0	14,100	1,000	0.70
-12C	3/4-10UNC-3B	.891	.855	1.065	1.052	1.230	.782	.316	.010	18,400	1,225	12.38
-12F	3/4-16UNF-3B									20,500 25,400	1,725 2,225	
-14C -14F	7/8-9UNC-3B 7/8-14UNF-3B	1.016	.965	1.252	1.239	1.440	.918	.570	.011	25,400	2,225	19.46
-14F -16C	1-8UNC-3B									33,300	3,675	
1-16F	1-12UNF-3B	1.141	1.010	1.440	1.427	1.660	1.044	.635	.012	36,500	4,125	28.52
-18C	1 1/8-7UNC-3B		1 100	1.007		4 000		=	0.10	42,000	5,350	41.05
-18F	1 1/8-12UNF-3B	1.266	1.130	1.627	1.614	1.880	1.171	.710	.013	47,100	5,975	41.95
-20C	1 1/4-7UNC-3B	1.454	1.300	1.815	1.801	2.090	1.295	.795	.014	53,300	7,350	60.37
-20F	1 1/4-12UNF-3B	1.454	1.300	1.615	1.601	2.090	1.295	.795	.014	59,000	8,375	60.37
-22C	1 3/8-6UNC-3B	1.609	1.547	2.008	1.973	2.310	1.447	.890	.015	63,500	9,900	80.00
-22F	1 3/8-12UNF-3B	1.000	1.047	2.000	1.070	2.010	1.447	.000	.010	72,300	11,200	00.00
-24C	1 1/2-6UNC-3B	1.640	1.578	2.197	2.159	2.525	1.568	.980	.016	77,300	13,100	105.00
-24F	1 1/2-12UNF-3B									87,000	20,000	
-28C	1 3/4-5UNC-3B	2.376	2.250	2.762	2.715	3.175	1.818	1.250	.018	104,500	20,000	250.00
-32C	2-4 1/2UNC-3B	2.469	2.343	3.137	3.086 3.457	3.610	2.065	1.350	.020	137,500	20,000	325.00
-36C -40C	2 1/4-4 1/2UNC-3B	2.876 3.204	2.750 3.078	3.514 4.015		4.040	2.328	1.600 1.800	.020	178,800 220,000	20,000	500.00
-400	2 1/2-4UNC-3B	3.204	3.078	4.015	3.875	4.620	2.578	1.000	.020	220,000	20,000	700.00

NUTS SHALL CONFORM TO THE REQUIREMENT OF MIL-N-25027 EXCEPT AS FOLLOWS:

- (a) THREADS IN ACCORDANCE WITH SCREW THREAD STANDARDS FOR FEDERAL SERVICES HANDBOOK H28 (1957) PART I.
- (b) BEARING SURFACE SHALL BE SQUARE WITH PITCH DIAMETER WITHIN X WHEN MEASURED IN ACCORDANCE WITH MIL-N-25027.
- (c) MINIMUM STRIPPING STRENGTH VALUES SUPPLEMENT TABLE I OF MIL-N-25027.
- (d) MINIMUM ULTIMATE WRENCH TORQUE VALUES SUPPLEMENT TABLE II OF MIL-N-25027.
- (e) DIMENSIONAL AND LOAD DATA SUPPLEMENT TABLES III AND IX OF MIL-B-857.
- (f) MINIMUM STRIPPING LOADS OF NUTS SHALL BE DETERMINED WITH BOLTS HEAT TREATED TO A MINIMUM ULTIMATE STRENGTH OF 160,000 PSI.

Figure 5-21. Drawing MS17830

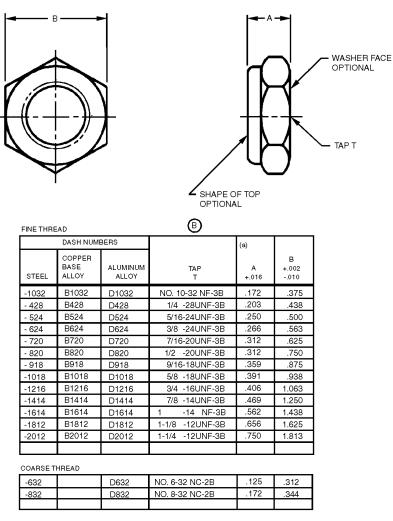
	DASH NO.									
BRASS	BRASS	STEEL	THREAD	Α		В	CI	DIA	F	3
TIN PLATED	SILVER PLATED	CADMIUM PLATED	Т	MAX	MIN	MIN	MAX	MIN	MAX	MIN
-4A	-4B	-4S	NO. 4-40 UNC-2B	.250	.241	.275	.250	.225	.098	.087
-6A	-6B	-6S	NO. 6-32 UNC-2B	.313	.302	.344	.313	.282	.114	.102
-8 A	-8B	-8S	NO.8-32 UNC-2B	.344	.332	.378	.344	.310	.130	.117
-10 A	-10B	-10S	NO. 10-32 UNF-2B	.375	.362	.413	.475	.338	.130	.117
-416A	-416B	-416S	1/4-28 UNF-2B	.438	.423	.482	.438	.394	.193	.178
-516A	-516B	-516S	5/16-24 UNF-2B	.563	.545	.621	.563	.507	.225	.208
-616A	-616B	-616S	3/8-24 UNF-2B	.625	.607	.692	.625	.563	.257	.239
-816A	-816B	-816S	1/2-20 UNF-2B	.813	.788	.898	.813	.732	.442	.402
-1016A	-1016B	-1016S	5/8-18 UNF-2B	1.000	.969	1.104	1.000	.900	.553	.509

MATERIAL:

CARBON STEEL PER FED STD NO. 66, 55,000 PSI MIN., SULPHUR OR PHOSPHORUS SHALL

MATERIAL:

CARBON STEEL PER FED STD NO. 66, 55,000 PSI MIN., SULPHUR OR PHOSPHORUS SHALL NOT EXCEED 0.050% BY WEIGHT. BRASS PER QQ-B-626, COMPOSITION 22, 1/2 MARD.


FINISH:

BRASS: TIN PLATE PER MIL-T-10727, TYPE I OR II, .0001 THICK; SILVER PLATE PER QQ-S-365, .0001 THICK.
STEEL: CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 3.

NOTES: NUTS SHALL BE FREE OF ALL LOOSE OR HANGING BURRS AND SLIVERS WHICH MIGHT BECOME DISLODGED UNDER USAGE. DIMENSIONS IN INCHES.

THREADS SHALL BE IN ACCORDANCE WITH MIL-S-7742.

Figure 5-22. Drawing MS20341(ASG)

MINIMUM A NOT SPECIFIED. LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.

ADD A AFTER DASH NUMBER FOR NUTS HAVING NONMETALLIC INSERTS.

ADD C AFTER DASH NUMBER FOR NUTS FABRICATED ENTIRELY FROM METAL.

EXAMPLES OF PART NUMBERS: MS20364-428 - 1/4-28 STEEL NUT. EITHER ALL METAL OR WITH NONMETALLIC INSERT.
MS20364D428 - 1/4-28 ALUMINUM -ALLOY NUT. EITHER ALL METAL OR WITH
NS20364B428A - 1/4-28 OPPER-BASE-ALLOY NUT WITH NONMETALLIC INSERT.
MS20364-428C - 1/4-28 STEEL, ALL METAL NUT.

DIMENSIONS IN INCHES.

FOR INSTALLATION, SEE STANDARD MS33588.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

- (B) INTERCHANGEABILITY RELATION WITH AN365 PARTS: MS20365 PARTS AN365 PARTS OF LIKE DASH NUMBER ARE UNIVERSALLY, FUNCTIONALLY AND DIMENSIONALLY INTERCHANGEABLE.
- B SHEET NO. 2 ADDED.

*SPECIFICATION AN-N-5 HAS BEEN SUPERSEDED BUT PRODUCTS HAVE NOT BEEN QUALIFIED UNDER THE SUPERSEDING DOCUMENT, SPECIFICATION MIL-N-25027

THIS DOCUMENT HAS BEEN PROMULGATED BY THE DEPARTMENT OF DEFENSE AS THE MILITARY STANDARD TO LIMIT THE SELECTION OF THE ITEM, PRODUCT, OR DESIGN COVERED HEREIN IN ENGINEERING, DESIGN, AND PROCUREMENT. THIS STANDARD SHALL BECOME EFFECTIVE NOT LATER THAN 90 DAYS AFTER THE LATEST DATE OF APPROVAL SHOWN.

(B) FOR CHANGES SEE SHEET NO. 1. F05-022S01

Figure 5-23. Drawing MS20364(ASG) (Sheet 1 of 2)

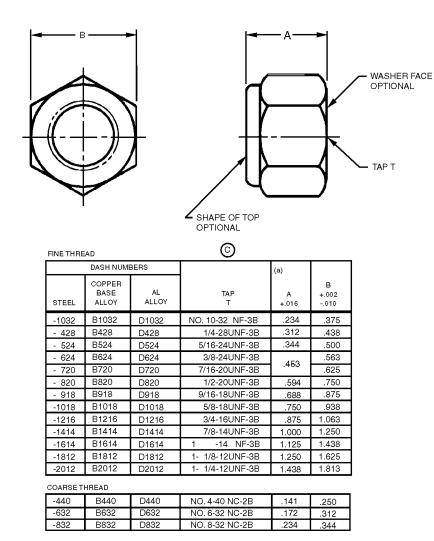
FINE THREAD

DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN
-1032		-1032A		-1032C		B1032		B1032A		B1032C	
-428		-428A		-428C		B428		B428A		B428C	
-524		-524A		-524C		B524		B524A		B524C	
-624		-624A		-624C		B624		B624A		B624C	
-720		-720A		-720C		B720		B720 A		B720C	
-820		-820A		-820C		B820		B820A		B820C	
-918		-918A		-918C		B918		B918A		B918C	
-1018		-1018A		-1018C		B1018		B1018A		B1018C	
-1216		-1216A		-1216C		B1216		B1216A		B1216C	
-1414		-1414A		-1414C		B1414		B1414A		B1414C	
-1614		-1614A		-1416C		B1416		B1416A		B1416C	
-1812		-1812 A		-1812C		B1812		B1812A		B1812C	
-2012		-2012A		-2012C		B2012		B2012A		B2012C	

COARSE THREAD

-632	-632A	-632C	B632	B632A	B632C	
-832	-832 A	-832C	B832	B832A	B832C	

FINE THREAD


DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN
D1032		D1032A		D1032C	
D428		D428 A		D428C	
D524		D524 A		D524C	
D624		D624A		D624C	
D720		D720A		D720C	
D820		D820 A		D820C	
D918		D918A		D918C	
D1018		D1018A		D1018C	
D1216		D1216A		D1216C	
D1414		D1414A		D1414C	
D1614	·	D1614A		D1614C	
D1812		D1812A		D1812C	
D2012		D2012 A		D2012C	

COARSE THREAD

D632	D632A	D632C	
D823	D823 A	D823C	

F05-022S02

Figure 5-23. Drawing MS20364(ASG) (Sheet 2)

MINIMUM A NOT SPECIFIED. LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.

ADD A AFTER DASH NUMBER FOR NUTS HAVING NONMETALLIC INSERTS.

ADD C AFTER DASH NUMBER FOR NUTS FABRICATED ENTIRELY FROM METAL.

EXAMPLES OF PART NUMBERS: MS20365-42C - 1/4-28 STEEL NUT, EITHER ALL METAL OR WITH NONMETALLIC INSERT. MS20365D428 - 1/4-28 ALUMINUM -ALLOY NUT, EITHER ALL METAL OR WITH NONMETALLIC INSERT. MS20365B428A- 1/4-28 OOPPER-BASE-ALLOY NUT WITH NONMETALLIC INSERT. MS20365-428C - 1/4-28 STEEL, ALL METAL NUT.

DIMENSIONS IN INCHES.

FOR INSTALLATION, SEE STANDARD MS33588.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

- C INTERCHANGEABILITY RELATION WITH AN365 PARTS: MS20365 PARTS AN365 PARTS OF LIKE DASH NUMBER ARE UNIVERSALLY, FUNCTIONALLY AND DIMENSIONALLY INTERCHANGEABLE.
- C SHEET NO. 2 ADDED.

*SPECIFICATION AN-N-5 HAS BEEN SUPERSEDED BUT PRODUCTS HAVE NOT BEEN QUALIFIED UNDER THE SUPERSEDING DOCUMENT, SPECIFICATION MIL-N-25027

THIS DOCUMENT HAS BEEN PROMULGATED BY THE DEPARTMENT OF DEFENSE AS THE MILITARY STANDARD TO LIMIT THE SELECTION OF THE ITEM, PRODUCT, OR DESIGN COVERED HEREIN IN ENGINEERING, DESIGN, AND PROCUREMENT. THIS STANDARD SHALL BECOME EFFECTIVE NOT LATER THAN 90 DAYS AFTER THE LATEST DATE OF APPROVAL SHOWN.

С FOR CHANGES SEE SHEET NO. 1. F05-023S01

Figure 5-24. Drawing MS20365(ASG) (Sheet 1 of 2)

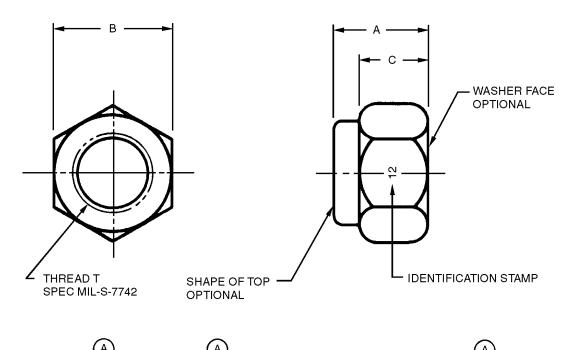
FINE THREAD

DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN
-1032		-1032A		-1032C		B1032		B1032A		B1032C	
-428		-428A		-428C		B428		B428A		B428C	
-524		-524A		-524C		B524		B524A		B524C	
-624		-624A		-624C		B624		B624A		B624C	
-720		-720A		-720C		B720		B720 A		B720C	
-820		-820A		-820C		B820		B820A		B820C	
-918		-918A		-918C		B918		B918A		B918C	
-1018		-1018 A		-1018C		B1018		B1018A		B1018C	
-1216		-1216A		-1216C		B1216		B1216A		B1216C	
-1414		-1414A		-1414C		B1414		B1414A		B1414C	
-1614		-1614A		-1614C		B1614		B1614A		B1616C	
-1812		-1812A		-1812C		B1812		B1812A		B1812C	
-2012		-2012A		-2012C		B2012		B2012A		B2012C	

COARSE THREAD

-440	-440A	-440C	B440	B440 A	B440C	
-632	-632A	-632C	B632	B632A	B632C	
-832	-832A	-832C	B832	B832A	B832C	

FINE THREAD


DASH NO.	FIIN	DASH NO.	FIIN	DASH NO.	FIIN
D1032		D1032A		D1032C	
D428		D428 A		D428C	
D524		D524A		D524C	
D624		D624A		D624C	
D720		D720 A		D720C	
D820		D820 A		D820C	
D918		D918A		D918C	
D1018		D1018 A		D1018C	
D1216		D1216A		D1216C	
D1414		D1414A		D1414C	
D1614		D1614A		D1614C	
D1812		D1812 A	_	D1812C	
D2012		D2012A		D2012C	

COARSE THREAD

D440	D440 A	D440C	
D632	D632A	D632C	
D832	D832 A	D832C	

F05-023S02

Figure 5-24. Drawing MS20365(ASG) (Sheet 2)

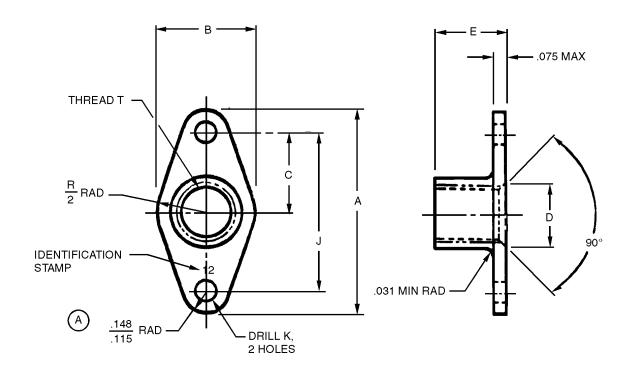
		(A)					
		THREAD	,	4	E	3	С
DASH NO.	FIIN	Т	MAX	MIN	MAX	MIN	MIN
1032		NO. 10-32 NF-3B	.250	.202	.377	.365	.140
428		1/4 -28UNF-3B	.328	.280	.440	.428	.192
524		5/16-24UNF-3B	.360	.312	.502	.490	.200
624		3/8 -24UNF-3B	.469	.421	.565	.553	.278
720		7/16-20UNF-3B	.469	.421	.627	.615	.281
820		1/2 -20UNF-3B	.610	.562	.752	.740	.390
918		9/16-18UNF-3B	.704	.656	.877	.865	.515
1018		5/8 -18UNF-3B	.766	.718	.940	.928	.565
1216		3/4 -16UNF-3B	.891	.843	1.065	1.053	.655
1414		7/8 -14UNF-3B	1.016	.968	1.252	1.240	.750
1614		1 -14UNF-3B	1.141	1.093	1.440	1.428	.845

THE TAPER OF THE SIDES OF THE HEXAGON SHALL NOT EXCEED FOUR DEGREES TOTAL INCLUDED ANGLE.

EXAMPLE OF PART NUMBER: MS20500-428 = 1/4-28 NUT

DIMENSIONS IN INCHES.

(A) INSTALLATION SHALL BE IN ACCORDANCE WITH STANDARD MS33588.


FOR USE WITH BOLTS SHOWN ON STANDARD MS20033 THRU MS20046.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

THIS DOCUMENT HAS BEEN PROMULGATED BY THE DEPARTMENT OF DEFENSE AS THE MILITARY STANDARD TO LIMIT THE SELECTION OF THE ITEM, PRODUCT, OR DESIGN COVERED HEREIN ENGINEERING, DESIGN, AND PROCUREMENT. THIS STANDARD SHALL BECOME EFFECTIVE NOT LATER THAN 90 DAYS AFTER THE LATEST DATE OF APPROVAL SHOWN.

Figure 5-25. Drawing MS20500(ASG)

	(A)	(A)	(A)			(<u> </u>				
DASH NO.	THREAD T	A MAX	B MAX	(a) C MAX	D DIA MIN	MAX	E MIN	MAX	J MIN	MAX	K MIN
632	NO. 6-32 NC-2B	.986	.407	.344	.148	.234	.187	.690	.686	.103	.098
832	NO 8-32 NC-2B	.986	.407	.344	.174	.251	.204	.690	.686	.103	.098
1032	NO. 10-32 NF 3B	.986	.407	.344	.200	.251	.202	.690	.686	.103	.098
428	1/4-28UNF-3B	1.298	.516	.500	.260	.329	.280	1.002	.998	.103	.098
524	5/16-24UNF-3B	1.298	.532	.500	.322	.360	.312	1.002	.998	.135	.130
624	3/8-24UNF-3B	1.298	.641	.500	.385	.469	.406	1.002	.998	.135	.130

⁽a) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE BY MORE THEN .005 IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES.

SHAPE OF TOP OPTIONAL TO SUIT LOCKING METHOD.

NUTS FOR USE BY WELDING TO BE MADE WITHOUT RIVET HOLES. SPACING OF WELDING PROJECTIONS MUST BE EQUAL TO DIMENSION J.

MATERIAL: COROSION-RESISTANT STEEL.

FINISH: SILVER PLATE, IN ACCORDANCE WITH PROCUREMENT SPECIFICATION.

ADD W BEFORE DASH NUMBERS FOR PLATE NUTS FOR USE BY WELDING.

EXAMPLES OF PART NUMBERS: MS20501-428 = 1/4-28 NUT WITH DRILLED LUGS. MS20501W428 = 1/4-28 NUT FOR USE BY WELDING.

DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: DECIMALS ±.016.

FOR INSTALLATION INSTRUCTIONS, SEE DRAWING MS33588.

FOR USE WITH BOLTS SHOWN ON MS20033 THRU MS20046.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID. SHEET NO. 2 ADDED.

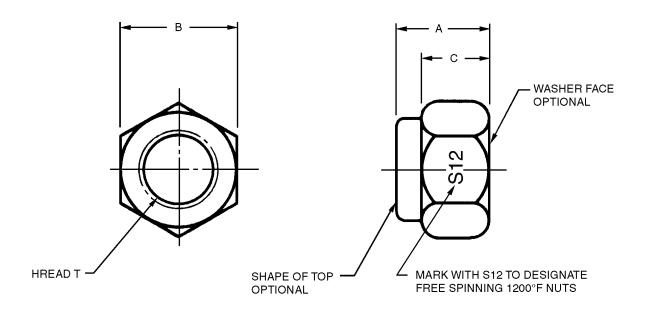

FOR CHANGES SEE SHEET 1. F05-025S01

Figure 5-26. Drawing MS20501(ASG) (Sheet 1 of 2)

DASH NO.	FIIN	DASH NO.	FIIN
632		W632	
832		W832	
1032		W1032	
428		W428	
524		W524	
624		W624	

F05-025S02

Figure 5-26. Drawing MS20501(ASG) (Sheet 2)

DASH	THREAD	/	4	E	3	С
NO.	Т	MAX	MIN	MAX	MIN	MIN
1032	NO. 10-32 NF-3B	0.250	0.202	0.377	0.365	0.125
428	1/4-28UNF-3B	0.328	0.280	0.440	0.428	0.175
524	5/16-24UNF-3B	0.360	0.312	0.520	0.490	0.185
624	3/8-24UNF-3B	0.469	0.421	0.565	0.553	0.260
720	7/16-20UNF-3B	0.469	0.421	0.627	0.615	0.260
820	1/2-20UNF-3B	0.610	0.562	0.752	0.740	0.375
918	6/16-18UNF-3B	0.704	0.656	0.877	0.865	0.500
1018	5/8-18UNF-3B	0.766	0.718	0.940	0.928	0.500
1216	3/4-16UNF-3B	0.891	0.843	1.065	1.053	0.570
1414	7/8 -14UNF-3B	1.016	0.968	1.252	1.240	0.650
1614	1 -14UNF-3B	1.141	1.093	1.440	1.428	0.730

THE TAPER OF THE SIDES OF THE HEXAGON SHALL NOT EXCEED FOUR DEGREES TOTAL INCLUDED.

MATERIAL: SEE PROCUREMENT SPECIFICATION.

FINISH: SEE PROCUREMENT SPECIFICATION.

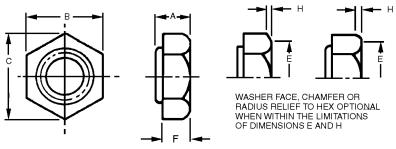
NUTS SHALL BE FREE FROM ALL HANGING BURRS AND SLIVERS WHICH MIGHT

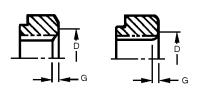
BECOME DISLODGED UNDER USAGE.

EXAMPLE OF PART NUMBER: 20503-428 = 1/4-28UNF-3B NUT.

DIMENSIONS IN INCHES.

FOR USE WITH BOLTS SHOWN ON DRAWING MS20033 THRU MS20046.


FOR INSTALLATION INSTRUCTIONS, SEE DRAWING AND 10068.


CANCELLED AFTER 8 DEC 64. USE MS 20500 (ASG).

MS 20500 NUTS CAN UNIVERSALLY REPLACE AF STD 20503 NUTS OF SAME DASH NUMBER.

F05-026

Figure 5-27. Drawing MS20503

WASHER FACE, CHAMFER OR RADIUS RELIEF TO THREAD OPTIONAL WHEN WITHIN THE LIMITATIONS OF DIMENSIONS D AND G

CONFIGURATION OF NUT IS
OPTIONAL, LIMITATIONS IMPOSED
ONLY ON DIMENSIONS AND
REQUIREMENTS SPECIFIED HEREIN

SIZE DASH	(a)		١	E	3		D D		E MIN	F	C	à		AXIAL STRENGTH	WEIGHT LBS/100
NO.	THREAD	MAX	MIN	MAX	MIN	C REF	MAX	MIN	DIA	MIN	MAX	MIN	H MAX	LBS MIN	MAX
04	4-40 NC-3B	.125	.112	.252	.240	.289	.154	.112	.190	.081	.046	.039	.024	_	.13
06	6-32 NC-3B	.141	.126	.314	.302	.361	.178	.138	.252	.092			.027	_	.23
08	8-32 NC-3B	.188	.140	.346	.334	.390	.203	.173	.284	.122	.049	.042	.037	1,720	.28
3	10-32 NF-3B	1.100	.147	.377	.365	.430	.230	.199	.315	.122			.037	2,460	.35
4	1/4 -28 UNF-3B	.219	.177	.439	.430	.508	.293	.259	.380	.142	.055	.047	.042	4,580	.53
5	5/16-24 UNF-3B	.266	.239	.502	.493	.580	.356	.322	.452	.173			.052	7,390	.85
6	3/8 -24 UNF-3B	.282	.269	.564	.553	.650	.418	.385	.523	.183	.059	.051	.055	11,450	1.10
7	7/16-20 UNF-3B	.328	.315	.690	.679	.790	.482	.448	.629	.213	.066	.056	.064	15,540	1.95
															·
						·	·			, in the second					·

(a) THREADS IN ACCORDANCE WITH MIL-S-7742, BEFORE LUBRICATION.

MATERIAL: STEEL, SEE PERFORMANCE SPECIFICATION.
PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.
LUBRICANT: DRY FILM, WHERE SPECIFIED BY THE CODE LETTER L.

FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT UTILIZED IN INTEGRAL FUEL TANKS.

DIMENSIONS IN INCHES.

LETTER L BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICANT COATED NUTS.

EXAMPLES OF PART NUMBER: MS21040-4 = 1/4-28 NUT, ALL METAL, CADMIUM PLATED.

MS2104L4 = 1/4-28 NUT, ALL METAL, CADMIUM PLATED, DRY FILM LUBRICATED.

ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED FOR DESIGN.
DESIGN INFORMATION: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE
STRENGTH OF 125,000 PSI BASED ON THE AREA AT THE BASIC ROOT DIAMETER OF THE BOLT OR SCREW THREAD.

INTERCHANGEABILITY RELATIONSHIP: MS21040 NUTS CAN UNIVERSALLY REPLACE AN363, MS20364, AND MS20365 NON CORROSION RESISTANT STEEL NUTS OF LIKE THREAD SIZE, AND WHICH ARE EITHER ALL METAL OR HAVE NON-METALLIC INSERTS: BUT THESE AN363, MS20364, AND MS20365 NUTS CAN NOT UNIVERSALLY REPLACE THE MS21040 NUTS.

PROVISIONS OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT. WHEN REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIANS WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICES SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

(A) INACTIVE FOR DESIGN AFTER 23 SEPTEMBER 1960. USE MS21042

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.
REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

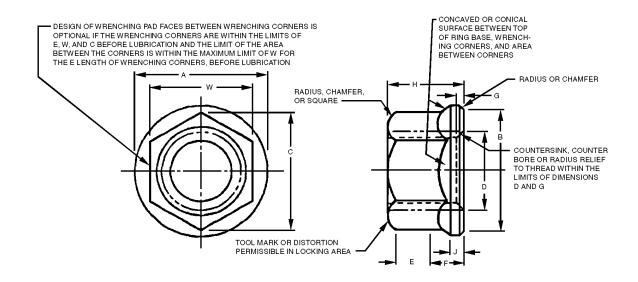

F05-027S01

Figure 5-28. Drawing MS21040(ASG) (Sheet 1 of 2)

DASH NO.	FIIN	DASH NO.	FIIN
04		L04	
06		L06	
08		L08	
3		L3	
4		L4	
5		L5	
6		L6	
7		L7	

(A) INACTIVE FOR DESIGN AFTER 23 SEPTEMBER 1960. USE MS21042

Figure 5-28. Drawing MS21040(ASG) (Sheet 2)

SIZE DASH	(a)				[)	(d)	(e)	(a	ŀ	1	.l	(c) V	٧	(b)	(f) AXIAL STRENGTH	WEIGHT LB/100	(f) WRENCHING TORQUE
NO.	THREAD	A MAX	MIN	MIN	MAX	MIN	MIN	MIN	MAX	MIN	MAX	MIN	MIN	MAX	MIN	-1	LBS MIN	MAX	TEST VALUE IN LBS
02	2-56 UNC-3B	.167	.137	.138	.106	.086	.045	.019	.021	.004	.100	.080		.127	.122	.0025	660	.020	5
04	4-40 UNC-3B	.206	.176	.171	.142	.112	.050	.028	.027	.005	.125	.103	.010	.158	.150		1 110	.050	10
06	6-32 UNC-3B	.244	.214	.207	.168	.138	.055	.039			.141	.115		.190	.181		1 670	.080	20
08	8-32 UNC-3B	.290	.260	.244	.194	.164	.060	.041	.031	.006	.188	.125	015	.221	.213	.003	2 490	.150	30
3	10-32 UNF-3B	.330	.290	.277	.220	.190	.065	.043			.100	.154	.015	.252	.243		3 470	.180	60
4	1/4 -28 UNF-3B	.420	.386	.347	.280	.250	.090	.057	.036	.007	.219	.204	.019	.316	.304		6 200	.350	150
5	5/16-24 UNF-3B	.520	.482	.419	.342	.312	.120	.077	.042	.008	.266	.251	.023	.378	.367	004	9 820	.600	330
6	3/8 -24 UNF-3B	.620	.575	.491	.405	.375	.125	.089	.042	.008	.282	.267	.030	.440	.430	.004	15 200	.800	530

- THREADS IN ACCORDANCE WITH MIL-S-7742 BEFORE LUBRICATION.
 BREAKING SURFACE SHALL BE SQUARE WITH PITCH DIA WITHIN I WHEN MEASURED IN ACCORDANCE WITH MIL-N-25027.
- DIMENSION ACROSS FLATS INCLUDES DEFORMATION OF SELF LOCKING DEVICE.
- MINIMUM LENGTH OF EACH WRENCHING CORNER.
- MINIMUM DISTANCE FROM THE WASHER FACE OF THE NUT TO THE BEGINNING OF THE MINIMUM LENGTH E OF EACH WRENCHING CORNER.
- NUT SHALL BE TESTED FOR WRENCHING TORQUE BY THE USE OF A BOX OR SOCKET WRENCH. TEST BOLTS SHALL BE 180,000 PSI MIN.

NON-CORROSION RESISTANT STEEL. SEE PROCUREMENT SPECIFICATION.

PLAIN CADMIUM PLATED NUTS IN ACCORDANCE WITH QQ.P-416, TYPE II, CLASS 3. DRY FILM LUBRICATED NUTS IN ACCORDANCE WITH QQ.P-416, TYPE AND CLASS ARE OPTIONAL IF THE NUTS WILL MEET THE SALT SPRAY REQUIREMENTS OF QQ.P-416, TYPE II.

LUBRICANT: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS SOLUBLE IN THE CLEANER SPECIFIED IN PROCUREMENT SPECIFICATION.

HARDNESS: ROCKWELL C49 MINIMUM

DIMENSIONS IN INCHES

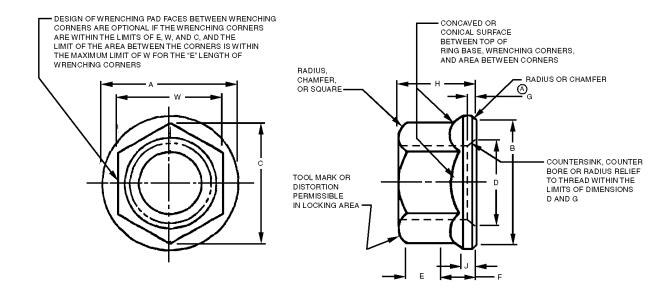
BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS WHICH MIGHT BECOME DISLODGED UNDER USAGE. SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MIN.

THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588.

© LETTER L BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICATED NUTS.

EXAMPLE OF PART NUMBERS: MS21042L4 = 1/4-28 NUT, CADMIUM PLATED, DRY FI MS21042L4 = 1/4-28 NUT, CADMIUM PLATED , DRY FILM LUBRICATED.

MS21042-4 = 1/4-28 NUT, CADMIUM PLATED, NON-DRY FILM LUBRICATED.
ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED FOR DESIGN. QUALIFIED PRODUCTS: INTERCHANGEABILITY RELATIONSHIP: MS21042 NUTS CAN UNIVERSALLY REPLACE AN363, MS20364, MS20365 AND MS21040 NON-CORROSION RESISTANT STEEL NUTS OF LIKE THREAD SIZE, AND WHICH ARE EITHER ALL METAL OR HAVE NON-METALLIC INSERTS: BUT THESE AN363, MS20364, MS20365 AND MS21040 NUTS CANNOT UNIVERSALLY REPLACE THE MS21042 NUT.


IF THE REQUIREMENTS OF THIS DOCUMENT CONFLICT WITH ANY DOCUMENT REFERENCED WITHIN THIS DOCUMENT SHALL GOVERN.

CERTAIN PROVISIONS (THE DIMENSIONS ACROSS THE WRENCHING FLATS) OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT ABC AIR STD 17/2. WHICH REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICE SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

FOR DESIGN FEATURE PURPOSES, THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-028

Figure 5-29. Drawing MS21042(ASG)

									(4)									
	(a)						(d)	(e)						(c)		(b)	(f)	(f)	
SIZE)	l _	l _		3	⊦	1		'	٧		WRENCHING	AXIAL	WT
DASH NO.	THREAD	A MAX	B MIN	C MIN	MAX	MIN	MIN	MIN	MAX	MIN	MAX	MIN	MIN	MAX	MIN	х	TORQUE IN LBS	STRENGTH LBS MIN	LB/100 MAX
04	4-40 UNC-3B	.206	.176	.171	.142	.112	.050	.028	.027	.005	.125	.103	.010	.158	.150		11	755	.050
06	6-32 UNC-3B	.244	.214	.207	.168	.138	.055	.039			.141	.115	.010	.190	.181		17	1,136	.080
08	8-32 UNC-3B	.290	.260	.244	.194	.164	.060	.041	.031	.006	.188	.125	.015	.221	.213	.003	23	1,720	.150
3	10-32 UNF-3B	.330	.290	.277	.220	.190	.065	.043			.100	.154	.015	.252	.243		46	2,460	.180
4	1/4 -28 UNF-3B	.420	.386	.347	.280	.250	.090	.057	.036	.007	.219	.204	.019	.316	.304		115	4,580	.350
5	5/16-24 UNF-3B	.520	.482	.419	.342	.312	.120	.077	.042	.008	.266	.251	.023	.378	.367	.004	260	7,390	.600
6	3/8 -24 UNF-3B	.620	.575	.491	.405	.375	.125	.089	.042	.008	.282	.267	.030	.440	.430	.004	450	11,450	.800

- (a) THREADS IN ACCORDANCE WITH MIL-S-7742.
- (b) BREAKING SURFACE SHALL BE SQUARE WITH PITCH DIA WITHIN X WHEN MEASURED IN ACCORDANCE WITH MIL-N-25027.
- (c) DIMENSIONS ACROSS FLATS INCLUDES DEFORMATION OF SELF-LOCKING DEVICE.
 (d) MINIMUM LENGTH OF EACH WRENCHING CORNER.
- (a) MINIMUM LENGTH OF EACH WHENCHING CORNER.

 (e) MINIMUM DISTANCE FROM THE WASHER FACE OF THE NUT TO THE BEGINNING OF THE MINIMUM LENGTH OF E OF EACH WRENCHING CORNER.
- (f) NUTS SHALL BE TESTED FOR WRENCHING-TORQUE BY THE USE OF A BOX, OPEN END OR SOCKET WRENCH. TEST BOLTS SHALL BE 160,000 PSI MINIMUM.

MATERIAL: CORROSION AND HEAT RESISTANT STEEL, AMS 5525(A286) OR AMS 5735.

PLATING: SILVER PLATE IN ACCORDANCE WITH QQ-S-365, OR AMS 2410 WITH .0001 MIN THICKNESS OF ALL SURFACES INCLUDING THREADS.
MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR - 1.0) FOR A FIELD STRENGTH H-200 OERSTEDS USING A MAGNETIC PERMEABILITY
INDICATOR PER MIL-I-17214 OR EQUIVALENT.

LUBRICANT: LUBRICANTS IF USED SHALL BE SOLUBLE IN THE CLEANER SPECIFIED IN THE PROCUREMENT SPECIFICATION.

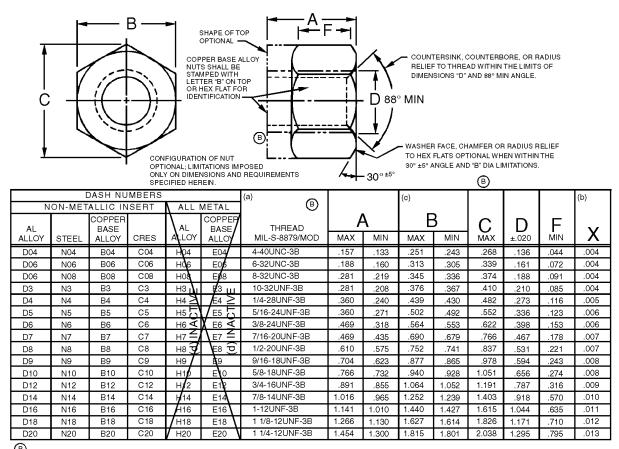
BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 RHR. DIMENSIONS IN INCHES.

DESIGN INFORMATION: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125,000 PSI AT ROOM TEMPERATURE, BASED ON THE AREA AT THE BASIC ROOT DIA OF THE BOLT OR SCREW THREAD.

THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588

EXAMPLE OF PART NUMBER: MS21043-4 = 1/4-28 NUT, SILVER PLATED.


INTERCHANGEABILITY RELATIONSHIP: MS21043 NUTS CAN UNIVERSALLY REPLACE NAS679 (DATED DECEMBER 1957) CORROSION RESISTANT STEEL NUTS OF LIKE THREAD SIZE, PLATING, AND WHICH ARE ALL METAL. BUT THESE NAS679 (DATED DECEMBER 1957) NUTS CANNOT UNIVERSALLY REPLACE THE MS21043 NUTS.

A CERTAIN PROVISIONS (THE DIMENSIONS ACROSS THE WRENCHING FLATS) OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARD IZATION AGREEMENT ABC AIR STD 17/2. WHICH REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICE SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

FOR DESIGN FEATURE PURPOSES, THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-029

Figure 5-30. Drawing MS21043(ASG)

(a) THREADS IN ACCORDANCE WITH MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969

- (b) BEARING SURFACE SHALL BE SQUARE WITH PITCH DIAMETER WITHIN "X" WHEN MEASURED IN ACCORDANCE WITH MIL-N-25027.
- (c) DIMENSION ACROSS FLATS INCLUDE DEFORMATION OF SELF-LOCKING DEVICE.
- (d) INACTIVE FOR DESIGN AFTER 1 APRIL 1965.

MATERIAL: STEEL, ALUMINUM ALLOY, COPPER BASE ALLOY, CRES; SEE PROCUREMENT SPECIFICATION.
INSERT. NYLON OR EQUIVALENT.

- (E) PLATING: STEEL AND COPPER BASE ALLOY NUTS, CADMIUM PLATED IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.
- (B)SURFACE TREATMENT: CORROSION RESISTANT STEEL NUTS. SEE PROCUREMENT SPECIFICATION

ALUMINUM ALLOY NUTS, ANODIZE OR CHEMICALLY SURFACE TREAT IN ACCORDANCE WITH PROCUREMENT SPECIFICATION.

ALUMINUM ALLOY NUTS IN SIZES THRU 1/4-28 DYED BLUE PER PROCUREMENT SPECIFICATION.

LUBRICANT: LUBRICANT, APPROVED IN ACCORDANCE WITH MIL-N-25027, LUBRICANTS SHALL BE SOLUBLE IN THE CLEANER SPECIFIED IN THE PROCUREMENT SPECIFICATION.

- BREAK ALL SHARP EDGES AND REMOVAL ALL HANGING BURRS AND SLIVERS.
- (B) SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

 DIMENSIONS IN INCHES.
- (B) MAGNETIC PERMEABILITY OF CORROSION RESISTANT STEEL NUTS SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR IN ACCORDANCE WITH MIL-I-17214 OR EQUIVALENT.

EXAMPLE OF PART NUMBERS:

MS21044N4 = 1/4-28 STEEL NUT, NON-METALLIC INSERT, CADMIUM PLATED.
 MS21044H4 = 1/4-28 ALUMINUM ALLOY NUT, ALL METAL, ANODIZED.
 MS21044B4 = 1/4-28 COPPER BASE ALLOY NUT, NON-METALLIC INSERT, CADMIUM PLATED.

(B) SHEETS 3, 4 AND 5 ADDED.

(B) FOR CHANGES SEE SHEETS 1, 2, 3, 4 AND 5. F05-030S01

Figure 5-31. Drawing MS21044 (Sheet 1 of 5)

₿	AXIAL STRENGTH			WEIGHT LB/100 MAX			
THREAD MIL-S-8879/MOD	STEEL	LB MIN ALUM	CRES	AL ALLOY	STEEL	COPPER BASE ALLOY	
4-40UNC-3B	750	750	750	.06	.15	.16	
6-32UNC-3B	1,130	1,130	1,130	.11	.30	.32	
8-32UNC-3B	1,720	1,720	1,720	.18	.50	.54	
10-32UNF-3B	2,460	2,460	2,460	.21	.58	.63	
1/4-28UNF-3B	4,580	4,580	4,580	.36	.99	1.10	
5/16-24UNF-3B	7,390	3,670	7,390	.50	1.40	1.50	
3/8-24UNF-3B	11,450	5,680	11,450	.78	2.15	2.30	
7/16-20UNF-3B	15,450	7,660	15,450	1.20	3.40	3.70	
1/2-20UNF-3B	21,110	10,470	21,110	1.70	4.70	5.10	
9/16-18UNF-3B	26,810	13,300	26,810	2.80	7.80	8.50	
5/8-18UNF-3B	34,130	16,930	34,130	3.40	9.50	10.30	
3/4-16UNF-3B	50,020	24,810	50,020	5.00	13.60	15.00	
7/8-14UNF-3B	68,440	33,950	68,440	7.60	21.00	23.00	
1-12UNF-3B	92,180	45,720	92,180	11.00	31.00	33.00	
1 1/8-12UNF-3B	116,700	57,880	116,700	17.00	46.00	50.00	
1 1/4-12UNF-3B	147,940	73,380	147,940	24.00	65.00	70.00	

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI (60 KSI FOR ALUMINUM PARTS) BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS PER MIL-S-7742. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THESE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

VIBRATION LIFE: MINIMUM VIBRATION LIFE REQUIREMENT FOR NON-METALLIC INSERT PARTS SHALL BE THREE TIMES AVERAGE VIBRATION LIFE LISTED IN MIL-N-25027.

(STATUE NOTE)

INTERCHANGEABILITY RELATIONSHIP: MS21044 NUTS CAN UNIVERSALLY REPLACE AN365, MS20365 AND NAS1021 NUTS OF LIKE MATERIAL, PLATING AND THREAD SIZE, EXCEPT FOR AN365 AND MS20365 7/16-20 NUTS. NON-METALLIC INSERT LOCKING DESIGNS CAN BE SUBSTITUTED FOR THE INACTIVATED COPPER BASE OR ALUMINUM ALLOY ALL METAL LOCKING DESIGN NUTS. AN365, MS20365 AND NAS1021 NUTS CANNOT UNIVERSALLY REPLACE THE MS21044 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

CERTAIN PROVISIONS (THE DIMENSIONS ACROSS THE WRENCHING FLATS) OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT ABC AIR STD 17/2. WHEN REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICE SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

Figure 5-31. Drawing MS21044 (Sheet 2)

INTERCHANGEABILITY TABLE I

SELECT NUTS FROM THE FOLLOWING INTERCHANGEABILITY TABLE OF THIS STANDARD AND OF STANDARDS MS21045 AND MS21046 AS SUBSTITUTIVE PARTS FOR AN365, MS20365 AND NAS1021.

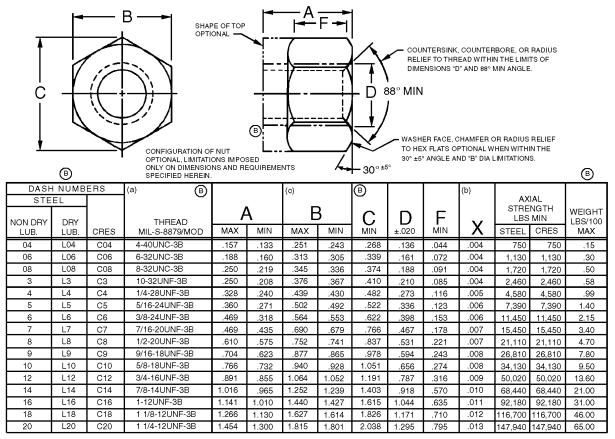
INA	CTIVATED PART I	vos	SUBSTITUTIVE PART NOS	INA	CTIVATED PART I	vos	SUBSTITUTIVE PART NOS		
AN365	MS20365	NAS1021	MS21044	AN365	MS20365	NAS1021	MS21044		
-448			NO DEDI ACEMENT	-1011			NO DEDI ACEMENT		
-448 A			NO REPLACEMENT	-1011A			NO REPLACEMENT		
-440	-440		NO4	-1216	-1216		NHO		
-440 A	-440 A	N04	N04	-1216A	-1216A	N12	N12		
-640			NO REPLACEMENT	-1210			NO REPLACEMENT		
-640 A			NO REPLACEMENT	-1210A			NO REPLACEMENT		
-632	-632		N06	-1414	-1414		N14		
-632A	-632A	N06	1400	-1414A	-1414A	N14	1114		
-836			NO REPLACEMENT	-1409			NO REPLACEMENT		
-836A			NO TIET EAGEMENT	-1409A			NOTIEI EAGENENT		
-832	-832		N08	-1614	-1614				
-832A	-832A	N08	1400	-1614A	-1614A	N17			
-1032	-1032		N3			N16	N16		
-1032A	-1032A	N3	140	-1608			NO REPLACEMENT		
-1024			NO REPLACEMENT	-1608A			NOTIEI EAGEMENT		
-1024 A			NO TIET EAGEMENT	-1812	-1812		N18		
-428	-428		N4	-1812A	-1812 A	N18	1410		
-428 A	-428A	N4	144	-1808			NO REPLACEMENT		
-420			NO REPLACEMENT	-1808A			NOTIEI EAGENENT		
-420 A			NO TIET EAGEMENT	-2012	-2012		N20		
-524	-524		N5	-2012 A	-2012 A	N20	1420		
-524 A	-524 A	N5	140	-2008					
-518			NO REPLACEMENT	-2008A			NO REPLACEMENT		
-518 A			NO TIET EAGEMENT	B448			NOTILI LAGLIVILIVI		
-624	-624		N6	B448 A					
-624A	-624 A	N6	140	B440	B440		B04		
-616				B440 A	B440 A	B04	504		
-616A			NO REPLACEMENT	B640			NO REPLACEMENT		
-720	-720		NO TIET EAGEMENT	B640 A			NOTIEI EAGEMENT		
-720 A	-720 A			B632	B632		B06		
		N7	N7	B632A	B632A	B06	500		
-714			NO REPLACEMENT	B836			NO REPLACEMENT		
-714A			110 HEI LAGEMENT	B836A			NOTIEI EAGENENT		
-820	-820	1	N8	B832	B832		B08		
-820 A	-820 A	N8	INO	B832A	B832	B08	500		
-813			NO REPLACEMENT	B1032	B1032		B3		
-813 A			NO HEI EROEMENT	B1032A	B1032A	B3	50		
-918	-918	1	N9	B1024		1	NO REPLACEMENT		
-918 A	-918 A	N9	INU	B1024A			NOTILI LAGLIVILINI		
-912			NO REPLACEMENT	B428	B28		B4		
-912 A			NOTILI LAGENIENT	B428A	B28 A	B4	D4		
-1018	-1018		N10						
-1018A	-1018A	N10	1410						

Figure 5-31. Drawing MS21044 (Sheet 3)

INTERCHANGEABILITY TABLE II

SELECT NUTS FROM THE FOLLOWING INTERCHANGEABILITY TABLE OF THIS STANDARD AND OF STANDARDS MS21045 AND MS21046 AS SUBSTITUTIVE PARTS FOR AN365, MS20365 AND NAS1021.

INA	CTIVATED PART N	NOS	SUBSTITUTIVE PART NOS		INACTIVATE	ED PART NO:	S	SUBSTITUTIVE PART NOS
AN365	MS20365	NAS1021	MS21044	AN365	MS20365	NAS1021	MS21044	MS21044
B420				B448C				NO REPLACEMENT
B420A			NO REPLACEMENT	B440C	B440C	E04	E04	B04
B524	B524			B640C				NO REPLACEMENT
B524A	B524A	B5	B5	B632C	B632C	E06	E06	B06
B518				B836C				NO REPLACEMENT
B518A			NO REPLACEMENT	B832C	B832C	E08	E08	B08
B624	B624			B1032C	B1032C	E3	E3	B3
B624A	B624A	В6	B6	B1024C				NO REPLACEMENT
B616				B428C	B428C	E4	E4	B4
B616A				B420C				NO REPLACEMENT
B720	B720		NO REPLACEMENT	B524C	B524C	E5	E5	B5
B720A	B720 A			B518C				NO REPLACEMENT
		В7	В7	B624C	B624C	E6	E6	B6
B714				B616C	<u> </u>			
B714A			NO REPLACEMENT	B720C	B720C			NO REPLACEMENT
B820	B820					E7	E7	В7
B820 A	B820A	B8	B8	B714C				NO REPLACEMENT
B813				B820C	B820C	E8	E8	B8
B813A			NO REPLACEMENT	B813C				NO REPLACEMENT
B918	B918			B918C	B918C	E9	E9	B9
B918A	B918A	В9	B9	B912C				NO REPLACEMENT
B912	251511			B1018C	B1018C	E10	E10	B10
B912A			NO REPLACEMENT	B1011C				NO REPLACEMENT
B1018	B1018			B1216C	B1216C	E12	E12	B12
B1018A	B1018A	B10	B10	B1210C				NO REPLACEMENT
B1011	2101011			B1414C	B1414C	E14	E14	B14
B1011A			NO REPLACEMENT	B1409C				
B1216	B1216			B1614C	B1614C	E17		NO REPLACEMENT
B1216	B1216A	B12	B12	B1608C				
B1210						E16	E16	B16
B1210A			NO REPLACEMENT	B1812C	B1812C	E18	E18	B18
B1414	B1414			B1808C			-	NO REPLACEMENT
B1414A	B1414A	B14	B14	B2012C	B2012C	E20	E20	B20
B1409				B2008C				NO REPLACEMENT
B1409A			<u>.</u>					
B1614	B1614		NO REPLACEMENT					
B1614A	B1614A	B17						
		B16	B16					
B1608								
B1608A			NO REPLACEMENT					
B1812	B1812							
B1812A	B1812A	B18	B18					
B1808								
B1808A			NO REPLACEMENT					
B2012	B2012							
B2012A	B2012A	B20	B20		<u> </u>			
B2008					<u> </u>			
B2008A		1	NO REPLACEMENT					


Figure 5-31. Drawing MS21044 (Sheet 4)

INTERCHANGEABILITY TABLE III

SELECT NUTS FROM THE FOLLOWING INTERCHANGEABILITY TABLE OF THIS STANDARD AND OF STANDARDS MS21045 AND MS21046 AS SUBSTITUTIVE PARTS FOR AN365, MS20365 AND NAS1021.

	INACTIVALE	D PART NO	S	SUBSTITUTIVE PART NOS	INAC	CTIVATED PART I	NOS	SUBSTITUTIVE PART NO
AN365	MS20365	NAS1021	MS21044	MS21044	AN365	MS20365	NAS1021	MS21044
D448C				NO REPLACEMENT	D420			NO REPLACEMENT
0440C	D440C	H04	H04	D04	D420A			
0640C				NO REPLACEMENT	D524	D524		
0632C	D632C	H06	H06	D06	D524A	D524A	D5	D5
836C		1100	1100	NO REPLACEMENT	D518	202111		
0832C	D832C	H08	H08	D08	D518A			NO REPLACEMENT
01032C	D1032C	H3	H3	D3	D624	D624		
01024C		110	110	NO REPLACEMENT	D624	D624A	D6	D6
0428C	D428C	H4	H4	D4	D616	DOZAA	30	20
0420C	D-1200	F144	Π4	NO REPLACEMENT	D616A			
0524C	D524C				D720	D700		NO REPLACEMENT
0518C	D324C	H5	H5	D5	D720	D720		NO TIEL LACEMENT
	D0040			NO REPLACEMENT	D720	D720 A	57	D7
0624C	D624C	H6	H6	D6	5711		D7	D7
0616C				NO REPLACEMENT	D714			
0720C	D720C				D714A			NO REPLACEMENT
		H7	H7	D7	D820	D820		
714C				NO REPLACEMENT	D820A	D820A	D8	D8
0820C	D820C	H8	H8	D8	D813			
0813C				NO REPLACEMENT	D813A			NO REPLACEMENT
0918C	D918C	H9	H9	D9	D918	D918		
0912C				NO REPLACEMENT	D918A	D918A	D9	D9
01018C	D1018C	H10	H10	D10	D912			
D1011C				NO REPLACEMENT	D912A			NO REPLACEMENT
D1216C	D1216C	H12	H12	D12	D11018	D1018		
01210				NO REPLACEMENT	D1018A	D1018A	D10	D10
01414C	D1414C	H14	H14	D14	D1011			
01409C			1111-4		D1011A			NO REPLACEMENT
D1614C	D1614C	H17		NO REPLACEMENT	D1216	D1216		
D1608C	2.01.10	1117		NOTICE EXCENSES	D1216A	D1216A	D12	D12
310000		H16	LI46	D16	D1210	DIZTOA	3.2	
D1812C	D1812C		H16	D18	D1210A		-	NO REPLACEMENT
_	DIGIZO	H18	H18		D1210A	D1444		NO TIET EAGENIENT
D1808C	DOGGOO			NO REPLACEMENT	-	D1414	D44	D44
D2012C	D2012C	H20	H20	D20	D1414A	D1414	D14	D14
D2008C				NO REPLACEMENT	D1409			
	INIACTIVATE	D PART NO	G G	CURSTITUTIVE PART NOS	D1409A			
				SUBSTITUTIVE PART NOS	D1614	D1614		NO REPLACEMENT
AN365	MS:	20365	NAS1021	MS21044	D1614A	D1614A	D17	
D448							D16	D16
D448A				NO REPLACEMENT	D1608			
D440	D4	40			D1608A			NO REPLACEMENT
D440A	_	40A	D04	D04	D1812	D1812		
D640	. 104	A	204	504	D1812A	D1812A	D18	D18
D640A	+	-+		NO REPLACEMENT	D1808			
	$-\!\!\!\!-\!\!\!\!-$	200		NO DEFLACEMENT	D1808A			NO REPLACEMENT
D632A	_		D02	DOG	D2012	D2012		
D632A	· De	32A	D06	D06	D2012A	D2012A	D20	D20
D836					D2008			
D836A				NO REPLACEMENT	D2008A			NO REPLACEMENT
D832		32					 	
D832A	-	32A	D08	D08	[
D1032	DI	032			[
D1032	A D1	032A	D3	D3				
D1024					[
D1024	А			NO REPLACEMENT	[
		28			I			
D428	D4							

Figure 5-31. Drawing MS21044 (Sheet 5)

- (B) (a) THREADS IN ACCORDANCE WITH MIL-S-8879 BEFORE LUBRICATION. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - (b) BEARING SURFACE SHALL BE SQUARE WITH PITCH DIAMETER WITHIN "X" WHEN MEASURED IN ACCORDANCE WITH MIL-N-25027.
 - (c) DIMENSIONS ACROSS FLATS INCLUDES DEFORMATION OF SELF-LOCKING DEVICE.

MATERIAL: STEEL, SEE PROCUREMENT SPECIFICATION.

CORROSION RESISTANT STEEL, SEE PROCUREMENT SPECIFICATION.

B PLATING: STEEL NUTS(WITHOUT DRY FILM LUBRICATION) CADMIUM PLATED IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3. DRY FILM LUBRICATED STEEL NUTS IN ACCORDANCE WITH QQ-P-416, TYPE AND CLASS OPTIONAL IF THE NUTS WILL MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416. TYPE II.

CORROSION RESISTANT STEEL NUTS: DRY FILM LUBRICATED.

(B) LUBRICANT: LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. LUBRICANTS, EXCEPT DRY FILM LUBRICANTS, SHALL BE SOLUBLE IN THE CLEANER SPECIFIED IN THE PROCUREMENT SPECIFICATION. FOR USAF APPLICATIONS NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE UTILIZED IN INTEGRAL FUEL TANKS.

MAGNETIC PERMEABILITY OF CORROSION RESISTANT STEEL NUTS SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR IN ACCORDANCE WITH MIL-1-17214 OR EQUIVALENT.

- BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS.
- (B) SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.
 DIMENSIONS IN INCHES
- PERFORMANCE: SEE PROCUREMENT SPECIFICATION. EXCEPT DRY FILM LUBRICATED CRES NUTS LIMITED TO FIVE REUSE CYCLES.
- (B) SHEET 3 ADDED.

F05-031S01

Figure 5-32. Drawing MS21045 (Sheet 1 of 3)

EXAMPLE OF PART NUMBERS:

- MS21045-4 1/4-28 STEEL NUT, CADMIUM PLATED, SOLUBLE LUBRICANT.
 MS21045L4 1/4-28 STEEL NUT, CADMIUM PLATED, DRY FILM LUBRICANT.
 MS21045C4 1/4-28 CORROSION RESISTANT STEEL NUT, DRY FILM LUBRICANT.
- B DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF
 BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED
 ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE
 THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL
 THREADS PER MIL-5-7742. THESE NUTS SHALL BE USED IN ACCORDANCE
 WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE
 QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.
- B INTERCHANGEABILITY RELATIONSHIP: EXCEPT FOR THE AN365, MS20365, AND AN363 7/16-20 THREAD SIZE NUTS, MS21045 NUTS CAN UNIVERSALLY REPLACE THE ALL METAL AN363, AN365, MS20365 AND NAS1021 NUTS OF LIKE MATERIAL, PLATING AND THREAD SIZE. BUT THESE AN363, AN365, MS20365 AND NAS1021 NUTS CANNOT UNIVERSALLY REPLACE THE MS21045 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

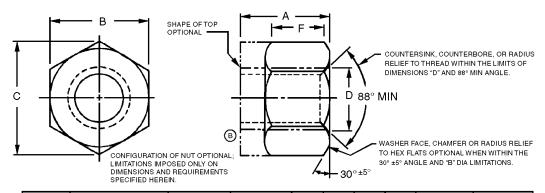
CERTAIN PROVISIONS TO APPLY TO THE ACROSS FLATS DIMENSION OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT ABC AIR STD 17/2. WHEN REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICES SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-031S02

Figure 5-32. Drawing MS21045 (Sheet 2)

INTERCHANGEABILITY TABLE I


SELECT NUTS FROM THE FOLLOWING INTERCHANGEABILITY TABLE OF THIS STANDARD AND OF STANDARDS MS21044 AND MS21046 AS SUBSTITUTIVE PARTS FOR AN363, AN365, MS20365 AND NAS1021.

	INACTIVAT	TED PART NOS.		SUBSTITUTIVE PART NOS.
AN365	MS20365	AN363	NAS1021	MS21045
-448C				NO REPLACEMENT
-440C	-440C		A04	-04
-640C				NO REPLACEMENT
-632C	-632C	-632	A06	-06
-836C				NO REPLACEMENT
-832C	-832C	-832	A08	-08
-1032C	-1032C	-1032	A3	-3
-1024C		-1024		NO REPLACEMENT
-428C	-428C	-428	A4	-4
-420C		-420		NO REPLACEMENT
-524C	-524C	-524	A5	-5
-518C		-518		NO REPLACEMENT
-624C	-624C	-624	A6	-6
-616C		-616		NO REPLACEMENT
-720C	-720C	-720		
			A7	-7
-714C		-714		NO REPLACEMENT
-820C	-820C	-820	A8	-8
-813C		-813		NO REPLACEMENT
-918C	-918C	-918	A 9	-9
-913C		-913		NO REPLACEMENT
-1018C	-1018C	-1018	A 10	-10
-1011C		-1011		NO REPLACEMENT
-1216C	-1216C	-1216	A12	-12
-1210C		-1210		NO REPLACEMENT
-1414C	-1414C		A14	-14
-1409C				NO REPLACEMENT
-1614C	-1614C		A17	
			A16	-16
-1608C				NO REPLACEMENT
-1812C	-1812C		A18	-18
-1308C				NO REPLACEMENT
-2012C	-2012C		A20	-20
-2008C				NO REPLACEMENT

INTERCHANGE	ABILITY TABLE II
INACTIVATED PART NOS	SUBSTITUTIVE PART NOS
AN363	MS21045
B632	
B832	
B1032	
B1024	1
B423	
B420	
B524	1
B518	1
B624	
B616	NO REPLACEMENT
B720	1
B714	
B820	
B813	
B918	
B913	
B1018	
B1011	
B1216	
B1210	

F05-031S03

Figure 5-32. Drawing MS21045 (Sheet 3)

	(a)			(c)		В			(b)		
DASH	THREAD	,	4	В			D	F		AXIAL STRENGTH	WEIGHT LBS/100
NUMBER	MIL-S-8879/MOD	MAX	MIN	MAX	MIN	O _M	±.020	MIN	Х	LBS MIN	MAX
C04	4-40UNC-3B	.157	.133	.251	.243	.268	.136	.044		750	.15
C06	6-32UNC-3B	.188	.160	.313	.305	.339	.161	.072	.004	1,130	.30
C08	8-32UNC-3B	.250	.219	.345	.336	.374	.188	.091	.004	1,720	.50
C3	10-32UNF-3B	.250	.208	.376	.367	.410	.210	.085		2,460	.58
C4	1/4-28UNF-3B	.328	.240	.439	.430	.482	.273	.116	.005	4,580	.99
C5	5/16-24UNF-3B	.360	.271	.502	.492	.552	.336	.123	.006	7,390	1.40
C6	3/8-24UNF-3B	.469	.318	.564	.553	.622	.398	.153	.006	11,450	2.15
C7	7/16-20UNF-3B	.469	.435	.690	.679	.766	.467	.178	.007	15,450	3.40
C8	1/2-20UNF-3B	.610	.575	.752	.741	.837	.531	.221	.007	21,110	4.70
C9	9/16-18UNF-3B	.704	.623	.877	.865	.978	.594	.243	.008	26,810	7.80
C10	5/8-18UNF-3B	.766	.732	.940	.928	1.051	.656	.274	.000	34,130	9.50
C12	3/4-16UNF-3B	.891	.855	1.064	1.052	1.191	.787	.316	.009	50,020	13.60
C14	7/8-14UNF-3B	1.016	.965	1.252	1.239	1.403	.918	.570	.010	68,440	21.00
C16	1-12UNF-3B	1.141	1.010	1.440	1.427	1.615	1.044	.635	.011	92,180	31.00
C18	1 1/8-12UNF-3B	1.266	1.130	1.627	1.614	1.826	1.171	.710	.012	116,700	46.00
C20	1 1/4-12UNF-3B	1.454	1.300	1.815	1.801	2.038	1.295	.795	.013	147,940	65.00

- (a) THREADS IN ACCORDANCE WITH MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - (b) BEARING SURFACE SHALL BE SQUARE WITH PITCH DIAMETER WITHIN "X" WHEN MEASURED IN ACCORDANCE WITH MIL-N-25027.

(c) DIMENSIONS ACROSS FLATS INCLUDES DEFORMATION OF SELF-LOCKING DEVICE.

MATERIAL: CORROSION RESISTANT STEEL, SEE PROCUREMENT SPECIFICATION.

PLATING: SILVER PLATE IN ACCORDANCE WITH AMS2410. PLATE THICKNESS, MEASURED ON THE EXTERNAL SURFACE OF THE NUT, SHALL NOT BE LESS THAN .0002 INCHES; THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENTS ON THREADS ARE WAIVED.

MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR IN ACCORDANCE WITH MIL-I-17214 OR EQUIVALENT.

BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS.

(B) SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

DIMENSIONS IN INCHES

(B) SHEET 2 ADDED

EXAMPLE OF PART NUMBER: MS21046C4 = 1/4-28 CORROSION RESISTANT STEEL NUT, SILVER PLATED.

 ${\tt DESIGN} \ {\tt AND} \ {\tt USAGE} \ {\tt LIMITATIONS}; \ {\tt THESE} \ {\tt NUTS} \ {\tt ARE} \ {\tt DESIGNED} \ {\tt TO} \ {\tt DEVELOP} \ {\tt THE} \ {\tt TENSILE} \ {\tt STRENGTH} \ {\tt OF} \ {\tt BOLTS} \ {\tt AND} \ {\tt SCREWS} \ {\tt WITH} \ {\tt AN} \ {\tt ULTIMATE}$

STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS PER MIL-S-7742. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THESE

ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

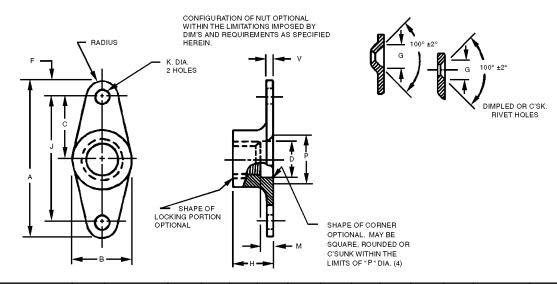
INTERCHANGEABILITY RELATIONSHIP: EXCEPT FOR THE AN363, 7/16 THREAD SIZE NUTS, MS21046 NUTS CAN UNIVERSALLY REPLACE THE ALL METAL AN363 AND NAS1021 NUTS OF LIKE MATERIAL, PLATING AND THREAD SIZE. BUT THESE AN363 AND NAS1021 NUTS CAN NOT UNIVERSALLY REPLACE THE MS21046 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

CERTAIN PROVISIONS TO APPLY TO THE ACROSS FLATS DIMENSION OF THIS STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT ABC AIR STD 17/2. WHEN REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICE SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

(B) FOR CHANGES SEE SHEET 1. F05-032S01

Figure 5-33. Drawing MS21046 (Sheet 1 of 2)


INTERCHANGEABILITY TABLE

SELECT NUTS FROM THE FOLLOWING INTERCHANGEABILITY TABLE OF THIS STANDARD AND OF STANDARDS MS21044 AND MS21045 AS SUBSTITUTIVE PARTS FOR AN363 AND NAS1021.

INACTIVAT	ED PART NOS.	SUBSTITUTIVE PART NOS.				
AN363	NAS1021	MS21046				
	C04	C04				
C632	C06	C06				
C832	C08	C08				
C1024		NO REPLACEMENT				
C1032	C3	СЗ				
C420		NO REPLACEMENT				
C428	C4	C4				
C518		NO REPLACEMENT				
C524	C5	C5				
C616		NO REPLACEMENT				
C624	C6	C6				
C714		NO REPLACEMENT				
C720		7				
	C7	C7				
C813		NO REPLACEMENT				
C820	C8	C8				
C913		NO REPLACEMENT				
C918	C9	C9				
C1011		NO REPLACEMENT				
C1018	C10	C10				
C1210		NO REPLACEMENT				
C1216	C12	C12				
	C14	C14				
	C16	C16				
	C17	NO REPLACEMENT				
	C18	C18				
	C20	C20				

F05-032S02

Figure 5-33. Drawing MS21046 (Sheet 2)

(1) THREAD SIZE MIL-S-8879/MOD.	A MAX.	DI MAX.	-	C ±.005	D DIA. MIN.	F MIN.	G DIA. ±.010	(2) H MAX.	(3) J ±.002	(5) K DIA. +.005 000	M MIN.	P DIA. MAX.	V MAX.	AXIAL STRENGTH LBS MIN	WEIGHT LBS/100
4-40UNC-3B	.948	.260	.195	.344		.100	.200	.143	.688	.098	_	.166	.047	750	.14
6-32UNC-3B	.948	.265	.239	.344	_	.100	.200	.171	.688	.098	_	.206	.047	1,130	.18
8-32UNC-3B	.948	.297	.277	.344	.168	.100	.200	.250	.688	.098	.062	.248	.047	1,720	.28
10-32UNF-3B	.948	.328	.308	.344	.196	.100	.200	.250	.688	.098	.062	.276	.047	2,460	.29
1/4-28UNF-3B	1.260	.414	.375	.500	.254	.100	.200	.281	1.000	.098	.062	.344	.055	4,580	.53
5/16-24UNF-3B	1.292	.505	.485	.500	.317	.125	.230	.328	1.000	.130	.062	.417	.065	7,390	.80
3/8-24UNF-3B	1.292	.614	.594	.500	.379	.125		.344	1.000	.130	.062	.505	.075	11,490	1.31
7/16-20 UNF-3B	1.477	.726	.695	.562	.442	.156		.390	1.125	.161	.062	.602	.085	15,450	1.84

THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL

MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.

CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETER-

MINED BY THE RIVET HOLES BY MORE THAN .005.
DIMPLED HOLE TOLERANCE FOR "K" IS +.015, -.000 AFTER FORMING.

CORROSION RESISTANT STEEL, (A281) AMS 5525, AMS 5735, OR AMS 5737. MATERIAL:

100°F NUTS ONLY SILVER PLATE IN ACCORDANCE WITH AMS2410 PLATE THICKNESS MEASURED ON ANY PLATING:

EXTERNAL SURFACE OF THE NUT, SHALL NOT BE LESS THAN 0.0002 IN. THREADS SMALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENTS ON THREAD IS WAIVED. NO SILVER PLATE ON WELDINGS. EABILITY: SHALL BE LESS THAN 2.0 (AIR-1.0) FOR A FIELD STRENGTH H=200 OERSTEDS USING A MAGNETIC

MAGNETIC PERMEABILITY:

PERMEABILITY INDICATOR IN ACCORDANCE WITH MIL-I-17214, OR EQUIVALENT ROCKWELL C48 MAXIMUM. HARDNESS

450°F, NUTS ONLY, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027 FOR USAF APPLICATIONS. LUBRICANT

NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS

DIMENSIONS IN INCHES

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 458°F, DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS

OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25827 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP:

MS 21054 NUTS CAN UNIVERSALLY REPLACE NAS 683 NUTS OF LIKE MATERIAL, THREAD SIZE, PLATING, LUBRICANTS (SILVER PLATE OR DRY FILM LUBRICANT), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING), BUT NAS003 NUTS CANNOT UNIVERSALLY REPLACE MS21054 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BIDS.

A FOR CHANGES SEE SHEETS 1 AND 2.

F05-033S01

Figure 5-34. Drawing MS21047(ASG) (Sheet 1 of 2)

(A)		DASH NUMBERS												
	PLAIN RI	VET HOLES	COUNTERSUNK OR DIMPLED RIVET HOLES											
THREAD SIZE MIL-S-8879/MOD.	NON-DRY FILM LUBRICANT	DRY FILM LUBRICANT	NON-DRY FILM LUBRICANT	DRY FILM LUBRICANT										
4-40UNC-3B	-04	L04	-04K	L04K										
6-32UNC-3B	-06	L06	-06K	L06K										
8-32UNC-3B	-08	L08	-08K	L08K										
10-32UNF-3B	-3	L3	-3К	L3K										
1/4-28UNF-3B	-4	L4	-4K	L4K										
5/16-24UNF-3B	-5	L5	-5K	L5K										
3/8-24UNF-3B	-6	L6												
7/16-20UNF-3B	-7	L7												

EXAMPLE OF PART NUMBERS:

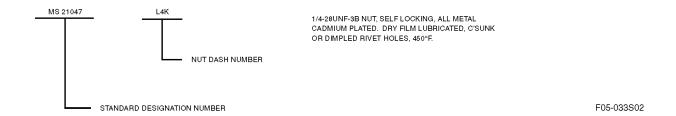
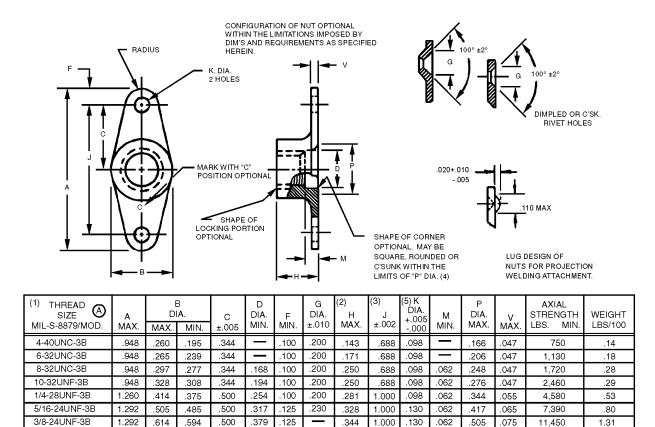



Figure 5-34. Drawing MS21047(ASG) (Sheet 2)

(1) THREADS BEFORE LU A 31 DECEMBER 1969. (2) MINIMUM "H" NOT SPE THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL

156

.442

MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.

.562

- CENTER OF TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- ON SIZE NO. 8 AND LARGER COUNTERBORE THREAD "D" DIA. X.062 DEEP MIN. THREAD RELIEF: ON SIZE NO. 6 AND SMALLER C'SINK TO "P" DIA. WITHIN THE LIMITS OF P, D AND M.
- DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015, -.000.

.726

.695

1.477

MATERIAL: CORROSION RESISTANT STEEL, (A286) AMS5525, AMS5735, OR AMS5737.

HARDNESS: ROCKWELL C49 MAX

7/16-20 UNF-3B

800°F NUTS: SILVER PLATE IN ACCORDANCE WITH AMS2410. PLATE THICKNESS, MEASURED ON ANY EXTERNAL SURFACE OF THE NUT PLATING: SHALL NOT BE LESS THAN 0.0002 IN: THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT ON THREAD IS WAIVED. NO SILVER PLATE ON WELD NIBS.

390

1.125

.161

.062

.602

.085

15,450

1.84

LUBBICANT: 450° NUTS, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027. FOR USAF APPLICATIONS NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS. (NO SILVER PLATE.)

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR-1.0) FOR A FIELD STRENGTH H=200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTION AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25827 SHALL BE USED.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450°F DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES. SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED. THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES

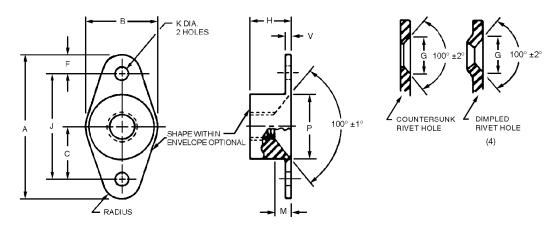
INTERCHANGEABILITY RELATIONSHIP: MS21048 NUTS CAN UNIVERSALLY REPLACE AN362, AN366 AND NAS680 NUTS OF LIKE MATERIAL, THREAD SIZE, LUBRICANT (SILVER PLATE OR DRY FILM LUBRICANT), AND FASTENING METHOD (PLAIN RIVET HOLES: DIMPLED, C'SUNK RIVET HOLES: OR PROJECTION WELDING). BUT THESE AN362, AN366 AND NAS680 NUTS CANNOT UNIVERSALLY REPLACE MS 21048 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2. F05-034S01

Figure 5-35. Drawing MS21048(ASG) (Sheet 1 of 2)


(A)			DASH NUMBE	RS					
THREAD		450° F		800° F					
SIZE MIL-S-8879/MOD.	PLAIN HOLES	COUNTER SUNK OR DIMPLED HOLES	WELDING PROJECTION	PLAIN HOLES	COUNTER SUNK OR DIMPLED HOLES	WELDING PROJECTIONS			
4-40UNC-3B	L04	L04K	L04W	-04	-04K	-04W			
6-32UNC-3B	L06	L06K	L06W	-06	-06K	-06W			
8-32UNC-3B	L08	L08K	L08W	-08	-08K	-08W			
10-32UNF-3B	L3	L3K	L3W	-3	-3K	-3W			
1/4-28UNF-3B	L4	L4K	· L4W	-4	-4K	-4W			
5/16-24UNF-3B	L5	L5K	L5W	-5	-5K	-5W			
3/8-24UNF-3B	L6		L6W	-6		-6W			
7/16-20UNF-3B	L7		L7W	-7		-7W			

EXAMPLE OF PART NUMBERS:

Figure 5-35. Drawing MS21048(ASG) (Sheet 2)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIM.'S AND REQUIREMENTS AS SPECIFIED HEREIN.

(1) THREAD (A) SIZE MIL-S-8879/MOD.	A MAX.	MAX.	3 MIN.	C +.085	F MIN.	G DIA. +.040	(2) H MAX.	(3) J +.002	K DIA. +.005 000	M REF	P DIA. +.005	V MAT'L. MAX.	AXIAL STRENGTH LBS. MIN.	WEIGHT LBS/100 MAX.
8-32UNC-3B	.977	.442	.360	.344	.100	.200	.272	.688	.098	.084	.365	.047	1,720	.43
10-32UNF-3B	1.013	.453	.408	.344	.100	.200	.281	.688	.098	.083	.411	.047	2,480	.44
1/4-28UNF-3B	1.252	.619	.535	.500	.100	.200	.340	1.000	.098	.121	.540	.055	4,580	.88
5/16-24UNF-3B	1.340	.786	.881	.500	.125	.230	.422	1.000	.130	.158	.686	.065	7,300	1.17

- (1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
- 2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.
- (3) CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- (4) DIMPLED HOLE TOLERANCE FOR "K" IS +.015, -.000 AFTER FORMING.

MATERIAL: STEEL

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3. FOR DRY FILM LUBRICATED NUTS, THE TYPE AND CLASS ARE

OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

HARDNESS: ROCKWELL C49 MAXIMUM.

LUBRICANT: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS SOLUBLE IN THE

CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE

USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DIMENSIONS IN INCHES

(STATUS NOTE)

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10, UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE

TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED

PRODUCTS LISTED ON QPL 25827 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21049 NUTS CAN UNIVERSALLY REPLACE NAS 681, AN 361, AND AN 373 NUTS OF LIKE MATERIAL,

THREAD SIZE, PLATING, LUBRICANTS (DRY FILM, OR NON DRY FILM). RIVET SPACING,

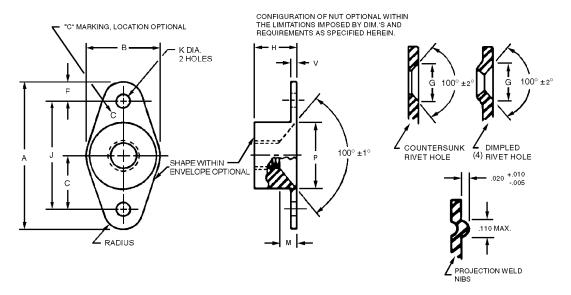
AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES: OR PROJECTION WELDING). BUT NAS 681, AN361, AND AN 373 NUTS CANNOT UNIVERSALLY REPLACE MS 21049 NUTS.

FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BIDS.

F05-035S01


Figure 5-36. Drawing MS21049(ASG) (Sheet 1 of 2)

A	DASH NUMBERS										
	450°F.NON DRY F	ILM LUBRICATED	450°F. DRY FILM LUBRICATED								
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	PLAIN HOLES	C'SUNK OR DIMPLED HOLES							
8-32 UNC-3B	-08	-08K	L08	L08K							
10-32 UNF-3B	-3	-3K	L3	L3K							
1/4-28 UNF-3B	-4	-4K	L4	L4K							
5/16-24 UNF-3B	-5	-5K	L5	L5K							

EXAMPLE OF PART NUMBER:

Figure 5-36. Drawing MS21049(ASG) (Sheet 2)

(1) (A) THREAD SIZE MIL-S-8879/MOD.	A MAX.	MAX.	3 MIN.	C ±.005	F MIN.	G DI A . ±.010	(2) H MAX.	(3) ±.002	K DIA. +.005 000	M REF	P DIA. ±.005	V MAT'L. MAX.	AXIAL STRENGTH LBS. MIN.	WEIGHT LBS/100 MAX.
8-32UNC-3B	.948	.422	.360	.344	.100	.200	.272	.688	.098	.084	.365	.047	1,720	.43
10-32UNF-3B	.948	.453	.408	.344	.100	.200	.281	.688	.098	.083	.411	.047	2,480	.44
1/4-28UNF-3B	1.269	.619	.535	.500	.100	.200	.340	1.000	.098	.121	.540	.055	4,580	.88
5/16-24UNF-3B	1.292	.786	.881	.500	.125	.230	.422	1.000	.130	.158	.686	.065	7,300	1.17

- (1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - (2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.
 - (3) CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
 - (4) DIMPLED HOLE TOLERANCE FOR "K" IS +.015, -.000 AFTER FORMING.

MATERIAL: CORROSION RESISTANT STEEL, (A286) AMS 5525, AMS 5735, OR AMS 5737.

PLATING: 800°F. NUTS ONLY, SILVER PLATE IN ACCORDANCE WITH AMS 2410. PLATE THICKNESS, MEASURED ON ANY EXTERNAL SURFACE OF THE NUT, SHALL NOT BE LESS THAN 0.0002 IN; THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENTS ON THREAD IS WAIVED. NO SILVER PLATE ON WELD NIBS.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H=200 OERSTEDS USING A MAGNETIC PERMEABILITY

INDICATOR PER MIL-I-17214 OR EQUIVALENT

HARDNESS: ROCKWELL C49 MAXIMUM.

(STATUS NOTE)

LUBRICANT: 450°F, NUTS ONLY, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027. FOR USAF APPLICATIONS NUTS

TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS.

DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10, UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450°F. DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE

TENSILE STRENGTH OF 126 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED

PRODUCTS LISTED ON QPL 25827 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21050 NUTS CAN UNIVERSALLY REPLACE NAS 681 AND AN 361 NUTS OF LIKE MATERIAL, THREAD SIZE,

PLATING, LUBRICANTS (SILVER PLATE OR DRY FILM LUBRICANT), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING). BUT NAS 681 AND AN 361 NUTS CANNOT UNIVERSALLY REPLACE MS 21050 NUTS, FOR DEFINITION AND APPLI-

CATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BIDS

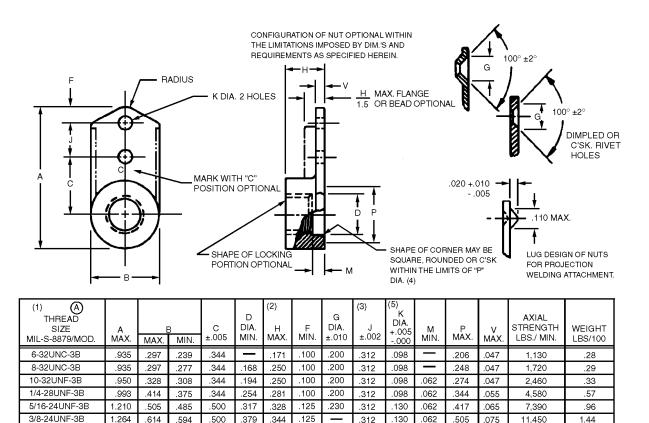

F05-036S01

Figure 5-37. Drawing MS21050(ASG) (Sheet 1 of 2)

A	DASH NUMBERS										
		800°F.		450°F.							
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION					
8-32 UNC-3B	-08	-08K	-08W	L08	L08K	L08W					
10-32 UNF-3B	-3	-3K	-3W	L3	L3K	L3W					
1/4-20 UNF-3B	-4	-4K	-4W	L4	L4K	L4W					
5/16-24 UNF-3B	-5	-5K	-5W	L5	L5K	L5W					

Figure 5-37. Drawing MS21050(ASG) (Sheet 2)

- .442 (A)(1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969
 - MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.

.562

- CENTER OF TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- ON SIZE NO. 8 AND LARGER COUNTERBORE THREAD "D" DIA. X .062 DEEP MIN THREAD RELIEF: ON SIZE NO. 6 AND SMALLER C'SUNK TO "P" DIA. WITHIN THE LIMITS OF D, P AND M.

.390

(5) DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015, -.000

.726

CORROSION RESISTANT STEEL, (A286), AMS5525, AMS5735, OR AMS5737.

.697

HARDNESS: **ROCKWELL C49 MAX**

800°F NUTS: SILVER PLATE IN ACCORDANCE WITH AMS2410. PLATE THICKNESS, MEASURED ON ANY EXTERNAL SURFACE OF THE NUT. PLATING:

.156

SHALL NOT BE LESS THAN 0.0002 IN: THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT ON THREAD IS WAIVED.

.344

.161

.062

.602

.085

NO SILVER PLATE ON WELD NIBS.

1.446

LUBRICANT: 450° NUTS, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027, FOR USAF APPLICATIONS NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS. (NO SILVER PLATE.)

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR 1.0) FOR A FIELD STRENGTH H=200 OERSTEDS USING A MAGNETIC PERMEABILITY

INDICATOR PER MIL-I-17214 OR EQUIVALENT.

DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED. DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTION AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS

ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

PERFORMANCE:

7/16-20UNF-3B

SEE PROCUREMENT SPECIFICATIONS, EXCEPT 450° DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED. THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INS.

INTERCHANGEABILITY RELATIONSHIP: MS21052 NUTS CAN UNIVERSALLY REPLACE NAS 682 NUTS OF LIKE MATERIAL, THREAD SIZE, LUBRICANT (DRY FILM OR NON-DRY FILM LUBRICANT), AND FASTENING METHOD (PLAIN RIVET HOLES: DIMPLED OR C'SUNK RIVET HOLES, OR PROJECTION WELDING). BUT THESE NAS 682 NUTS CANNOT UNIVERSALLY REPLACE MS21052 NOTES) NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2. F05-037S01

15.450

2.02

Figure 5-38. Drawing MS21052(ASG) (Sheet 1 of 2)

A		DASH NUMBERS													
THREAD		450°F.		800°F.											
SIZE MIL-S-8879/MOD.	PLAIN HOLES	COUNTER SUNK OR DIMPLED HOLES	WELDING PROJECTIONS	PLAIN HOLES	WELDING PROJECTIONS										
6-32UNC-3B	L06	L06K	L06W	-06	-06K	-06W									
8-32UNC-3B	L08	L08K	L08W	-08	-08K	-08W									
10-32UNF-3B	L3	L3K	L3W	-3	-3K	-3W									
1/4-28UNF-3B	L4	L4K	L4W	-4	-4K	-4W									
5/16-24UNF-3B	L5	L5K	L5W	-5	-5K	-5W									
3/8-24UNF-3B	L6		L6W	-6		-6W									
7/16-UNF-3B	L7		L7W	-7		-7W									

EXAMPLE OF PART NUMBER:

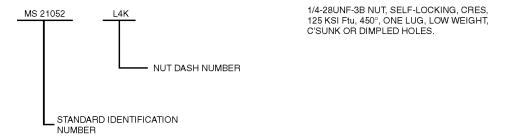
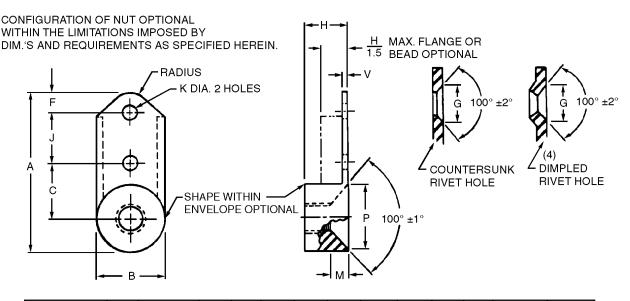



Figure 5-38. Drawing MS21052(ASG) (Sheet 2)

F05-037S02

(1) THREAD SIZE MIL-S-8879/MO	A A D. MA		MAX.	3 MIN.	C +.005	F MIN.	G DIA. +.010	H MAX	3 +.002	K DIA. +.005 000	M REF	P DI A +.005	V MAT'L MAX.	AXIAL STRENGTH LBS. MIN.	WEIGHT LBS/100 MAX.
8-32 UNC-3B	.9:	97	.422	.380	.344	.100	.200	.272	.312	.098	.084	.385	.047	1,720	.43
10-32 UNF-3B	1.0	13	.453	.408	.344	.100	.200	.281	.312	.098	.093	.411	.047	2,480	.44
1/4-28 UNF-3B	1.2	52	.619	.535	.500	.100	.200	.340	.312	.098	.121	.540	.055	4,580	.88
5/18-24 UNF-3E	1.3	40	.788	.681	.500	.125	.230	.422	.312	.130	.158	.686	.065	7,390	1.17

Α

- (1) THREADS BEFORE LUBRICATION PER MIL-S-6879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
- 2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.
- (3) CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- (4) DIMPLED HOLE TOLERANCE FOR "K" IS +.015, -.000 AFTER FORMING.

MATERIAL: STEEL.

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-418, TYPE II, CLASS 3. FOR DRY FILM LUBRICATED NUTS, THE TYPE AND

CLASS ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-418, TYPE II.

HARDNESS: ROCKWELL C49 MAXIMUM.

LUBRICANT: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS SOLUBLE IN THE CLEANER

SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED

IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DIMENSIONS IN INCHES.

(STATUS NOTE)

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10, UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN

ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON A CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588.

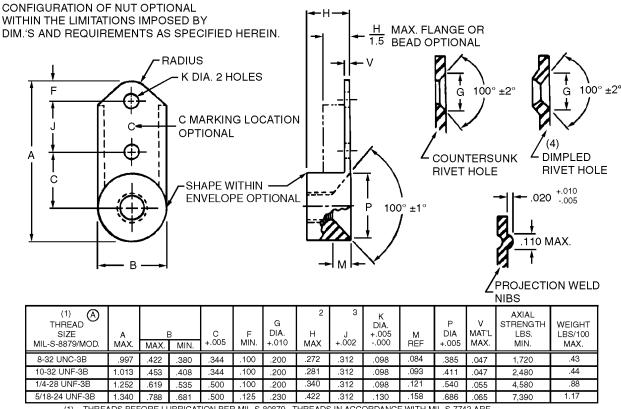
ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21653 NUTS CAN UNIVERSALLY REPLACE NAS 683, NUTS OF LIKE MATERIAL, THREAD SIZE PLATING, LUBRICANTS (DRY FILM, OR NON DRY FILM). RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING). BUT NAS 683 NUTS CANNOT UNIVERSALLY REPLACE MS 21053 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BIDS.

(A) FOR CHANGES SEE SHEETS 1 AND 2. F05-038S01


Figure 5-39. Drawing MS21053(ASG) (Sheet 1 of 2)

A	DASH NUMBERS								
	450°F. NON DRY	FILM LUBRICATED	450°F. DRY FILM LUBRICATED						
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	PLAIN HOLES	C'SUNK OR DIMPLED HOLES					
8-32 UNC-3B	-08	-08K	L08	L08K					
10-32 UNF-3B	-3	-3K	L3	L3K					
1/4-28 UNF-3B	-4	-4K	L4	L4K					
5/16-24 UNF-3B	-5	-5K	L5	L5K					

EXAMPLE OF PART NUMBER:

Figure 5-39. Drawing MS21053(ASG) (Sheet 2)

(1) THREADS BEFORE LUBRICATION PER MIL-S-80879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE

ACCEPTABLE UNTIL 31 DECEMBER 1969.

2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.

(3) CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.

4) DIMPLED HOLE TOLERANCE FOR "K" IS +.0015, -.000 AFTER FORMING.

MATERIAL: CORROSION RESISTANT STEEL, (A288) AMS 5735, OR AMS 5737.

PLATING: 100°F. NUTS ONLY SILVER PLATE IN ACCORDANCE WITH AMS 2410. PLATE THICKNESS,

MEASURED ON ANY EXTERNAL SURFACE OF THE NUT SHALL NOT BE LESS THAN 0.0002 IN; THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENTS ON

THREAD IS WAIVED. NO SILVER PLATE ON WELD RIBS.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR-1.0) FOR A FIELD STRENGTH H-200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214, OR EQUIVALENT.

HARDNESS: ROCKWELL C49 MAXIMUM.

LUBRICANT: 450°F NUTS ONLY. DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027 FOR USAF AP-

PLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTER-

NAL FUEL SYSTEMS.

DIMENSIONS IN INCHES

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE

ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450°F. DRY FILM LUBRICATED NUTS LIMITED

TO FIVE REUSE CYCLES.
DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25827 SHALL BE

USED.

INTERCHANGEABILITY RELATIONSHIP:

(STATUS NOTE)

MS 21054 NUTS CAN UNIVERSALLY REPLACE MAS 683 NUTS OF LIKE MATERIAL, THREAD SIZE, PLATING, LUBRICANTS (SILVER PLATE OR DRY FILM LUBRICANT), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DI SPLEU, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING). BUT HAS 003 NUTS CANNOT UNIVERSALLY REPLACE MS 21054 NUTS, FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES. SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BIDS.

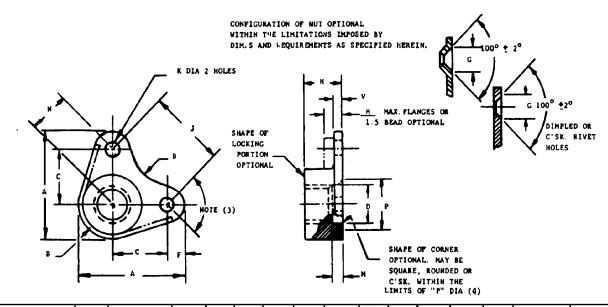

F05-039S01

Figure 5-40. Drawing MS21054(ASG) (Sheet 1 of 2)

(A)	DASH NUMBERS									
		800°F.		450°F.						
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION				
8-32 UNC-3B	-08	-08K	-08W	L08	L08K	L08W				
10-32 UNF-3B	-3	-3K	-3W	L3	L3K	L3W				
1/4-28 UNF-3B	-4	-4K	-4W	L4	L4K	L4W				
5/16-24 UNF-3B	-5	-5K	-5W	L5	L5K	L5W				

Figure 5-40. Drawing MS21054(ASG) (Sheet 2)

(1) (A) THREAD SIZE MIL-S-8879/MOD.	A MAX.	MAX.	3 MIN.	C ±.005	D DIA. MIN.	F MIN.	G DI A . ±.010	(2) H MAX.	(3) J ±.002	(5) K DIA. +.005 000	M MIN.	N MAX.	P DIA. MAX.	V MAX.	AXIAL STRENGTH LBS. MIN.	WEIGHT LBS/100
6-32UNC-3B	.637	.133	.108	.344	_	.100	.200	.171	.486	.098		.270	.206	.047	1,130	.25
8-32UNC-3B	.637	.149	.125	.344	.168	.100	.200	.250	.486	.098		.270	.248	.047	1,720	.28
10-32UNF-3B	.653	.164	.145	.344	.194	.100	.200	.250	.486	.098	.062	.270	.274	.047	2,460	.29
1/4-28UNF-3B	.852	.207	.185	.500	.254	.100	.200	.281	.707	.098	.062	.383	.344	.055	4,580	.58
5/16-24UNF-3B	.914	.248	.216	.500	.317	.125	.230	.328	.707	.130	.062	.383	.417	.065	7,390	.85
3/8-24UNF-3B	.968	.307	.290	.500	.379	.125		.344	.707	.130	.062	.383	.505	.075	11,450	1.31
7/16-20UNF-3B	1.101	.363	.340	.562	.442	.156		.390	.795	.161	.062	.427	.602	.085	15,450	1.84

- (1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
- 2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
- (3) CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT
- AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- (4) ON SIZE NO. 8 AND LARGER COUNTERBORE THREAD "D" DIA. X .062 DEEP MIN THREAD RELIEF: ON SIZE NO. 6 AND SMALLER C'SUNK TO "P" DIA. WITHIN THE LIMITS OF D, P AND M.
- (5) DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015, -.000.

MATERIAL: STEEL.

HARDNESS: ROCKWELL C49 MAX.

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416 TYPE II, CLASS 3. FOR DRY FILM LUBRICANT NUTS, THE TYPE AND CLASS

ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416 TYPE II.

LUBRICANT: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS SOLUBLE IN THE

CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED BY DRY FILM LUBRICANT, SHALL NOT BE USED

IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTION AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10, UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

INTERCHANGEABILITY RELATIONSHIP: MS21055 NUTS CAN UNIVERSALLY REPLACE NAS 684 NUTS OF LIKE MATERIAL, THREAD SIZE, LUBRICANT (DRY FILM OR NON-DRY FILM LUBRICANT), AND FASTENING METHOD (PLAIN RIVET HOLES: DIMPLED OR C'SUNK RIVET HOLES) (STATUS NOTES) BUT THESE NAS 684 NUTS CANNOT UNIVERSALLY REPLACE MS21055 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATION FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-41. Drawing MS21055(ASG) (Sheet 1 of 2)

THREAD (A)	DASH NUMBERS									
SIZE	PLAIN RI	VET HOLES	COUNTER SUNK OR DIMPLED RIVET HOLES							
MIL-S-8879/MOD.	NON-DRY FILM LUBRICANT	DRY PILM LUBRICANT	NON-DRY FILM LUBRICANT	DRY FILM LUBRICANT						
6-32UNC-3B	-06	L06	-06K	LO6K						
8-32UNC-38	-08	LOS	-08K	LOBK						
10-32UNF-3B	-1	ង	-зк	L3K						
1 4-28UNF-38	-4	14	-4K	tak						
5/16-24UNF-38	-5	ಚ	-5K	L5 K						
3/8-24UNF-38	-6	L6								
7/16-20UNF-33	-7	L)								

EXAMPLE OF PART NUMBERS:

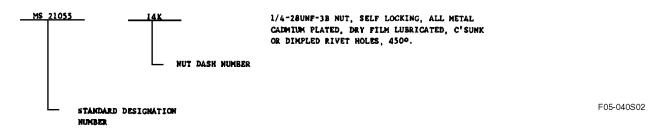
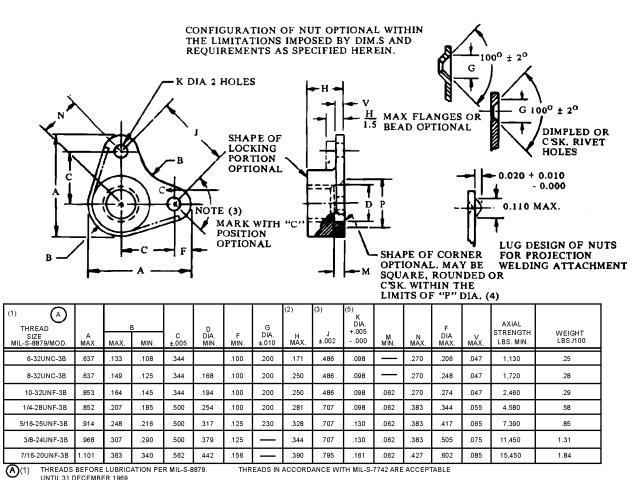



Figure 5-41. Drawing MS21055(ASG) (Sheet 2)

- (2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION
- (3) CENTER OF TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- (4) ON SIZE NO. 8 AND LARGER COUNTERBORE THREAD "D" DIA. X.062 DEEP MIN. THREAD RELIEF: ON SIZE NO. 6 AND SMALLER C'SINK TO "P" DIA. WITHIN THE LIMITS OF D, P AND M.
- (5) DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015-.000

MATERIAL: CORROSION RESISTANT STEEL, (A286) AMS5525, AMS5735 OR AMS5737.

HARDNESS: ROCKWELL C49 MAX.

PLATING: 800°F NUTS, SILVER PLATE IN ACCORDANCE WITH AMS2410. PLATE THICKNESS, MEASURED ON ANY EXTERNAL SURFACE OF THE NUT.

SHALL NOT BE LESS THAN 0.0002 IN: THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT ON THREAD IS

WAIVED, NO SILVER PLATE ON WELD NIBS.

LUBRICANT: 450° NUTS, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027. FOR USAF APPLICATIONS, NUTS TREATED

WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS. (NO SILVER PLATE).

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0(AIR-1.0) FOR A FIELD STRENGTH H=200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTION AREA AT THE BASIC ROOT DIAMETER OF THE THREADS. THESE NUTS

ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450° DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES

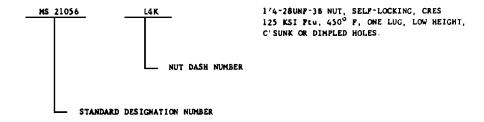
SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

INTERCHANGEABILITY RELATIONSHIP: MS 21056 NUTS CAN UNIVERSALLY REPLACE NAS 684, STEEL NUTS OF LIKE MATERIAL, THREAD SIZE

(STATUS NOTE: STATUS NOTE: STAT

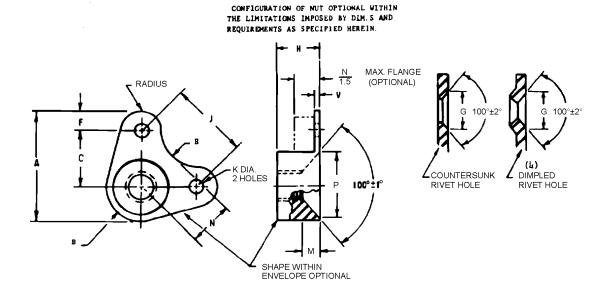
NOTE) AND APPLICATIONS OF DRAWING STATUS NOTES SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.


REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

A FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-42. Drawing MS21056(ASG) (Sheet 1 of 2)


THREAD A	DASH NUMBERS									
SIZE		450° F		800° F						
MIL-S-8873/MOD.	PLAIN HOLES	COUNTER SUNK AND DIMPLED HOLES	WELDING PROJECTIONS	PLAIN HOLES	COUNTER SUNK AND DIMPLED HOLES	WELDING PROJECTION				
6-32UNC-3B	L06	L06K	LO6W	-06	-06K	-06M				
8-32UNC-3B	LOS	LO8K	LO8M	-08	-08K	-08W				
10-32UNF-3B	L3	L3K	L3W	-3	-3K	-3W				
1/4-28UNF-3B	14	T4K	L4W	-4	-4K	-4W				
5/16-24UNF-3B	LS	LSK	15W	-5	-5K	-sw				
3/8-24UNF-3B	L6		L6W	-6		-6W				
7/16-20UNF-3B	L7		L7W	-7		- 7W				

(6) EXAMPLE OF PART NUMBER:

F05-041S02

Figure 5-42. Drawing MS21056(ASG) (Sheet 2)

(1) THREAD A SIZE			В			G	(2)	(3)	K DIA.			P DIA.	V MAT'L	AXIAL STRENGTH	WEIGHT LBS/100
MIL-S-8879/MOD	A MAX.	MAX.	MIN.	C ±.005	F MIN.	DIA. ± 010	H MAX.	J ±.002	+.005 000	M REF.	N MAX.	±.005	MAX.	LBS. MIN.	MAX.
8-32 UNC-3B	.788	.211	.180	.344	.100	.206	.272	.486	.096	.064	.278	.365	.947	1,720	.38
10-32 UNF-3B	.715	.227	.203	.344	.100	.206	.281	.486	.096	.063	.278	.411	.847	2,488	.41
1/4-28 UNF-3B	.955	.310	.267	.588	.100	.206	.348	.707	.096	.121	.383	.548	.955	4,588	.88
5/16-24 UNF-3B	1.844	.383	.340	.588	.125	.238	.422	.787	.138	.156	.383	.686	.985	2,396	1.17

THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL

31 DECEMBER 1969.

(2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.

(3) CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.

(4) DIMPLED HOLE TOLERANCE FOR "K" IS +.015, .000 AFTER FORMING.

MATERIAL: STEEL.

CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3. FOR DRY FILM LUBRICATED NUTS, THE TYPE AND CLASS ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II. PLATING:

HARDNESS: ROCKWELL 049 MAXIMUM.

DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS SOL-UBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS. LUBRICANT:

DIMENSIONS IN INCHES

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOPE THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON A CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25827

INTERCHANGEABILITY RELATIONSHIP:

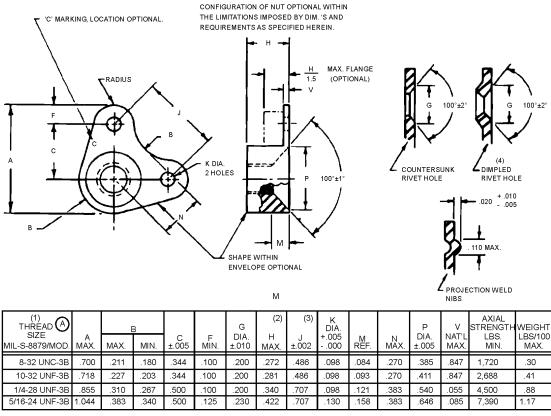
MS 21057 NUTS CAN UNIWERSALLY REPLACE NAS 885 NUTS OF LIKE MATERIAL, THREAD SIZE, PLATING, LUBRICANTS (DRY FILM, OR NON DRY FILM), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING). BUT NAS 885 NUTS; CANNOT UNIVERSALLY REPLACE MS 21097 NUTS, FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BIOS.

(A) FOR CHANGES SEE SHEETS 1 AND 2.

F05-042S01


Figure 5-43. Drawing MS21057(ASG) (Sheet 1 of 2)

	DASH NUMBERS									
	450°F. NON DRY F	ILM LUBRICATED	450°F DRY FILM LUBRICATED							
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C SUNK OR DIMPLED HOLES	PLAIN HOLES	C SUNK OR DIMPLED HOLES						
8-32 UNC-3B	-08	-08K	L08	-L08K						
10-32 UNF-3B	-3	-3K	L3	-L3K						
1/4-28 UNF-3B	-4	-4K	L4	-L4K						
5/16-24 UNF-3B	-5	-45K	L5	-L5K						

EXAMPLE OF PART NUMBER:

Figure 5-43. Drawing MS21057(ASG) (Sheet 2)

(1) THREADS BEFORE LUBRICATION PER MIL-S-8879. 31 DECEMBER 1969

THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL

- (2) MINIMUM 'H' NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.
- CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005
- (4) DIMPLED HOLE TOLERANCE FOR 'K' IS +.015. -.000 AFTER FORMING.

MATERIAL: CORROSION RESISTANT STEEL (A286) AMS 5525. AMS 5735, OR AMS 5737.

800°F, NUTS ONLY, SILVER PLATE IN ACCORDANCE WITH AMS 2410. PLATE THICKNESS, MEASURED ON ANY EXTERNAL SURFACE OF PLATING:

THE NUT, SHALL NOT BE LESS THAN 0.0002 IN; THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENTS ON THREAD IS WAIVED. NO SILVER PLATE ON WELD NIBS.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H=200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214, OR EQUIVALENT.

ROCKWELL C48 MAXIMUM. HARDNESS:

450°F, NUTS ONLY, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027. FOR USAF APPLICATIONS, NUTS LUBRICANT:

TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS.

DIMENSIONS IN INCHES

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO

PERFORMANCE: SEE PROCUREMENT SPECIFICATION. EXCEPT 450°F. DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES.

THESE NUTS ARE DESIGNED TO DEVELOPE THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE DESIGN AND LISAGE LIMITATIONS:

TENSILE STRENGTH OF 125 KSI BASED ON A CROSS SECTIONAL AREAAT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED

PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP MS 21958 NUTS CAN UNIVERSALLY REPLACE NAS 885 NUTS OF LIKE MATERIAL. THREAD SIZE, PLATING (STATUS NOTE)

LUBRICANTS (SILVER PLATE OR DRY FILM LUBRICANT), RIVET SPACING, AND, FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING). BUT NAS 895 NUTS CANNOT UNIVERSALLY REPLACE MS 21058 NUTS, FOR DEFINITION AND APPLICATION OF DRAWING

STATUS NOTES, SEE MIL-STD-32

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BIDS.

F05-043S01 (A) FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-44. Drawing MS21058(ASG) (Sheet 1 of 2)

	DASK NUMBERS											
THREAD		800°F.		A50°F.								
SIZE MIL-S-8877/MGD-	PLAIN HOLES	C. SAMK OU DIMBLED HOFES	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	FELDING PROJECTION						
8-32 UNC-38	- 08	- 08K	- 68 4	-L06	- F 08K	-L08T						
10-32 UNF-38	• 3	- 3K	-3¥	·L3	-L3K	-130						
1/4-20 UNF-3B	-4	-4K	- 49	·L4	-£4K	-L4W						
5/18-24 UNF-38	-5	- 5K	-58	· L 5	-LSK	- L 5 T						

EXAMPLE OF PART NUMBER:

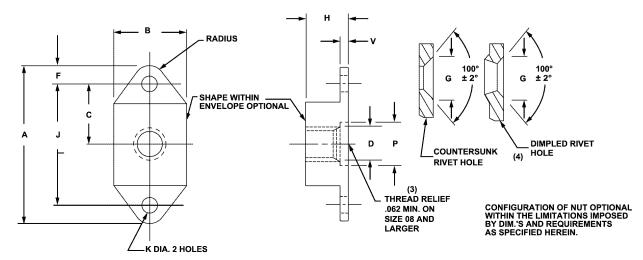



Figure 5-44. Drawing MS21058(ASG) (Sheet 2)

(1) THREAD SIZE MIL-S-8879/MOD.	A MAX.	MAX.	3 MIN.	C ±.005	D DIA. MIN.	F MIN.	G DIA. ± .010	(2) H MAX.	J ±.002	K DIA. + .005 005	DI MAX.		V MAT'L MAX.	AXIAL STRENGTH LBS. MIN.	WEIGHT LBS/100 MAX.
4-40UNC-3B	.948	.416	.290	.344	_	.100	.200	.175	.688	.098	.270	.172	.032	750	.38
6-32UNC-3B	.948	.416	.290	.344		.100	.200	.203	.688	.098	.270	.198	.032	1,130	.39
8-32UNC-3B	.948	.416	.290	.344	.168	.100	.200	.250	.688	.098	.270	.224	.032	1,720	.40
10-32UNF-3B	.948	.416	.290	.344	.194	.100	.200	.250	.688	.098	.270	.250	.032	2,460	.41
1/4-28UNF-3B	1.292	.516	.350	.500	.254	.100	.200	.281	1.000	.098	.330	.310	.032	4,580	.90
5/16-24UNF-3B	1.292	.609	.412	.500	.317	.125	.230	.328	1.000	.130	.392	.372	.045	7,390	1.26
3/8-24UNF-3B	1.292	.680	.475	.500	.379	.125	-	.344	1.000	.130	.455	.435	.055	11,450	1.55

- A (1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.

 - MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT. SIZE NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN "P" DIAMETER. DIMPLED HOLE TOLERANCE FOR "V" IS +.015, -.000 AFTER FORMING.

MATERIAL: STEEL

CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3. FOR DRY FILM LUBRICATED NUTS, THE TYPE AND CLASS ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II PLATING:

HARDNESS: RC 49 MAX.

LUBRICANT:

DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS SOLUBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUT TREATED WITH DRY FILMS LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 RADIALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH BOLT IN THE MAXIMUM MISALIGNED POSITION.

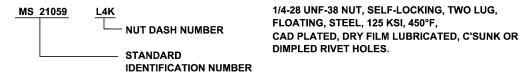
DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THESE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21059 NUTS CAN UNIVERSALLY REPLACE NAS 686 NUTS OF LIKE MATERIAL, THREAD SIZE, LUBRICANTS (DRY FILM OR NON DRY FILM), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED OR COUNTERSUNK RIVET HOLES). BUT NAS 686 NUTS CANNOT UNIVERSALLY REPLACE MS 21059 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.


REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2. F05-044S01

Figure 5-45. Drawing MS21059(ASG) (Sheet 1 of 2)

	DASH NUMBERS										
(A)	PLAIN RIVET	HOLES	C'SUNK OR DIMPLED	RIVET HOLES							
THREAD SIZE MIL-S-8879/MOD.	NON DRY FILM LUBE	DRY FILM LUBE	NON DRY FILM LUBE	DRY FILM LUBE							
4-40 UNC-3B	-04	L04	-04K	L04K							
6-32 UNC-3B	-06	L06	-06K	L06K							
8-32 UNC-3B	-08	L08	-08K	L08K							
10-32 UNF-3B	-3	L3	-3K	L3K							
1/4-28 UNF-3B	-4	L4	-4K	L4K							
5/16-24 UNF-3B	-5	L5	-5K	L5K							
3/8-24 UNF-3B	-6	L6	_	<u> </u>							

EXAMPLE OF PART NUMBERS:

F05-044S02

Figure 5-45. Drawing MS21059(ASG) (Sheet 2)

(1) THREADS BEFORE LUBRICATION PER MIL-S-8879. (A) 31 DECEMBER 1969 THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL

(2) MINIMUM "H" NOT SPECIFIED. LIMITED ONLY BY STRENGTH REQUIREMENTS

(3) SIZE NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN "P" DIAMETER.

(4) DIMPLED HOLE TOLERANCE FOR "K" IS +.015, -.000 AFTER FORMING

CORROSION RESISTANT STEEL (A -286) PER AMS 5525, AMS 5735, OR AMS 5737.

PLATING: 800°F NUTS ONLY: SILVER PLATE PER AMS 2410. PLATE THICKNESS MEASURED ON ANY EXTERNAL SURFACE OF THE

NUT, SHALL NOT BE LESS THAN 0.0002 IN; THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIRE-

MENT ON THREAD IS WAIVED. NO SILVER PLATE ON WELD NIBS.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD A STRENGTH H = 200 OESTREDS

USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214, OR EQUIVALENT.

HARDNESS:

LUBRICANT: 450°F NUTS ONLY: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027.

FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL

NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 RADIALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH BOLT IN THE MAXIMUM MISALIGNED POSITION.

DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT **EXCEED 125 MICRO INCHES**

SEE PROCUREMENT SPECIFICATION, EXCEPT 450°F DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES. PERFORMANCE:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN DESIGN AND USAGE LIMITATIONS:

ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588, ONLY NUTS

FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED

INTERCHANGEABILITY RELATIONSHIP:

(STATUS NOTE)

MS 21060 NUTS CAN UNIVERSALLY REPLACE NAS 686 NUTS OF LIKE MATERIAL, THREAD SIZE; LUBRICANT (DRY FILM OR SILVER PLATE), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING.) BUT NAS 686 NUTS CANNOT UNIVERSALLY REPLACE MS21060 NUTS. FOR DEFINITION AND APPILCATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE INEFFECT ON DATE OF INVITATIONS FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-46. Drawing MS21060(ASG) (Sheet 1 of 2)

	DASH NUMBER											
(A)		450°F		800°F								
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED	WELDING PROJECTION						
4-40UNC-3B	L04	L04K	L04W	-04	-04K	-04W						
6-32UNC-3B	L06	L06K	L06W	-06	-06K	-06W						
8-32UNC-3B	L08	L08K	L08W	-08	-08K	-08W						
10-32UNF-3B	L3	L3K	L3W	-3	-3K	-3W						
1/4-28UNF-3B	L4	L4K	L4W	-4	-4K	-4W						
5/16-24UNF-3B	L5	L5K	L5W	-5	-5K	-5W						
3/8-24UNF-3B	L6		L6W	-6		-6W						

EXAMPLE OF PART NUMBER:

1/4-28UNF-3B NUT, SELF-LOCKING, TWO LUG, FLOATING, CRES, 125 KSI, 450°F, DRY FILM LUBRICATED, WITH COUNTERSUNK OR DIMPLED RIVET HOLES.

F05-045S02

Figure 5-46. Drawing MS21060(ASG) (Sheet 2)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

									(5)			WEIGHT (MAX)		
THREAD SIZE DASH NO.	(1) B THREAD MIL-S-8879/MOD.	B MAX	D MIN	F MIN	(2) H MAX	L MIN SPACING AVAILABLE	M MIN	P MAX	MIN	V MAX	AXIAL STRENGTH LBS MIN	NUT ELEMENTS LBS/100	CHANNEL LBS/INCH	
-08	8-32 UNC-3B	.416	.168	.343	.250	.625	.062	.270	.184	.035	1,720	.19	.0028	
-3	10-32 UNF-3B	.416	.194	.343	.250	.625	.062	.270	.210	.035	2,460	.20	.0028	
-4	1/4-28 UNF-3B	.516	.254	.406	.281	.750	.062	.330	.270	.045	4,580	.43	.0032	
-5	5/16-24 UNF-3B	.609	.317	.469	.328	.875	.062	.393	.333	.045	7,390	.64	.0053	
-6	3/8-24 UNF-3B	.726	.379	.562	.344	1.000	.062	.455	.395	.055	11,450	1.08	.0073	

- THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 "H" MAX APPLIES TO NUT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
 FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .404 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .020 LATERALLY FROM CENTERED POSITION. NUT ELEMENT
- MORE I HAN J. 330 LA I ERALLY FROM CEN I REND POSITION. NOT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MIS-ALIGMMENT POSITION. MAXIMUM AXIAL FLOAT. 020 INCH FOR MS21063-08 AND MS21063-3, 030 FOR LARGER SIZES. THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING. THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN JOTS IN ANY 12 INCHES. THE NUT ELE-MENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL
- UNIT: HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCULAR.

NUT ELEMENT - STEEL MATERIAL:

HARDNESS:

CHANNEL - ALUMINUM ALLOY. NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL

PLATING: NUT ELEMENTS - CADMIUM PLATED IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3, DRY PILM LUBRICATED NUT ELE-MENTS IN ACCORDANCE WITH QQ-P-416, TYPE AND CLASS ARE OPTIONAL IF THE NUT ELEMENTS WILL MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

CHANNEL - SEE PROCUREMENT SPECIFICATION

CHANNEL - SEE PROCUREMENT SPECIFICATION.

LUBRICANT: DRY FILM LUBRICANT, ON NUT ELEMENT ONLY, APPROVED IN ACCORDANCE WITH MIL-N-25027, OTHER LUBRICANTS SOLUBLE IN

THE CLEANER SPECIFIED IN MIL-5-7502. FOR USAF APPLICATIONS,

NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED

IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF

BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KIS BASED ON THE CROSS SECTIONAL

AREA AT THE BASIC ROOT DIAMETER OF THE THEAD. THESE NUTS ARE DESIGNED TO BE USED

ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS

OF MR32562 ONLY NITTE CORN WILLY THESE ACTURED ALL SILE DEPOLICATIONS OF ANY ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL

OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

CODE: FIRST DASH NUMBER, AS LISTED ABOVE, DESIGNATES THREAD SIZE. SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH. THIRD DASH NUMBER INDICATES NUMBER OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES) IS DESIRED. LETTER "L" BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICATED NUT ELEMENTS. EXAMPLE OF PART NUMBERS:

EXAMPLE OF PART NUMBERS:

MS21063-3-6

MS21063-3-6

MS21063-3-6

MS21063-3-6

MS21063-3-6

MS21063-3-6

MS21063-3-6

MS21063-3-6

MS21063-4

MS21064-4

MS21063-4

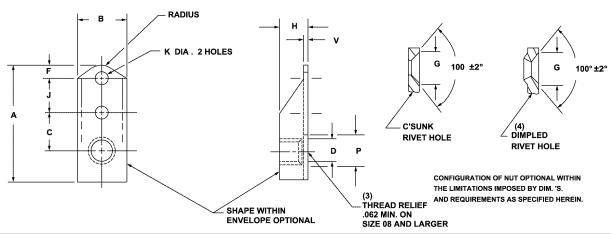
MS21063-4

MS

DIMENSIONS IN INCHES.

DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.


REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

L	NUT	MAX
NUT	ELEMENT	No. OF
ELEMENT	SPACING	NUT
SPACING	DASH No.	ELEMENTS
.625	-5	115
.750	-6	96
.875	-7	82
1.000	-8	72
1.125	-9	64
1.250	-10	57
1.375	-11	52
1.500	-12	48
1.625	-13	44
1.750	-14	41
1.875	-15	38
2.000	-16	36
2.250	-18	32
2.500	-20	28
3.000	-24	24

FOR CHANGES SEE SHEETS 1 AND 2.

F05-046

Figure 5-47. Drawing MS21063(ASG)

(1) THREAD A	A B		В		D DIA.	-		(2) H	J	K DIA. ±.005	P Di		V MAT'L	AXIAL STRENGTH	WEIGHT LBS./100
MIL-S-8879/MOD.	MAX.	MAX.	MIN.	±.005	MIN.	MIN.	±.010	MAX.	±.002	000	MAX.	MIN.	MAX	LBS. MIN.	MAX.
4-40 UNC-3B	1.051	.422	.290	.344		.100	.200	.175	.312	.098	.270	.172	.032	750	.52
6-32 UNC-3B	1.051	.422	.290	.344		.100	.200	.203	.312	.098	.270	.198	.032	1,130	.53
8-32 UNC-3B	1.051	.422	.290	.344	.168	.100	.200	.250	.312	.098	.270	.224	.032	1,720	.54
10-32 UNF-3B	1.051	.422	.290	.344	.194	.100	.200	.250	.312	.098	.270	.250	.032	2,460	.56
1/4-28 UNF-3B	1.306	.531	.350	.500	.254	.100	.200	.281	.312	.098	.330	.310	.032	4,580	.93
5/16-24 UNF-3B	1.396	.641	.412	.500	.317	.125	.230	.328	.312	.130	.392	.372	.045	7,390	1.44

- (A) (1) THREADS BEFORE LUBRICATION, PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - (2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS.
 - (3) SIZE NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN "P" DIAMETER.
- (4) DIMPLED HOLE TOLERANCE FOR "K" IS +.015, 000 AFTER FORMING.

MATERIAL: STEEL

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3. FOR DRY FILM LUBRICATED NUTS, THE

TYPE AND CLASS ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

HARDNESS: Rc 49 MAX.

LUBRICANT: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027, OTHER LUBRICANTS SOLUBLE IN THE

CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL

NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 RADIALLY FROM CENTERED POSITION. NUT ELEMENTS SHALL BE CAPABLE OF ENGAGEMENT WITH BOLT IN THE MAXIMUM MISALIGNED POSITION.

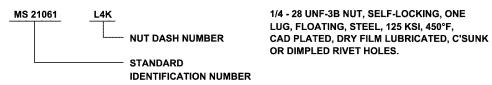
DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

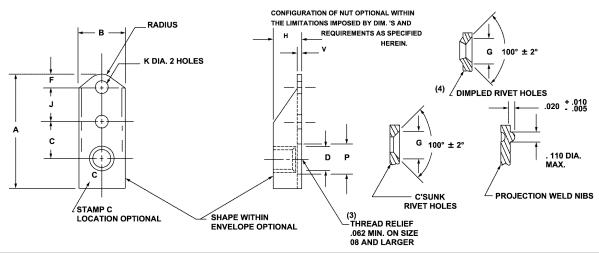
INTERCHANGEABILITY RELATIONSHIP: MS 21061 NUTS CAN UNIVERSALLY REPLACE NAS 687 NUTS OF LIKE MATERIAL, THREAD SIZE, (STATUS NOTE) LUBRICANTS (DRY FILM OR NON DRY FILM), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED OR COUNTERSUNK RIVET HOLES). BUT NAS 687 NUTS CANNOT UNIVERSALLY REPLACE MS 21061 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.


REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2. F05-047S01

Figure 5-48. Drawing MS21061(ASG) (Sheet 1 of 2)


	DASH NUMBERS										
(A)	PLAIN RIVET I	HOLES	C'SUNK OR DIMPLE RIVET HOLES								
THREAD SIZE MIL-S-8879/MOD.	NON DRY FILM LUBE	DRY FILM LUBE	NON DRY FILM LUBE	DRY FILM LUBE							
4-40 UNC-3B	-04	L04	-04K	L04K							
6-32 UNC-3B	-06	L06	-06K	L06K							
8-32 UNC-3B	-08	L08	-08K	L08K							
10-32 UNF-3B	-3	L3	-3K	L3K							
1/4-28 UNF-3B	-4	L4	-4K	L4K							
5/16-24 UNF-3B	-5	L5	-5K	L5K							

EXAMPLE OF PART NUMBERS:

F05-047S02

Figure 5-48. Drawing MS21061(ASG) (Sheet 2)

(1) THREAD A		8	3		D		G	(2)		K DIA.		IA.	v	AXIAL	WEIGHT
MIL-S-8879/MOD.	A MAX.	MAX.	MIN.	C ±.005	DIA. MIN.	F MIN.	DIA. ±.010	H MAX.	J ±.002	+ .005 000	MAX.	MIN.	MAT'L MAX.	STRENGTH LBS.MIN.	
4-40UNC-3B	1.051	.422	.290	.344		.100	.200	.175	.312	.098	.270	.172	.032	750	.52
6-32UNC-3B	1.051	.422	.290	.344		.100	.200	.203	.312	.098	.270	.198	.032	1,130	.53
8-32UNC-3B	1.051	.422	.290	.344	.168	.100	.200	.250	.312	.098	.270	.224	.032	1,720	.54
10-32UNF-3B	1.051	.422	.290	.344	.194	.100	.200	.250	.312	.098	.270	.250	.032	2,460	.56
1/4-28UNF-3B	1.306	.531	.350	.500	.254	.100	.200	.281	.312	.098	.330	.310	.032	4,580	1.00
5/16-24UNF-3B	1.396	.641	.412	.500	.317	.125	.230	.328	.312	.130	.392	.372	.045	7,390	1.44

- (A) (1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969

 - (2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS
 (3) SIZE NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN "P" DIAMETER.
 - (4) DIMPLED HOLE TOLERANCED FOR "K" IS +.015, -.000 AFTER FORMING.

MATERIAL: CORROSION RESISTANT STEEL (A-286) PER AMS 5525, AMS 5735, OR AMS 5737.

PLATING: 800°F NUTS ONLY: SILVER PLATE PER AMS 2410. PLATE THICKNESS MEASURED ON ANY EXTERNAL SURFACE OF

THE NUT, SHALL NOT BE LESS THAN 0.0002 IN; THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS

REQUIREMENT ON THREAD IS WAIVED. NO SILVER PLATE ON WELD NIBS.

SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H - 200 OERSTEDS MAGNETIC PERMEABILITY: USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17314, OR EQUIVALENT

HARDNESS: Rc 49 MAX.

LUBRICANT: 450°F NUTS ONLY: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027.

FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL

NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS

FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 RADIALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH BOLT IN THE MAXIMUM MISALIGNED POSITION. DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT **EXCEED 125 MICRO INCHES.**

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450° DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN

ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588 ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP:

(STATUS NOTE)

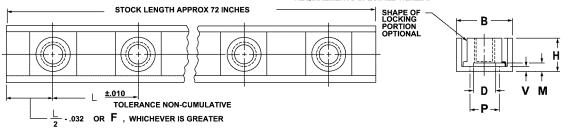
MS 21062 NUTS CAN UNIVERSALLY REPLACE NAS 687 NUTS OF LIKE MATERIAL, THREAD SIZE, LUBRICANT (DRY FILM OR SILVER PLATE), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED, COUNTERSUNK RIVET HOLES OR PROJECTION WELDING). BUT NAS 687 NUTS CANNOT UNIVERSALLY REPLACE MS21062 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-49. Drawing MS21062(ASG) (Sheet 1 of 2)


(A)			DASH NU	IMBER		
	4	50°F		800°F		
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED	WELDING PROJECTION
4-40UNC-3B	L04	L04K	L04W	-04	-04K	-04W
6-32UNC-3B	L06	L06K	L06W	-06	-06K	-06W
8-32UNC-3B	L08	L08K	L08W	-08	-08K	-08W
10-32UNF-3B	L3	L3K	L3W	-3	-3K	-3W
1/4-282UNF-3B	L4	L4K	L4W	-4	-4K	-4W
5/16-24UNF-3B	L5	L5K	L5W	-5	-5K	-5W

EXAMPLE OF PART NUMBER:

Figure 5-49. Drawing MS21062(ASG) (Sheet 2)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

THREAD	(1)					L		(5)		(5)		WEIGHT (MAX)	
SIZE DASH	THREAD	В	D	F	(2) H	MIN SPACING	м	F	>	v	AXIAL STRENGTH	NUT ELEMENTS	CHANNEL
No.	MIL-S-8879/MOD.	MAX	MIN	MIN	MAX	AVAILABLE	MIN	MAX	MIN	MAX	LBS MIN	LBS/100	LBS/INCH
-08	8-32UNC-3B	.416	.168	.343	.250	.625	.062	.270	.184	.035	1,720	.19	.0071
-3	10-32UNF-3B	.416	.194	.343	.250	.625	.062	.270	.210	.035	2,460	.20	.0071
-4	1/4-28UNF-3B	.516	.254	.406	.281	.750	.062	.330	.270	.045	4,580	.43	.0084
-5	5/16-24UNF-3B	.609	.317	.469	.328	.875	.062	.393	.333	.045	7,390	.64	.0146
-6	3/8-24UNF-3B	.726	.379	.562	.344	1.000	.062	.455	.395	.055	11,450	1.08	.0186

- (B) (1) THREADS BEFORE LUBRICATION PER MIL-5-8875 THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - (2) H"MAX APPLIES TO NUT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
 - (3) FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION. MAXIMUM AXIAL FLOAT .020 INCH FOR MS21064-08 AND MS21064-3, .030 FOR LARGER SIZES.
 - (4) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING. THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES. THE NUT ELEMENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.
 - (5) HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCULAR.

MATERIAL: NUT ELEMENT - STEEL.

CHANNEL - CORROSION RESISTANT STEEL. SEE PROCUREMENT SPECIFICATION.

HARDNESS: NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL C 49.

PLATING: NUT ELEMENTS - CADMIUM PLATED IN ACCORDANCE WITH QQ-P-416, TYPE II,

CLASS 3. DRY FILM LUBRICATED NUT ELEMENTS IN ACCORDANCE WITH QQ-P-416, TYPE AND CLASS ARE OPTIONAL IF THE NUT ELEMENTS WILL MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

CHANNEL - PLAIN (PASSIVATED).

LUBRICANT: DRY FILM LUBRICANT, ON NUT ELEMENT ONLY, APPROVED IN ACCORDANCE WITH MIL-N-25027
OTHER LUBRICANTS SOLUBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

CODE: FIRST DASH NUMBER, AS LISTED ABOVE, DESIGNATES THREAD SIZE. SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH. THIRD DASH NUMBER INDICATES NUMBERS OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES) IS DESIRED.

LETTER "L" BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICATED NUT ELEMENTS.

EXAMPLE OF PART NUMBERS:

MS21064-3-6 = GANG CHANNEL ASSEMBLY CONSISTING OF NINETY-SIX, 10-32, CADMIUM PLATED NUT ELEMENTS SPACED AT .750 INCH.

MS21064L4-7-10 = GANG CHANNEL ASSEMBLY CONSISTING OF TEN, 1/4-28, CADMIUM, PLATED DRY FILM LUBRICATED

NUT ELEMENTS, SPACED AT .875 INCH.
INTERCHANGEABILITY RELATIONSHIP: MS21064 NUTS CAN UNIVERSALLY REPLACE NAS688 THRU 692 NUTS OF LIKE THREAD SIZE.

(STATUS NOTE) LUBRICANT (DRY FILM OR NON-DRY FILM), PLATING, NUT ELEMENT SPACING, NUMBER OF NUT ELEMENTS,

AND MATERIAL; BUT NAS688 THRU 692 NUTS CANNOT UNIVERSALLY REPLACE MS21064 NUTS.

FOR DEFINITION AND APPLICATION OF STATUS NOTES SEE MIL-STD-32.

SURFACE ROUGHNESS: IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT

EXCEED 125 MICRO INCHES.

BREAK SHARP CORNERS.

DIMENSIONS IN INCHES.

DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

(B) FOR CHANGES SEE SHEETS 1 AND 2.

NUT

ELEMENT

SPACING

DASH No.

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-18

-20

-24

NUT

ELEMENT

SPACING

.625

.750

.875

1.000

1.125

1.250

1.375

1.500

1.625

1.750

1.875

2.000

2.250

2.500

3.000

MAX

No. OF

NUT

ELEMENTS

115

96

82

72

57

52

48

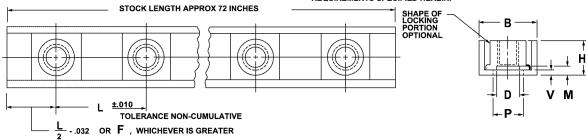
44

41

38

36

32


28

24

F05-049

Figure 5-50. Drawing MS21064(ASG)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

	_	(B)					L		(5)				WEIGHT (MAX)	
THREA		(1) THREAD	В	D	F	(2) H	MIN SPACING	М	F	•	v	AXIAL STRENGTH	NUT ELEMENTS	CHANNEL
450°F	800°F	MIL-S-8879/MOD.	MAX	MIN	MIN	MAX	AVAILABLE	MIN	MAX	MIN	MAX	LBS MIN	LBS/100	LBS/INCH
L08	-08	8-32UNC-3B	.416	.168	.343	.250	.625	.062	.270	.184	.035	1,720	.19	.0071
L3	-3	10-32UNF-3B	.416	.194	.343	.250	.625	.062	.270	.210	.035	2,460	.20	.0071
L4	-4	1/4-28UNF-3B	.516	.254	.406	.281	.750	.062	.330	.270	.045	4,580	.43	.0084
L5	-5	5/16-24UNF-3B	.609	.317	.469	.328	.875	.062	.393	.333	.045	7,390	.64	.0146
L6	-6	3/8-24UNF-3B	.726	.379	.562	.344	1.000	.062	.455	.395	.055	11,450	1.08	.0186

B	1) THREADS BEFORE LUBRICATION PER MIL-S-8879.	THREADS IN ACCORDANCE WITH MIL-S-7742
_	ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.	
	2) "H" MAX APPLIES TO NUT ELEMENT AND CHANNEL.	MIN "H" NOT SPECIFIED, LIMITED

- (2) "H" MAX APPLIES TO NOT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
- (3) FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION. MAXIMUM AXIAL FLOAT .020 INCH FOR MS21065-06 AND MS21065-3, .030 FOR LARGER SIZES.
- (4) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING. THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES. THE NUT ELEMENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.
- (5) HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCULAR.

NUT ELEMENT SPACING	SPACING DASH No.	No. OF NUT ELEMENTS
.625	-5	115
.750	-6	96
.875	-7	82
1.000	-8	72
1.125	-9	64
1.250	-10	57
1.375	-11	52
1.500	-12	48
1.625	-13	44
1.750	-14	41
1.875	-15	38
2.000	-16	36
2.250	-18	32
2.500	-20	28
3.000	-24	24

NUT

MAX

MATERIAL: NUT ELEMENT - CORROSION AND HEAT RESISTANT STEEL, (A286) AMS5525, AMS5735 OR AMS5737.

CHANNEL - CORROSION RESISTANT STEEL.

HARDNESS: NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL C 49.

PLATING: 800°F NUT ELEMENTS - SILVER PLATED IN ACCORDANCE WITH AMS2410. PLATE THICKNESS MEASURED ON ANY

EXTERNAL SURFACE OF THE NUT ELEMENT SHALL NOT BE LESS THAN 0.0002 INCHES THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT ON THREAD

IS WAIVED.

CHANNEL - PLAIN (PASSIVATED).

LUBRICANT: 450°F NUT ELEMENTS - DRY FILM LUBRICANT, ON NUT ELEMENT ONLY, APPROVED IN ACCORDANCE WITH

MIL-N-25027, FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS APPLICATIONS.

NO SILVER PLATE.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC

PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450°F DRY FILM LUBRICATED NUT ELEMENTS LIMITED TO FIVE REUSE CYCLES.

(B) FOR CHANGES SEE SHEET 1.

F05-050S01

Figure 5-51. Drawing MS21065(ASG) (Sheet 1 of 2)

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

CODE: FIRST DASH NUMBER, DESIGNATES THREAD SIZE.

SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH.

THIRD DASH NUMBER INDICATES NUMBER OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES)

IS DESIRED.

LETTER "L" BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICATED NUT ELEMENTS.

EXAMPLE OF PART NUMBERS;

MS21065-3-6 = GANG CHANNEL ASSEMBLY CONSISTING OF NINETY-SIX, 10-32, SILVER PLATED NUT ELEMENTS,

SPACED AT .750 INCH, 800°F

MS21065L4-7-10 = GANG CHANNEL ASSEMBLY CONSISTING OF TEN, 1/4-28, DRY FILM LUBRICATED NUT ELEMENTS,

SPACED AT .875 INCH, 450°F

INTERCHANGEABILITY RELATIONSHIP:

(STATUS NOTE)

MS21065 NUTS CAN UNIVERSALLY REPLACE NAS688 THRU 692 NUTS OF LIKE THREAD SIZE, LUBRICANT (DRY FILM OR NON-DRY FILM), PLATING, NUT ELEMENT, SPACING, NUMBER OF NUT ELEMENTS, AND MATERIAL, BUT NAS688 THRU 692

SPACING, NUMBER OF NUT ELEMENTS, AND MATERIAL, BUT NAS688 THRU 692 NUTS CANNOT UNIVERSALLY REPLACE MS21065 NUTS. FOR DEFINITION AND

APPLICATION OF STATUS NOTE SEE MIL-STD-32.

SURFACE ROUGHNESS: IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL

NOT EXCEED 125 MICRO INCHES.

BREAK SHARP CORNERS.

DIMENSIONS IN INCHES.

DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.
REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-050S02

Figure 5-51. Drawing MS21065(ASG) (Sheet 2)

NUT

ELEMENT

DASH No.

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-18

-20

-24

SPACING

NUT

ELEMENT

SPACING

.750

.875

1.000

1.125

1.250

1.375

1.500

1.625

1.750

1.875

2.000

2.250

2.500

3.000

MAX

No. OF

NUT

ELEMENTS

96

82

72

64

57

52

48

44

41

38

36

32

28

24

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

THREAD	(B)					L		(5)				WEIGHT	Γ (MAX)
SIZE DASH	THREAD	В	D	F	(2) H	MIN SPACING	м	Р		v	AXIAL STRENGTH	NUT ELEMENTS	CHANNEL LBS/INCH
No.	MIL-S-8879/MOD.	MAX	MIN	MIN	MAX	AVAILABLE	REF	MAX	MIN	MAX	LBS MIN	LBS/100	LBS/INCH
-08	8-32UNC-3B	.593	.360	.406	.272	.750	.084	.491	.385	.035	1,720	.24	.0038
-3	10-32UNF-3B	.593	.406	.406	.281	.750	.093	.491	.431	.035	2,460	.26	.0038
-4	1/4-28UNF-3B	.874	.509	.562	.340	1.000	.107	.620	.560	.045	4,580	.60	.0052

- (1) THREADS BEFORE LUBRICATION PER MIL-5-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE (B) ACCEPTABLE UNTIL 31 DECEMBER 1969.
- (2) H"MAX APPLIES TO NUT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
- (3) FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION. MAXIMUM AXIAL FLOAT .020 INCH FOR MS21066-08 AND MS2106-3. .030 FOR MS21066-4.
- (4) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING, THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES. THE NUT ELEMENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.
- (5) HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCULAR.

MATERIAL: NUT ELEMENT - STEEL.

CHANNEL - CORROSION RESISTANT STEEL.

HARDNESS: NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL C 49.

PLATING: NUT ELEMENTS - CADMIUM PLATED IN ACCORDANCE WITH QQ-P-416, TYPE II.

CLASS 3. DRY FILM LUBRICATED NUT ELEMENTS IN ACCORDANCE WITH QQ-P-416, TYPE AND CLASS ARE OPTIONAL IF THE NUT ELEMENTS WILL MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

CHANNEL - PLAIN (PASSIVATED).

LUBRICANT: DRY FILM LUBRICANT, ON NUT ELEMENT ONLY, APPROVED IN ACCORDANCE WITH MIL-N-25027.

OTHER LUBRICANTS SOLUBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

CODE: FIRST DASH NUMBER, AS LISTED ABOVE, DESIGNATES THREAD SIZE. SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH. THIRD DASH NUMBER INDICATES NUMBERS OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES) IS DESIRED.

LETTER "L" BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICATED NUT ELEMENTS.

EXAMPLE OF PART NUMBERS:

MS21066-3-6 GANG CHANNEL ASSEMBLY CONSISTING OF NINETY-SIX, 10-32, CADMIUM PLATED NUT ELEMENTS

SPACED AT .750 INCH.

MS21066L4-7-10 GANG CHANNEL ASSEMBLY CONSISTING OF TEN, 1/4-28, CADMIUM PLATED DRY FILM LUBRICATED NUT ELEMENTS, SPACED AT .875 INCH.

NUT ELEMENTS, SPACED AT .875 INCH.
INTERCHANGEABILITY RELATIONSHIP: MS21066 NUTS CAN UNIVERSALLY REPLACE NAS693 THRU 695 NUTS OF LIKE THREAD SIZE.

(STATUS NOTE) LUBRICANT (DRY FILM OR NON-DRY FILM), PLATING, NUT ELEMENT SPACING, NUMBER OF NUT ELEMENTS,

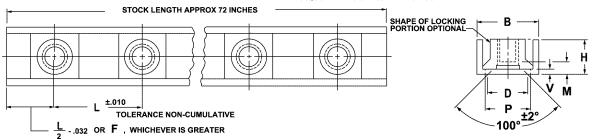
AND MATERIAL; BUT NAS693 THRU 695 NUTS CANNOT UNIVERSALLY REPLACE MS21066 NUTS.

FOR DEFINITION AND APPLICATION OF STATUS NOTES SEE MIL-STD-32.

SURFACE ROUGHNESS: IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

BREAK SHARP CORNERS.

DIMENSIONS IN INCHES.


DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.
REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-051

Figure 5-52. Drawing MS21066(ASG)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

THREAD	(B)					L			(5)			WEIGHT	(XAM)										
SIZE DASH	THREAD	В	D	F	(2) H	MIN SPACING	м	F	P		P		P		P		Р		Р		AXIAL STRENGTH	NUT ELEMENTS	CHANNEL
No.	MIL-S-8879/MOD.	MAX	MIN	MIN	MAX	AVAILABLE	REF	MAX	MIN	MAX	LBS MIN	LBS/100	LBS/INCH										
-06	8-32UNC-3B	.593	.360	.406	.272	.750	.084	.491	.385	.035	1,720	.24	.0080										
-3	10-32UNF-3B	.593	.406	.406	.281	.750	.093	.491	.431	.035	2,460	.26	.0080										
-4	1/4-28UNF-3B	.874	.509	.562	.340	1.000	.107	.620	.560	.045	4,580	.60	.0100										

- (1) THREADS BEFORE LUBRICATION PER MIL-S-8879, THREADS IN ACCORDANCE WITH MIL-S-7742 ARE (B) ACCEPTABLE UNTIL 31 DECEMBER 1969.
- (2) "H"MAX APPLIES TO NUT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
- (3) FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION. MAXIMUM AXIAL FLOAT .020 INCH FOR MS21067-08 AND MS21067-3, .030 FOR MS21067-4.
- (4) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING. THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES. THE NUT ELEMENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.
- (5) HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCULAR.

MATERIAL: NUT ELEMENT - STEEL.

CHANNEL - CORROSION RESISTANT STEEL.

HARDNESS: NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL C 49.

PLATING: NUT ELEMENTS - CADMIUM PLATED IN ACCORDANCE WITH QQ-P-416, TYPE II,

CLASS 3. DRY FILM LUBRICATED NUT ELEMENTS IN ACCORDANCE

CLASS 3. DRY FILM LUBRICATED NUT ELEMENTS IN ACCORDANCE WITH QQ-P-416, TYPE AND CLASS ARE OPTIONAL IF THE NUT ELEMENTS WILL MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

CHANNEL - PLAIN (PASSIVATED).

LUBRICANT: DRY FILM LUBRICANT, ON NUT ELEMENT ONLY, APPROVED IN ACCORDANCE WITH MIL-N-25027,

OTHER LUBRICANTS SOLUBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS, NUTS TREATED

WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

CODE: FIRST DASH NUMBER, AS LISTED ABOVE, DESIGNATES THREAD SIZE. SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH. THIRD DASH NUMBER INDICATES NUMBERS OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES) IS DESIRED.

LETTER "L" BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICATED NUT ELEMENTS.

EXAMPLE OF PART NUMBERS

MS21067-3-6 = GANG CHANNEL ASSEMBLY CONSISTING OF NINETY-SIX, 10-32, CADMIUM PLATED NUT ELEMENTS SPACED AT .750 INCH.

MS21067L4-7-10 = GANG CHANNEL ASSEMBLY CONSISTING OF TEN, 1/4-28, CADMIUM PLATED DRY FILM LUBRICATED

NUT ELEMENTS, SPACED AT .875 INCH.

INTERCHANGEABILITY RELATIONSHIP: MS21067 NUTS CAN UNIVERSALLY REPLACE NAS693 THRU 695 NUTS OF LIKE THREAD SIZE,
(STATUS NOTE) LUBRICANT (DRY FILM OR NON-DRY FILM), PLATING, NUT ELEMENT SPACING, NUMBER OF NUT ELEMENTS

AND MATERIAL; BUT NAS693 THRU 695 NUTS CANNOT UNIVERSALLY REPLACE MS21067 NUTS.

FOR DEFINITION AND APPLICATION OF STATUS NOTES SEE MIL-STD-32.

SURFACE ROUGHNESS: IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT

EXCEED 125 MICRO INCHES.

BREAK SHARP CORNERS. DIMENSIONS IN INCHES.

DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.
REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-052

NUT

ELEMENT

DASH No.

-8

-9

-10

-11

-12

-13

-14

-15

-16

-18

-20

-24

SPACING

NUT

ELEMENT

SPACING

.875

1.000

1.125

1.250

1.375

1.500

1.625

1.750

1.875

2.000

2.250

2.500

3.000

MAX

No. OF

NUT

ELEMENTS

96

82

72

64

57

52

48

44

41

38

36

32

28

24

Figure 5-53. Drawing MS21067(ASG)

NUT

FLEMENT

SPACING

DASH No.

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-18

-20

-24

NUT

ELEMENT

SPACING

.750 .875

1.000

1.125 1.250

1.375

1.500

1.625

1.750

1.875

2.000

2.250

2,500

3.000

MAX

No. OF

NUT

ELEMENTS 96

82

72

64

57

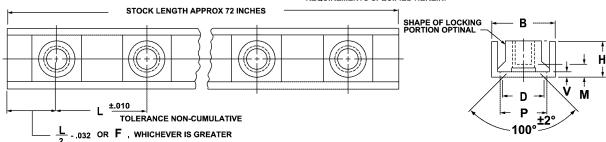
52

48

44

41

38


36

32

28

24

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

THREAD		(B)					L			(5)			WEIGHT	(MAX)
SIZE DASH No.		THREAD	В	D	F	H (2)	MIN SPACING	м	F	•	v	AXIAL STRENGTH	NUT ELEMENTS	CHANNEL
450°F	800°F	MIL-S-8879/MOD.	MAX	MIN	MIN	MÁX	AVAILABLE	MIN	MAX	MIN	MAX	LBS MIN	LBS/100	LBS/INCH
L08	-08	8-32UNC-3B	.593	.360	.406	.272	.750	.084	.491	.385	.035	1,720	.24	.0080
L3	-3	10-32UNF-3B	.593	.406	.406	.281	.750	.093	.491	.431	.035	2,460	.26	.0080
L4	-4	1/4-28UNF-3B	.874	.509	.562	.340	1.000	.107	.620	.560	.045	4,580	.50	.0100

B (1)	THREADS BEFORE LUBRICATION PER MIL-5-8879	THREADS IN ACCORDANCE WITH MIL-S-7742
9	ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.	

(2) "H"MAX APPLIES TO NUT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.

(3) FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION. MAXIMUM AXIAL FLOAT .020 INCH FOR MS21068-08 AND MS21068-3. .030 FOR MS21068-4.

(4) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING. THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES. THE NUT ELEMENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.

(5) HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCULAR.

MATERIAL: NUT ELEMENT - CORROSION AND HEAT RESISTANT STEEL, (A286) AMS5525, AMS5735 OR AMS5737

CHANNEL - CORROSION RESISTANT STEEL.

HARDNESS: NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL C 49.

PLATING: 800°F NUT ELEMENTS - SILVER PLATED IN ACCORDANCE WITH AMS2410. PLATE THICKNESS MEASURED ON ANY

EXTERNAL SURFACE OF THE NUT ELEMENT SHALL NOT BE LESS THAN 0.0002 INCHES. THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT ON THREAD

IS WAIVED.

CHANNEL - PLAIN (PASSIVATED).

LUBRICANT: 450°F NUT ELEMENTS - DRY FILM LUBRICANT, ON NUT ELEMENT ONLY, APPROVED IN ACCORDANCE WITH

MIL-N-25027, FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM

LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

NO SILVER PLATE.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC

PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450°F DRY FILM LUBRICATED NUT ELEMENTS LIMITED TO FIVE

REUSE CYCLES.

(B) FOR CHANGES SEE SHEET 1. F05-053S01

Figure 5-54. Drawing MS21068(ASG) (Sheet 1 of 2)

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

CODE: FIRST DASH NUMBER, DESIGNATES THREAD SIZE.

SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH.

THIRD DASH NUMBER INDICATES NUMBER OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES)

IS DESIRED.

LETTER "L" BEFORE FIRST DASH NUMBER DESIGNATES DRY FILM LUBRICATED NUT ELEMENTS.

EXAMPLE OF PART NUMBERS;

MS21068-3-6 = GANG CHANNEL ASSEMBLY CONSISTING OF NINETY-SIX, 10-32, SILVER PLATED NUT ELEMENTS,

SPACED AT .750 INCH, 800°F

MS21068L4-7-10 = GANG CHANNEL ASSEMBLY CONSISTING OF TEN, 1/4-28, DRY FILM LUBRICATED NUT ELEMENTS,

SPACED AT .875 INCH, 450°F

INTERCHANGEABILITY RELATIONSHIP:

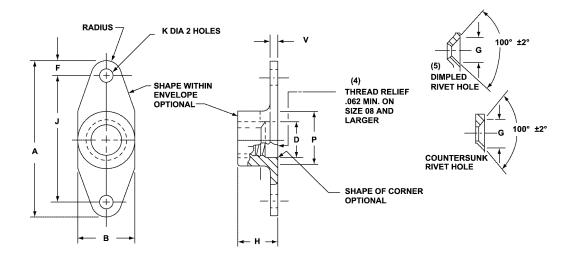
(STATUS NOTE)

MS21065 NUTS CAN UNIVERSALLY REPLACE NAS693 THRU 695 NUTS OF LIKE THREAD SIZE, LUBRICANT (DRY FILM OR NON-DRY FILM), PLATING, NUT ELEMENT SPACING, NUMBER OF NUT ELEMENTS, AND MATERIAL, BUT NAS693 THRU 695 NUTS CANNOT UNIVERSALLY REPLACE MS21068 NUTS. FOR DEFINITION AND APPLICATION OF STATUS NOTE SEE MIL-STD-32.

SURFACE ROUGHNESS:

IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL

NOT EXCEED 125 MICRO INCHES.


BREAK SHARP CORNERS.

DIMENSIONS IN INCHES.

DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

F05-053S02

Figure 5-54. Drawing MS21068(ASG) (Sheet 2)

(1) B THREAD	A	ı	3	D DIA	F	G DIA	(2) H	J	K DIA	P DIA	V MAT'L	AXIAL STRENGTH	WEIGHT
SIZE MIL-S-8879/MOD.	MAX	MAX	MIN	MIN	MIN	±.010	MAX	±.002	+.005 000	MAX	MAX	LBS MIN	LBS/100 MAX
2-56 UNC-3B	.410	.162	.140	_	.071	(3)	.110	.250	.066	.130	.035	440	.05
4-40 UNC-3B	.630	.260	.140	_	.089	.200	.143	.406	.098	.166	.040	750	.11
6-32 UNC-3B	.661	.265	.195	_	.089	.200	.171	.437	.098	.206	.047	1130	.14
8-32 UNC-3B	.692	.297	.230	.168	.100	.200	.250	.468	.098	.248	.047	1720	.18
10-32 UNF-3B	.724	.328	.298	.194	.100	.200	.250	.500	.098	.274	.047	2460	.26
1/4-28 UNF-3B	.786	.414	.380	.254	.100	.200	.281	.562	.098	.344	.055	4580	.40
5/16-24 UNF-3B	1.006	.505	.475	.317	.125	.230	.328	.718	.130	.417	.065	7390	.77
3/8-24 UNF-3B	1.116	.614	.580	.379	.125		.344	.828	.130	.505	.075	11450	1.86

- (B) (1) THREADS PER MIL-S-8879 BEFORE LUBRICATION. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS
 - SPACE WILL NOT PERMIT COUNTERSINK (3)
 - CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET (4) HOLES BY MORE THAN .005. SIZES NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN 'P' DIAMETER.
 - DIMPLED HOLE TOLERANCE FOR 'K' IS +.015, -.000 AFTER FORMING

MATERIAL:

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416 TYE II CLASS 3. FOR DRY FILM LUBRICATED NUTS, THE TYPE AND CLASS

ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

HARDNESS: **ROCKWELL C49 MAXIMUM.**

LUBRICANT:

DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS SOLUBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

AGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH DESIGN AND USAGE LIMITATIONS: LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21069 NUTS CAN UNIVERSALLY REPLACE MAS 697 NUTS OF LIKE MATERIAL, THREAD SIZE, (STATUS NOTE) LUBRICANTS (DRY FILM OR NON DRY FILM), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED OR COUNTERSUNK RIVET HOLES). BUT THESE HAS 697 NUTS CANNOT UNIVERSALLY REPLACE MS 21069 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE EFFECT ON DATE OF INVITATIONS FOR BIDS.

(B) FOR CHANGES SEE SHEETS 1 AND 2. F05-054S01

Figure 5-55. Drawing MS21069(ASG) (Sheet 1 of 2)

В	DASH NUMBERS										
TIPEADOITE	PLAIN RIVET	HOLES	C'SUNK OR DIMPLE	D RIVET HOLES							
THREAD SIZE MIL-S-8879/MOD.	NON DRY FILM LUBE	DRY FILM LUBE	NON DRY FILM LUBE	DRY FILM LUBE							
2-56 UNC-3B	-02	L02									
4-40 UNC-3B	-04	L04	-04K	L04K							
6-32 UNC-3B	-06	L06	-06K	L06K							
8-32 UNC-3B	-08	L08	-08K	L08K							
10-32 UNF-3B	-3	L3	-3K	L3K							
1/4-28 UNF-3B	-4	L4	-4K	L4K							
5/16-24 UNF-3B	-5	L5	-5K	L5K							
3/8-24 UNF-3B	-6	L6									

EXAMPLE OF PART NUMBERS:

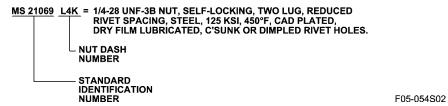
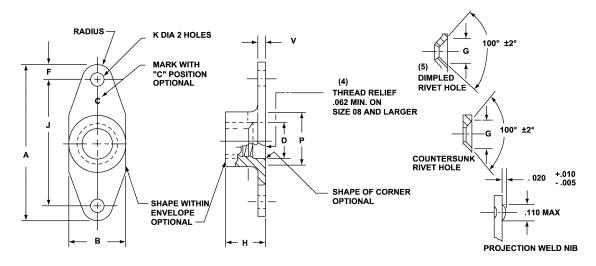



Figure 5-55. Drawing MS21069(ASG) (Sheet 2)

(1) (B)				D		G	(2)	(3)	к	Р	v	AXIAL	
THREAD	Α	E	3	DIA	F	DIA	Н	J	DIA	DIA	MAT'L	STRENGTH	WEIGHT
SIZE MIL-S-8879/MOD.	MAX	MAX	MIN	MIN	MIN	±.010	MAX	±.002	+.005 000	MAX	MAX	LBS MIN	LBS/100 MAX
2-56 UNC-3B	.410	.162	.140		.071	(3)	.110	.250	.066	.130	.035	440	.05
4-40 UNC-3B	.630	.260	.140		.089	.200	.143	.406	.098	.166	.040	750	.11
6-32 UNC-3B	.661	.265	.195	_	.089	.200	.171	.437	.098	.206	.047	1130	.14
8-32 UNC-3B	.692	.297	.230	.168	.100	.200	.250	.468	.098	.248	.047	1720	.18
10-32 UNF-3B	.724	.328	.298	.194	.100	.200	.250	.500	.098	.274	.047	2460	.26
1/4-28 UNF-3B	.786	.414	.380	.254	.100	.200	.281	.562	.098	.344	.055	4580	.40
5/16-24 UNF-3B	1.006	.505	.475	.317	.125	.230	.328	.718	.130	.417	.065	7390	.77
3/8-24 UNF-3B	1.116	.614	.580	.379	.125		.344	.828	.130	.505	.075	11450	1.86

- (B) (1) THREADS PER MIL-S-8879 BEFORE LUBRICATION. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - (2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS
 - (3) SPACE WILL NOT PERMIT COUNTERSINK
 - (4) CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005. SIZES NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN 'P' DIAMETER
 - (5) DIMPLED HOLE TOLERANCE FOR 'K' IS +.015, -.000 AFTER FORMING

MATERIAL: CORROSION RESISTANT STEEL, (A286) AMS5525, AMS5735 OR AMS5737.

PLATING: 800° NUTS ONLY: SILVER PLATE PER AMS2410. THICKNESS ON EXTERNAL SURFACES SHALL NOT BE LESS THAN 0.0002 IN. THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT IS WAIVED. NO SILVER

PLATE ON WELD NIBS.

LUBRICANT: 450° NUTS, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027. FOR USAF APPLICATIONS NUTS TREATED

WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS. (NO SILVER PLATE)

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H-200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-1-17214 OR EQUIVALENT.

DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

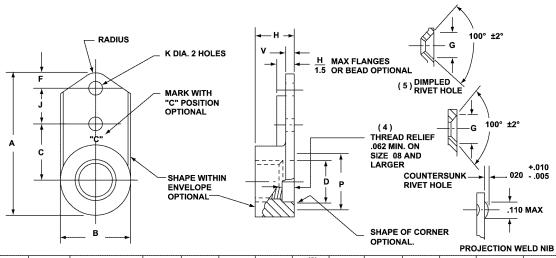
DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD, THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21070 NUTS CAN UNIVERSALLY REPLACE NAS 697 NUTS OF LIKE MATERIAL, THREAD (STATUS SIZE, LUBRICANTS (DRY FILM OR SILVER PLATE), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, NOTE) DIMPLED OR COUNTERSUNK RIVET HOLES). BUT THESE NAS 697 NUTS CANNOT UNIVERSALLY REPLACE MS 21070 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.
REFERENCED DOCUMENTS SHALL BE OF THE ISSUE EFFECT ON DATE OF INVIATIONS FOR BIDS.

B FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-56. Drawing MS21070(ASG) (Sheet 1 of 2)


		DASH NUMBERS											
(B)	45	0°F DRY FILM LUBR	ICATED	800°F NON DRY FILM LUBRICATED									
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION							
2-56 UNC-3B	L02		L02W	-02		-02W							
4-40 UNC-3B	L04	L04K	L04W	-04	-04K	-04W							
6-32 UNC-3B	L06	L06K	L06W	-06	-06K	-06W							
8-32 UNC-3B	L08	L08K	L08W	-08	-08K	-08W							
10-32 UNF-3B	L3	L3K	L3W	-3	-3K	-3W							
1/4-28 UNF-3B	L4	L4K	L4W	-4	-4K	-4W							
5/16-24 UNF-3B	L5	L5K	L5W	-5	-5K	-5W							
3/8-24 UNF-3B	L6		L6W	-6		-6W							

EXAMPLE OF PART NUMBER:

F05-055S02

Figure 5-56. Drawing MS21070(ASG) (Sheet 2)

					_		_	(2)			_			
THREAD	A		В	С	D DIA	F	G DIA	н	J	K DIA	P DIA	v	AXIAL STRENGTH	WEIGHT
SIZE MIL-S-8879/MOD.	MAX	MAX	MIN	±.005	MIN	MIN	±.010	MAX	±.002	+.005 000	MAX	MAX	LBS MIN	LBS/100 MAX
2-56 UNC-3B	.507	.162	.140	.125		.071	(3)	.110	.219	.066	.130	.035	440	.06
4-40 UNC-3B	.667	.260	.140	.203	_	.089	.200	.143	.219	.098	.166	.040	750	.12
6-32 UNC-3B	.684	.265	.195	.218		.089	.200	.171	.219	.098	.206	.047	1130	.15
8-32 UNC-3B	.716	.297	.235	.234	.168	.100	.200	.250	.219	.098	.248	.047	1720	.23
10-32 UNF-3B	.745	.328	.298	.250	.194	.100	.200	.250	.219	.098	.274	.047	2460	.27
1/4-28 UNF-3B	.822	.414	.380	.281	.254	.100	.200	.281	.219	.098	.344	.055	4580	.46
5/16-24 UNF-3B	1.026	.505	.475	.359	.317	.125	.230	.328	.269	.130	.417	.065	7390	.85
3/8-24 UNF-3B	1.139	.614	.580	.414	.379	.125		.344	.269	.130	.505	.075	11450	2.04

- THREADS PER MIL-S48879 BEFORE LUBRICATION. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL (B) (1) 31 DECEMBER 1969.
 - MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS
 - SPACE WILL NOT PERMIT COUNTERSINK
 - CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005. SIZES NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN 'P' DIAMETER
 - DIMPLED HOLE TOLERANCE FOR 'K' IS +.015, -.000 AFTER FORMING

CORROSION RESISTANT STEEL, (A286) AMS5525, AMS5735 OR AMS5737.

800° NUTS ONLY: SILVER PLATE PER AMS2410. THICKNESS ON EXTERNAL SURFACES SHALL NOT BE LESS THAN PLATING:

0.0002 IN. THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT IS WAIVED. NO SILVER PLATE ON WELD NIBS.

LUBRICANT: 450° NUTS, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027. FOR USAF APPLICATIONS NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS. (NO SILVER PLATE

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H-200 OERSTEDS USING A MAGNETIC

PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

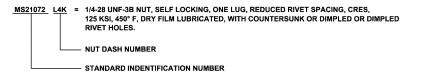
DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

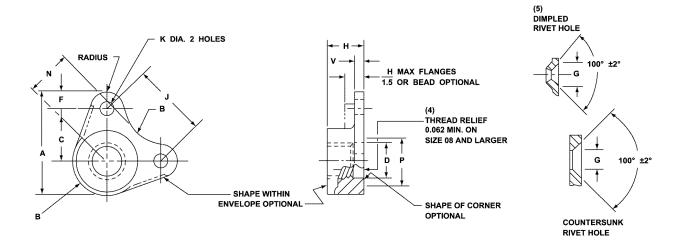
INTERCHANGEABILITY RELATIONSHIP: MS 21072 NUTS CAN UNIVERSALLY REPLACE NAS 696 NUTS OF LIKE MATERIAL, THREAD (STATUS SIZE, LUBRICANTS (DRY FILM OR SILVER PLATE), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED OR COUNTERSUNK RIVET HOLES). BUT THESE NAS 696 NUTS CANNOT UNIVERSALLY REPLACE MS 21072 NOTE) NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES. SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.


(B) FOR CHANGES SEE SHEETS 1 AND 2. F05-056S01

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE EFFECT ON DATE OF INVIATIONS FOR BIDS.

Figure 5-57. Drawing MS21072(ASG) (Sheet 1 of 2)


	DASH NUMBERS										
(B)	4	50°F DRY FILM LUBRIC	ATED	800°F NON DRY FILM LUBRICATED							
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION					
2-56 UNC-3B	L02		L02W	-02		-02W					
4-40 UNC-3B	L04	L04K	L04W	-04	-04K	-04W					
6-32 UNC-3B	L06	L06K	L06W	-06	-06K	-06W					
8-32 UNC-3B	L08	L08K	L08W	-08	-08K	-08W					
10-32 UNF-3B	L3	L3K	L3W	-3	-3К	-3W					
1/4-28 UNF-3B	L4	L4K	L4W	-4	-4K	-4W					
5/16-24 UNF-3B	L5	L5K	L5W	-5	-5K	-5W					
3/8-24 UNF-3B	L6		L6W	-6		-6W					

EXAMPLE PART NUMBER:

F05-056S02

Figure 5-57. Drawing MS21072(ASG) (Sheet 2)

THREAD SIZE MIL-S-8879/MOD.	A MAX	MAX	3 MIN	C ±.005	D DIA MIN	F MIN	G DIA ±.010	(2) H MAX	J ±.002	K +.005 000	N MAX	P DIA MAX	V MAX	AXIAL STRENGTH LBS MIN	WEIGHT LBS/100 MAX
2-56 UNC-3B	.288	.092	.081	.125	_	.071	(3)	.110	.177	.066	.120	.130	.035	440	.07
4-40 UNC-3B	.448	.156	.096	.203		.089	.200	.143	.287	.098	.215	.166	.040	750	.11
6-32 UNC-3B	.463	.156	.121	.218	_	.089	.200	.171	.308	.098	.232	.206	.047	1130	.14
8-32 UNC-3B	.497	.163	.125	.234	.168	.100	.200	.250	.331	.098	.210	.248	.047	1720	.21
10-32 UNF-3B	.526	.176	.156	.250	.194	.100	.200	.250	.354	.098	.215	.274	.047	2460	.26
1/4-28 UNF-3B	.603	.222	.200	.281	.254	.100	.200	.281	.398	.098	.233	.344	.055	4580	.45
5/16-24 UNF-3B	.757	.273	.250	.359	.317	.125	.230	.328	.508	.130	.280	.417	.065	7390	.80
3/8-24 UNF-3B	.870	.331	.305	.414	.379	.125		.344	.585	.130	.303	.505	.075	11450	1.92

- THREADS PER MIL-S-48879 BEFORE LUBRICATION. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL (B) (1) 31 DECEMBER 1969.
 - (2) MINIMUM "H" NOT SPECIFIED. LIMITED ONLY BY STRENGTH REQUIREMENTS
 - SPACE WILL NOT PERMIT COUNTERSINK (3)
 - SIZES NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN 'P' DIAMETER. (4)
 - DIMPLED HOLE TOLERANCE FOR 'K' IS +.015, -.000 AFTER FORMING

MATERIAL:

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416 TYPE II CLASS 3. FOR DRY FILM LUBRICATED NUTS,

THE TYPE AND CLASS ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

ROCKWELL C49 MAXIMUM. HARDNESS:

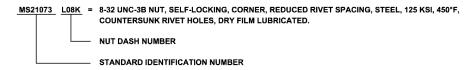
LUBRICANT:

DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-W-25027. OTHER LUBRICANTS SOLUBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORD-DANCE WITH THE LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

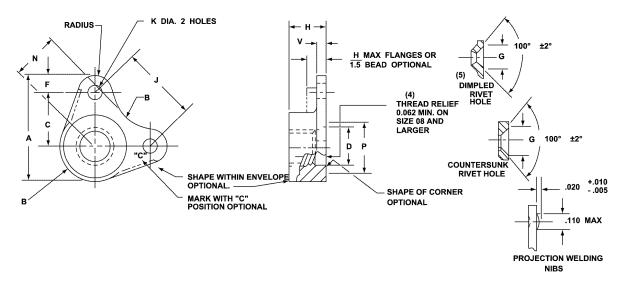
INTERCHANGEABILITY RELATIONSHIP: MS 21073 NUTS CAN UNIVERSALLY REPLACE NAS 698 NUTS OF LIKE MATERIAL, THREAD SIZE (STATUS NOTE) LUBRICANTS (DRY FILM OR NON DRY FILM), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET HOLES, DIMPLED OR COUNTERSUNK RIVET HOLES). BUT THESE NAS 698 NUTS CANNOT UNIVERSALLY REPLACE MS 21073 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUE NOTES. SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.


REFERENCED DOCUMENTS SHALL BE OF THE ISSUE EFFECT ON DATE OF INVIATIONS FOR BIDS.

B) FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-58. Drawing MS21073(ASG) (Sheet 1 of 2)


		DASH N	UMBERS	
THREAD SIZE	PLAIN RIVET	HOLES	C'SUNK OR DIMPLE	D RIVET HOLES
MIL-S-8879/MOD.	NON DRY FILM LUB	DRY FILM LUB	NON DRY FILM LUB	DRY FILM LUB
2-56 UNC-3B	-02	L02		
4-40 UNC-3B	-04	L04	-04K	L04K
6-32 UNC-3B	-06	L06	-06K	L06K
8-32 UNC-3B	-08	L08	-08K	L08K
10-32 UNF-3B	-3	L3	-3K	L3K
1/4-28 UNF-3B	-4	L4	-4K	L4K
5/16-28 UNF-3B	-5	L5	-5K	L5K
3/8-24 UNF-3B	-6	L6		

EXAMPLE PART NUMBER:

F05-057S02

Figure 5-58. Drawing MS21073(ASG) (Sheet 2)

THREAD B SIZE MIL-S-8879/MOD.	A MAX	MAX	B MIN	C ±.005	D DIA MIN	F MIN	G DIA ±.010	(2) H MAX	J ±.002	K +.005 000	N MAX	P DIA MAX	V MAX	AXIAL STRENGTH LBS MIN	WEIGHT LBS/100 MAX
2-56 UNC-3B	.288	.092	.081	.125		.071	(3)	.110	.177	.066	.120	.130	.035	440	.07
4-40 UNC-3B	.448	.156	.096	.203	_	.089	.200	.143	.287	.098	.215	.166	.040	750	.11
6-32 UNC-3B	.463	.156	.121	.218		.089	.200	.171	.308	.098	.232	.206	.047	1130	.14
8-32 UNC-3B	.497	.163	.125	.234	.168	.100	.200	.250	.331	.098	.210	.248	.047	1720	.21
10-32 UNF-3B	.526	.176	.156	.250	.194	.100	.200	.250	.354	.098	.215	.274	.047	2460	.26
1/4-28 UNF-3B	.603	.222	.200	.281	.254	.100	.200	.281	.398	.098	.233	.344	.055	4580	.45
5/16-24 UNF-3B	.757	.273	.250	.359	.317	.125	.230	.328	.508	.130	.280	.417	.065	7390	.80
3/8-24 UNF-3B	.870	.331	.305	.414	.379	.125		.344	.585	.130	.303	.505	.075	11450	1.92

- (1) THREADS PER MIL-S-8879 BEFORE LUBRICATION. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - (2) MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS
 - (3) SPACE WILL NOT PERMIT COUNTERSINK
 - (4) SIZES NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN 'P' DIAMETER.
 - (5) DIMPLED HOLE TOLERANCE FOR 'K' IS +.015, -.000 AFTER FORMING

MATERIAL: CORROSION RESISTANT STEEL

PLATING: 800° NUTS ONLY: SILVER PLATE PER AMS2410. THICKNESS ON EXTERNAL SURFACES SHALL NT BE LESS THAN 0.0002 IN.,

THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT IS WAIVED. NO SILVER PLATE ON WELD NIBS.

LUBRICANT: 450° NUTS, DRY FILM LUBRICANT IN ACCORDANCE WITH MIL-N-25027. FOR USAF APPLICATIONS, NUTS. TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED IN INTERNAL FUEL SYSTEMS. (NO SILVER PLATE)

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR-1.0) FOR A FIELD STRENGTH H-200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-1-17214 OR EQUIVALENT.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION EXCEPT DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES.

DESIGN AND USAGE LIMITATIONS:

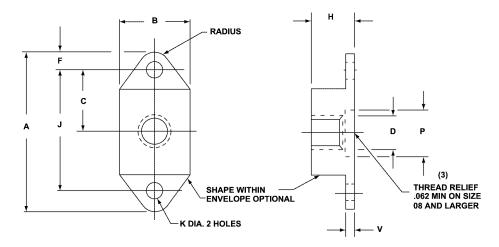
THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21073 NUTS CAN UNIVERSALLY REPLACE NAS 698 NUTS OF LIKE MATERIAL, THREAD SIZE,
(STATUS NOTE) LUBRICANTS (DRY FILM, NON LUBRICANT OR SILVER PLATING), RIVET SPACING, AND FASTENING METHOD (PLAIN RIVET
HOLES, DIMPLED OR COUNTERSUNK RIVET HOLES). BUT THESE NAS 698 NUTS CANNOT UNIVERSALLY REPLACE MS 21074
NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE EFFECT ON DATE OF INVIATIONS FOR BIDS.

B FOR CHANGES SEE SHEETS 1 AND 2.


Figure 5-59. Drawing MS21074(ASG) (Sheet 1 of 2)

			DASE	H NUMBERS		
В	4	50°F DRY FILM LUBRICA	TED	800	OF NON DRY FILM LUBR	ICATED
THREAD SIZE MIL-S-8879/MOD.	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION	PLAIN HOLES	C'SUNK OR DIMPLED HOLES	WELDING PROJECTION
2-56 UNC-3B	L02		L02W	-02		-02W
4-40 UNC-3B	L04	L04K	L04W	-04	-04K	-04W
6-32 UNC-3B	L06	L06K	L06W	-06	-06K	-06W
8-32 UNC-3B	L08	L08K	L08W	-08	-08K	-08W
10-32 UNF-3B	L3	L3K	L3W	-3	-зк	-3W
1/4-28 UNF-3B	L4	L4K	L4W	-4	-4K	-4W
5/16-24 UNF-3B	L5	L5K	L5W	-5	-5K	-5W
3/8-24 UNF-3B	L6		L6W	-6		-6W

MS21074 - 3 = 10-32 UNF-3B NUT, SELF-LOCKING, CORNER, REDUCED RIVET SPACING, CRES, 125 KSI, 800°F, NON DRY FILM LUBRICATED, WITH PLAIN RIVET HOLES. NUT DASH NUMBER STANDARD IDENTIFICATION NUMBER F05-058S02

EXAMPLE PART NUMBER:

Figure 5-59. Drawing MS21074(ASG) (Sheet 2)

(1) THREAD SIZE	A	E	3	С	D	F	(2) H		K +.005	F Di		V MAT'L	AXIAL STRENGTH	WEIGHT LBS/100
MIL-S-8879/MOD.	MAX.	MAX.	MIN.	±.005	DIA.	MIN.	MAX.	±.002	000	MAX.	MIN.	MAX	LBS. MIN.	MAX.
4-40UNC-3B	.651	.315	.275	.203	_	.070	.153	.406	.098	.270	.152	.140	750	.25
6-32UNC-3B	.682	.357	.290	.218		.070	.171	.437	.098	.270	.178	.140	1,130	.32
8-32UNC-3B	.707	.367	.290	.234	.168	.100	.250	.468	.098	.270	.204	.140	1,720	.36
10-32UNF-3B	.739	.416	.290	.250	.194	.100	.250	.500	.098	.270	.230	.140	2,460	.39
1/4-28UNF-3B	.801	.500	.350	.281	.254	.100	.281	.562	.098	.330	.290	.140	4,580	.69
5/16-24UNF-3B	1.010	.581	.412	.359	.317	.117	.328	.718	.130	.392	.352	.160	7,390	1.10

- (B) (1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
 - MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS
 - (3) SIZE NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN "P" DIAMETER.

MATERIAL: STEEL

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416 TYE II CLASS 3. FOR DRY FILM LUBRICATED NUTS,

THE TYPE AND CLASS ARE OPTIONAL IF THE NUTS MEET THE SALT SPRAY REQUIREMENTS OF QQ-P-416, TYPE II.

HARDNESS: Rc 49 MAX.

LUBRICANT: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027. OTHER LUBRICANTS

SOLUBLE IN THE CLEANER SPECIFIED IN MIL-S-7502. FOR USAF APPLICATIONS NUTS TREATED WITH DRY FILM

LUBRICANTS SHALL NOT BE USED IN INTERNALFUEL SYSTEMS APPLICATIONS.

FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .020 RADIALLY FROM CENTERED POSITION.

NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH BOLT IN THE MAXIMUM MISALIGNED POSITION.

DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH LIMITATIONS OF MS 33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21075 NUTS CAN UNIVERSALLY REPLACE NAS 1068 NUTS OF LIKE MATERIAL, THREAD (STATUS NOTE)
SIZE, LUBRICANTS (DRY FILM OR NON DRY FILM), AND RIVET SPACING. BUT NAS 1068 NUTS CANNOT UNIVERSALLY REPLACE MS 21075 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE MIL-STD-32.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE EFFECT ON DATE OF INVITATIONS FOR BIDS.

B FOR CHANGES SEE SHEETS 1 AND 2.

Figure 5-60. Drawing MS21075(ASG) (Sheet 1 of 2)

(B)	DASH N	UMBER
THREAD	PLAIN RIV	ET HOLES
SIZE MIL-S-8879/MOD.	NON-DRY FILM LUBE	DRY FILM LUBE
4-40 UNC-3B	-04	L04
6-32 UNC-3B	-06	L06
8-32 UNC-3B	-08	L08
10-32 UNF-3B	-3	L3
1/4-28 UNF-3B	-4	L4
5/16-24 UNF-3B	-5	L5

EXAMPLE OF PART NUMBERS:

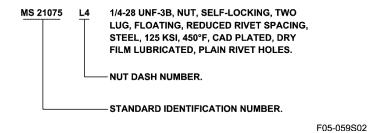
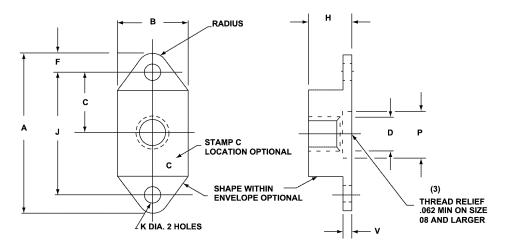



Figure 5-60. Drawing MS21075(ASG) (Sheet 2)

(1) THREAD SIZE A	А	E	3	С	D DIA.	F	(2) H	J	K DIA. +.005	F Di		V MAT'L	AXIAL STRENGTH	WEIGHT LBS/100
MIL-S-8879/MOD.	MÂX.	MAX.	MIN.	±.005	MIN.	MIN.	MAX.	±.002	000	MAX.	MIN.	MAX	LBS. MIN.	MAX.
4-40UNC-3B	.651	.315	.275	.203	_	.070	.153	.406	.098	.270	.152	.140	750	.25
6-32UNC-3B	.682	.357	.290	.218	_	.070	.171	.437	.098	.270	.178	.140	1,130	.32
8-32UNC-3B	.707	.367	.290	.234	.168	.100	.250	.468	.098	.270	.204	.140	1,720	.36
10-32UNF-3B	.739	.416	.290	.250	.194	.100	.250	.500	.098	.270	.230	.140	2,460	.39
1/4-28UNF-3B	.801	.500	.350	.281	.254	.100	.281	.562	.098	.330	.290	.140	4,580	.69
5/16-24UNF-3B	1.010	.581	.412	.359	.317	.117	.328	.718	.130	.392	.352	.160	7,390	1.10

THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL

31 DECEMBER 1969.
MINIMUM "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS

SIZE NO. 06 AND SMALLER MAY BE COUNTERSUNK OR RADIUSED WITHIN "P" DIAMETER.

MATERIAL: CORROSION RESISTANT STEEL (A-286) PER AMS 5525, AMS 5735, OR AMS 5737.

800°F NUTS ONLY: SILVER PLATE PER AMS 2410. PLATE THICKNESS MEASURED ON ANY EXTERNAL SURFACE OF PLATING:

THE NUT, SHALL NOT BE LESS THAN 0.0002 IN; THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS

REQUIREMENT ON THREAD IS WAIVED.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214, OR EQUIVALENT.

HARDNESS: Rc 49 MAX.

LUBRICANT: 450°F NUTS ONLY: DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027,

FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL

NOT BE USED IN INTERNAL FUEL SYSTEMS APPLICATIONS

FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .020 RADIALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH BOLT IN THE MAXIMUM MISALIGNED POSITION.

DIMENSIONS IN INCHES.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10, UNLESS OTHERWISE SPECIFIED. THE SURFACE ROUGHNESS SHALL NOT **EXCEED 125 MICRO INCHES.**

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT 450°F DRY FILM LUBRICATED NUTS LIMITED TO FIVE REUSE CYCLES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE TENSILE STRENGTH OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS.

THESE NUTS SHALL BE USED IN ACCORDANCE WITH LIMITATIONS OF MS 33588. ONLY NUTS,

FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL 25027 SHALL BE USED.

INTERCHANGEABILITY RELATIONSHIP: MS 21076 NUTS CAN UNIVERSALLY REPLACE NAS 1068 NUTS OF LIKE MATERIAL, THREAD SIZE, (STATUS NOTE)

PLATING, LUBRICANTS (DRY FILM OR NON DRY FILM), AND RIVET SPACING. BUT NAS 1068 NUTS CANNOT UNIVERSALLY REPLACE MS 21075 NUTS. FOR DEFINITION AND APPLICATION

OF DRAWING STATUS NOTES, SEE MIL-STD-32.

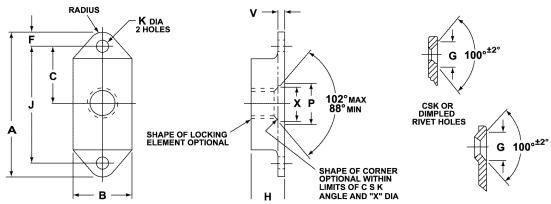
THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE EFFECT ON DATE OF INVIATIONS FOR BIDS.

(B) FOR CHANGES SEE SHEETS 1 AND 2. F05-060S01

Figure 5-61. Drawing MS21076(ASG) (Sheet 1 of 2)

(A)	DASH NUME	
THREAD SIZE MIL-S-8879/MOD.	800°F	450°F
4-40UNC-3B	-04	L04
6-32UNC-3B	-06	L06
8-32UNC-3B	-08	L08
10-32UNF-3B	-3	L3
1/4-28UNF-3B	-4	L4
5/16-24UNF-3B	-5	L5


EXAMPLE OF PART NUMBERS:

F05-060S02

Figure 5-61. Drawing MS21076(ASG) (Sheet 2)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS & REQUIREMENTS SPECIFIED HEREIN

DA	SH No. CSK OR DIMPLED	(1) A THREAD SIZE	Α		В	С	F	G	ŀ	1	J	(3) K	F		V	х	AXIAL STRENGTH	WEIGHT LB/100
HOLES	HOLES	MIL-S-8879/MOD.	MAX	MAX	MIN	±.005	MIN	±.010	MAX	MIN	±.002	+.005 000	MAX	MIN	MAX	MIN	LB MIN	MAX
-06	-06K	6-32UNC-3B	.984	.416	.328	.344	.115	.200	.234	.160	.688	.098	.260	.198	.075	.138	1,130	.55
-08	-08K	8-32UNC-3B	.984	.416	.328	.344	.115	.200	.312	.234	.688	.098	.270	.224	.075	.164	1,720	.60
-3	-3K	10-32UNF-3B	.984	.416	.328	.344	.115	.200	.312	.234	.688	.098	.270	.250	.075	.190	2,460	.60
-4	-4K	1/4-28UNF-3B	1.296	.516	.406	.500	.115	.200	.387	.283	1.000	.098	.330	.310	.075	.250	4,580	1.20
-5	-5K	5/16-24UNF-3B	1.296	.609	.484	.500	.115	.230	.387	.283	1.000	.130	.393	.373	.075	.312	7,390	2.20
-6	-6K	3/8-24UNF-3B	1.296	.641	.563	.500	.115	.230	.479	.439	1.000	.130	.455	.435	.075	.375	11,450	2.80

(A) (1) THREADS PER MIL-S-8879.

THREADS IN ACCORDANACE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.

(2) THE NUT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT AND THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT.

(3) DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015 - .000.

MATERIAL: STEEL, EXCEPT INSERT; NYLON OR EQUIVALENT.

HARDNESS: ROCKWELL C 36 MAXIMUM.

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

VIBRATION LIFE: MINIMUM VIBRATION LIFE REQUIREMENT SHALL BE THREE TIMES AVERAGE VIBRATION LIFE LISTED IN SPECIFICATION MIL-N-25027.

FLOAT: FLOAT OF THE NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 LATERALLY AND LONGITUDIANALLY FROM CENTERED POSITION. NUT BODY SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN MAXIMUM MISALIGNED POSITION. MAXIMUM AXIAL FLOAT .020 INCHES FOR NO. 10 AND SMALLER, .030 FOR 1/4 AND LARGER. NUT MISALIGNMENT SHALL NOT EXCEED DIMENSION "B".

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 SHALL NOT EXCEED 125 MICROINCHES. BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS. DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

EXAMPLE OF PART NUMBER:

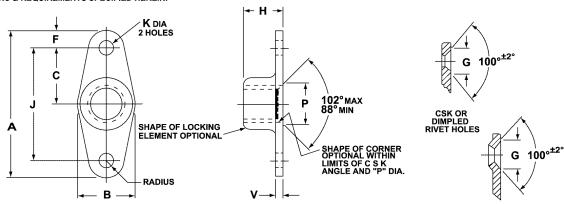
MS21077 - 4 - 1/4 - 28UNF-3B NUT, SELF-LOCKING, PLATE, NON-METALLIC INSERT, STEEL, 125 KSI

Ftu, 250°F, TWO LUG, PLAIN HOLES.

DASH NUMBER

MS IDENTIFICATION NUMBER

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.


INTERCHANGEABILITY RELATIONSHIP: (STATUS NOTE)

MS21077 NUTS CAN UNIVERSALLY REPLACE NAS1031 NUTS OF LIKE THREAD SIZE, FASTENING METHOD (PLAIN RIVET HOLES OR COUNTERSUNK AND DIMPLED RIVET HOLES) AND MATERIAL, BUT THESE NAS1031 NUTS CANNOT UNIVERSALLY REPLACE MS21077 NUTS. (FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.)

F05-061

Figure 5-62. Drawing MS21077(ASG)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS & REQUIREMENTS SPECIFIED HEREIN.

DAS	H No.	(1)						G			(2)	⁽²⁾ K	F)		AXIAL	WEIGHT
PLAIN	CSK OR	A THREAD SIZE	Α	E	3	C	F	DIA	ŀ	-	J	DIA	DIA		V	STRENGTH	LB/100
HOLES	HOLES	MIL-S-8879/MOD.	MAX	MAX	MIN	±.005	MIN	±.010	MAX	MIN	±.002	+.005 000	MAX	MIN	MAX	LB MIN	MAX
-04	-04K	4-40UNC-3B	.984	.406	.375	.344	.115	.200	.218	.133	.688	.098	.151	.112	.075	750	.80
-06	-06K	6-32UNC-3B	.984	.406	.375	.344	.115	.200	.234	.160	.688	.098	.177	.138	.075	1,130	.85
-08	-08K	8-32UNC-3B	.984	.406	.375	.344	.115	.200	.297	.219	.688	.098	.230	.164	.075	1,720	1.00
-3	-3K	10-32UNF-3B	.984	.406	.375	.344	.115	.200	.312	.234	.688	.098	.230	.190	.075	2,460	1.00
-4	-4K	1/4-28UNF-3B	1.296	.516	.484	.500	.115	.200	.375	.240	1.000	.098	.293	.250	.075	4,580	1.60
-5	-5K	5/16-24UNF-3B	1.296	.531	.500	.500	.115	.230	.375	.271	1.000	.130	.356	.312	.075	7,390	1.90
-6	-6K	3/8-24UNF-3B	1.296	.641	.609	.500	.115	.230	.453	.318	1.000	.130	.418	.375	.115	11,450	2.50
-7	(4)	7/16-20UNF-3B	1.477	.719	.672	.562	.135	(4)	.469	.435	1.125	.161	.487	.437	.115	15,450	3.00
-8	(4)	1/2-20UNF-3B	1.602	.859	.796	.625	.135	(4)	.609	.575	1.250	.161	.550	.500	.115	21,110	4.80
-9	(4)	9/16-18UNF-3B	1.727	.953	.902	.688	.135	(4)	.656	.623	1.375	.161	.613	.562	.115	26,810	7.70
-10	(4)	5/8-18UNF-3B	1.852	1.016	.964	.750	.135	(4)	.765	.732	1.500	.161	.676	.625	.115	34,130	8.60

- A (1) THREADS PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
- (2) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES, BY MORE THAN .005.
- (3) DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015 .000.
- (4) NO COUNTERSUNK OR DIMPLED RIVET TYPE AVAILABLE FOR SIZES 7/16 THRU 5/8.

MATERIAL: STEEL, EXCEPT INSERT: NYLON OR EQUIVALENT.

HARDNESS: ROCKWELL C 32 MAXIMUM.

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

VIBRATION LIFE: MINIMUM VIBRATION LIFE REQUIREMENT SHALL BE THREE TIMES AVERAGE VIBRATION LIFE LISTED IN SPECIFICATION MIL-N-25027.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 SHALL NOT EXCEED 125 MICROINCHES.

BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS.

DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

LISTED ON QPL25027 SHALL BE USED

EXAMPLE OF PART NUMBER:

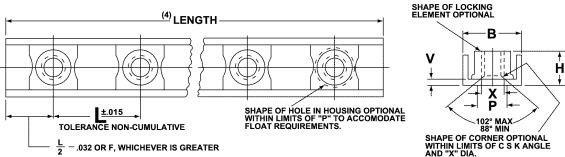
MS21078 - 4 = 1/4-28UNF-3B NUT, SELF-LOCKING, PLATE, NON-METALLIC INSERT, STEEL, 125 KSI

Ftu, 250°F, TWO LUG, PLAIN HOLES.

DASH NUMBER

MS IDENTIFICATION NUMBER

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.


INTERCHANGEABILITY RELATIONSHIP: (STATUS NOTE)

MS21078 NUTS CAN UNIVERSALLY REPLACE AN366 AND NAS1023 NUTS OF LIKE THREAD SIZE, FASTENING METHOD (PLAIN RIVET HOLES OR COUNTERSUNK AND DIMPLED RIVET HOLES) AND MATERIAL, BUT THESE AN366 AND NAS1023 NUTS CANNOT UNIVERSALLY REPLACE MS21078 NUTS. (FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.)

F05-062

Figure 5-63. Drawing MS21078(ASG)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS & REQUIREMENTS SPECIFIED HEREIN

SIZE DASH	(1) A THREAD SIZE	В	F		-1	L MIN NUT	DI	7	v	х	AXIAL STRENGTH
NO.	MIL-S-8879/MOD.	MAX	MIN	MAX	MIN	SPACING	MAX	MIN	MAX	MIN	LB MIN
-08	8-32UNC-3B	.422	.343	.312	.234	.625	.270	.184	.030	.168	1,720
-3	10-32UNF-3B	.422	.343	.318	.234	.625	.270	.210	.030	.190	2,460
-4	1/4-28UNF-3B	.518	.406	.393	.283	.750	.330	.270	.037	.250	4,580
-5	5/16-24UNF-3B	.648	.469	.387	.283	.750	.393	.333	.045	.312	7,390
-6	3/8-24UNF-3B	.726	.562	.479	.434	1.000	.455	.395	.045	.375	11,450

(A) (1) THREADS PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.

- (2) THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES.
- (3) THE NUT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.
- (4) LENGTH ESTABLISHED BY SPECIFYING NUMBER OF NUTS UP TO MAXIMUM NUMBER FOR APPROXIMATELY 72" LENGTH.

MATERIALS: NUTS = STEEL, EXCEPT INSERT, NYLON OR EQUIVALENT.

CHANNEL - ALUMINUM ALLOY.

HARDNESS: NUT ELEMENTS ROCKWELL C 36 MAXIMUM.

PLATING: NUT - CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

CHANNEL - SE PROCUREMENT SPECIFICATION.

VIBRATION LIFE: MINIMUM VIBRATION LIFE REQUIREMENT SHALL BE THREE TIMES AVERAGE VIBRATION LIFE LISTED IN SPECIFICATION MIL-N-25027.

FLOAT: FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. MAXIMUM AXIAL FLOAT .020 FOR -08 AND -3; .030 FOR LARGER SIZES. NUT BODY IN THE MISALIGNED POSITION SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 SHALL NOT EXCEED 125 MICROINCHES. BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS. DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON A 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

CODE: FIRST DASH NUMBER INDICATES SIZE, SECOND DASH NUMBER THE NUT SPACINGS(L) AND THE THIRD DASH NUMBER INDICATES THE NUMBER OF NUTS WHEN LESS THAN STOCK LENGTH (APPROXIMATELY 72 INCHES) IS DESIRED.

EXAMPLE OF PART NUMBERS:

MS21079-3-6-10 = 10-32 CADMIUM PLATED GANG CHANNEL NUT, ALUMINUM ALLOY CHANNEL, .739 NUT SPACING,

MS21079-4-7 = 1/4-28 CADMIUM PLATED, GANG CHANNEL NUT, ALUMINUM ALLOY CHANNEL, .875 NUT SPACING, APPROXIMATELY 72 INCHES LONG.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

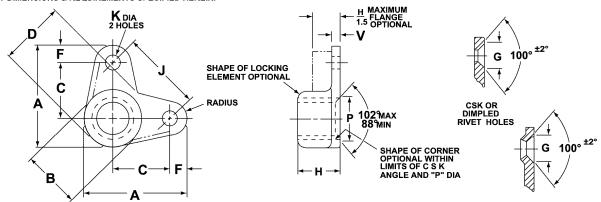
INTERCHANGEABILITY RELATIONSHIP: (STATUS NOTE)

MS21079 NUTS CAN UNIVERSALLY REPLACE NAS1034 THRU NAS1038 NUTS OF LIKE THREAD SIZE, FASTENING METHOD AND MATERIAL, BUT THESE NAS1034 THRU NAS1038 NUTS CANNOT UNIVERSALLY REPLACE MS21079 NUTS. (FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTE SEE MIL-STD-32.

F05-063

Figure 5-64. Drawing MS21079(ASG)

NUT SPACING


DASH

NUT

MAX

NO.

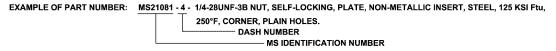
CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS & REQUIREMENTS SPECIFIED HEREIN.

DAS	SH No.	(1) (A)							G			(2)	⁽³⁾ K)		AXIAL	WEIGHT
PLAIN	CSK OR DIMPLED	THREAD SIZE	Α	E	3	C	D	F	DIA	ŀ	1	J	DIA	DI	Α	V	STRENGTH	
HOLES	HOLES	MIL-S-8879/MOD.	MAX	MAX	MIN	±.005	MAX	MIN	±.010	MAX	MIN	±.002	+.005	MAX	MIN	MAX	LB MIN	MAX
-06	-06K	6-32UNC-3B	.703	.406	.375	.344	.531	.115	.200	.234	.160	.486	.098	.177	.138	.075	1,130	.85
-08	-08K	8-32UNC-3B	.703	.406	.375	.344	.531	.115	.200	.297	.219	.486	.098	.230	.164	.075	1,720	1.00
-3	-3K	10-32UNF-3B	.703	.406	.375	.344	.531	.115	.200	.312	.234	.486	.098	.230	.190	.075	2,460	1.00
-4	-4K	1/4-28UNF-3B	.906	.514	.484	.500	.600	.115	.200	.375	.240	.707	.098	.293	.250	.075	4,580	1.60
-5	-5K	5/16-24UNF-3B	.937	.582	.500	.500	.625	.115	.230	.375	.240	.707	.130	.356	.312	.075	7,390	1.90
-6	-6K	3/8-24UNF-3B	1.008	.718	.609	.500	.718	.115	.230	.453	.318	.707	.130	.418	.375	.075	11,450	2.50
-7	(4)	7/16-20UNF-3B	1.125	.782	.672	.562	.782	.135	(4)	.469	.435	.795	.161	.487	.437	.115	15,450	3.00
-8	(4)	1/2-20UNF-3B	1.234	.874	.796	.625	.874	.135	(4)	.609	.575	.884	.161	.550	.500	.115	21,100	4.80
-10	(4)	5/8-18UNF-3B	1.437	1.010	.964	.750	1.010	.135	(4)	.765	.732	1.061	.161	.676	.625	.115	34,130	8.60

- THREAD PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969. THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS
- DETERMINED BY THE RIVET HOLES, BY MORE THAN .005.
- (3) DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015 .000.
- (4) NO COUNTERSUNK OR DIMPLED RIVET TYPE AVAILABLE FOR SIZES 7/16 THRU 5/8.

MATERIAL: STEEL, EXCEPT INSERT; NYLON OR EQUIVALENT.

HARDNESS: ROCKWELL C 32 MAXIMUM.


PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

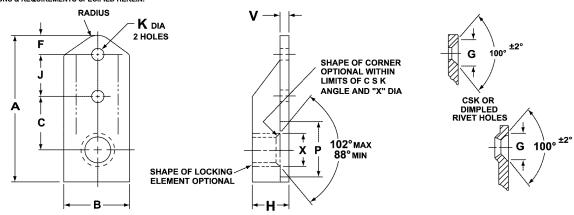
VIBRATION LIFE: MINIMUM VIBRATION LIFE REQUIREMENT SHALL BE THREE TIMES AVERAGE VIBRATION LIFE LISTED IN SPECIFICATION MIL-N-25027.

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 SHALL NOT EXCEED 125 MICROINCHES. BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS. DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD, THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.


INTERCHANGEABILITY RELATIONSHIP: (STATUS NOTE)

MS21081 NUTS CAN UNIVERSALLY REPLACE NAS1027 NUTS OF LIKE THREAD SIZE, FASTENING METHOD (PLAIN RIVET HOLES OR COUNTERSUNK AND DIMPLED RIVET HOLES) AND MATERIAL, BUT THESE NAS1027 NUTS CANNOT UNIVERSALLY REPLACE MS21081 NUTS. (FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.)

F05-064

Figure 5-65. Drawing MS21081(ASG)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS & REQUIREMENTS SPECIFIED HEREIN.

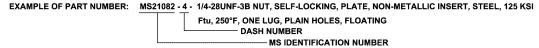
DAS	SH No.	(1) A						G				⁽³⁾ K)			AXIAL	WEIGHT
PLAIN	CSK OR DIMPLED	THREAD SIZE	Α	E	3	C	F	DIA	 	1	J	DIA +.005	DI.	A	V	X	STRENGTH	
HOLES	1	MIL-S-8879/MOD.	MAX	MAX	MIN	±.005	MIN	±.010	MAX	MIN	±.002	000	MAX	MIN	MĀX	MIN	LB MIN	MAX
-08	-08K	8-32UNC-3B	1.094	.422	.328	.344	.115	.200	.312	.234	.312	.098	.270	.224	.075	.164	1,720	.60
-3	-3K	10-32UNF-3B	1.094	.422	.328	.344	.115	.200	.312	.234	.312	.098	.270	.250	.075	.190	2,460	.60
-4	-4K	1/4-28UNF-3B	1.316	.531	.406	.500	.115	.200	.387	.283	.312	.098	.330	.310	.075	.250	4,580	1.20
-5	-5K	5/16-24UNF-3B	1.378	.641	.484	.500	.115	.230	.387	.283	.312	.130	.393	.373	.075	.312	7,390	2.20

- (1) THREADS PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.
- (2) THE NUT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT, AND THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT.
- (3) DIMPLED RIVET HOLE TOLERANCE FOR "K" IS +.015 .000.

MATERIAL: STEEL, EXCEPT INSERT; NYLON OR EQUIVALENT.

HARDNESS: ROCKWELL C 36 MAXIMUM.

PLATING: CADMIUM PLATE IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

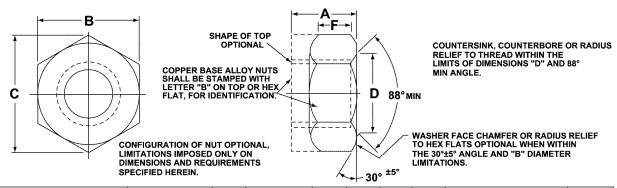

VIBRATION LIFE: MINIMUM VIBRATION LIFE REQUIREMENT SHALL BE THREE TIMES AVERAGE VIBRATION LIFE LISTED IN SPECIFICATION MIL-N-25027.

FLOAT OF THE NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 LATERALLY AND LONGITUDINALLY FROM CENTERED POSITION. NUT BODY SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN MAXIMUM MISALIGNED POSITION. MAXIMUM AXIAL FLOAT .020 INCHES FOR NO .10 AND SMALLER, .030 FOR 1/4 AND LARGER. NUT MISALIGNMENT SHALL NOT EXCEED DIMENSION "B".

SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10 SHALL NOT EXCEED 125 MIRCOINCHES. BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS. DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED.

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS AND SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD, THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREAD. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED.



THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

INTERCHANGEABILITY RELATIONSHIP: (STATUS NOTE)

MS21082 NUTS CAN UNIVERSALLY REPLACE NAS1032 NUTS OF LIKE THREAD SIZE, FASTENING METHOD (PLAIN RIVET HOLES OR COUNTERSUNK AND DIMPLED RIVET HOLES) AND MATERIAL, BUT THESE NAS1032 NUTS CANNOT UNIVERSALLY REPLACE MS21082 NUTS. (FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.)

Figure 5-66. Drawing MS21082(ASG)

	DASH N	UMBER		(1) (A)	(3)						(2)	AYIA	L STRENG	2TU	WEIGHT
NO	N-METAL	LIC INSEF	₹T				3	_	ח	E		ANIA	LB MIN	,,,,	LB/100 MAX
ALUM ALLOY	STEEL	COPPER BASE ALLOY	CRES	THREAD MIL-S-8879/MOD.	MAX	MAX	MIN	MIN	+.020 010	MIN	X	STEEL	ALUM ALLOY	CRES	STEEL ONLY
D04	N04	B04	C04	4-40UNC-3B	.125	.251	.243	.275	.131	.031		370	370	370	.13
D06	N06	B06	C06	6-32UNC-3B	.141	.313	.305	.344	.156	.047	.003	560	560	560	.25
D08	N08	B08	C08	8-32UNC-3B	.188	.345	.336	.378	.183		.006	860	860	860	.40
D3	N3	В3	C3	10-32UNF-3B	.100	.376	.367	.413	.210	.062	.000	1,230	1,230	1,230	.46
D4	N4	B4	C4	1/4-28UNF-3B	.219	.439	.430	.488	.273		.007	2,290	2,290	2,290	.66
D5	N5	B5	C5	5/16-24UNF-3B	.266	.502	.492	.557	.336	.094	.007	3,700	1,830	3,700	1.05
D6	N6	В6	C6	3/8-24UNF-3B	.282	.564	.553	.628	.398	.034	.008	5,720	2,840	5,720	1.20
D7	N7	В7	C7	7/16-20UNF-3B	.328	.690	.679	.773	.458	.109	.000	7,720	3,830	7,720	2.60
D8	N8	B8	C8	1/2-20UNF-3B	.020	.752	.741	.840	.531	.103	.009	10,550	5,240	10,550	2.60
D9	N9	В9	C9	9/16-18UNF-3B	.375	.877	.865	.982	.594	.125		13,400	6,650	13,400	4.50
D10	N10	B10	C10	5/8-18UNF-3B	.407	.940	.928	1.051	.656	.156	.010	17,060	8,460	17,060	5.10
D12	N12	B12	C12	3/4-16UNF-3B	.422	1.064	1.052	1.191	.787	.172		25,010	12,400	25,010	6.80
D14	N14	B14	C14	7/8-14UNF-3B	.485	1.252	1.239	1.403	.913	.203	.011	34,220	16,970	34,220	10.40
D16	N16	B16	C16	1-12UNF-3B	.578	1.440	1.427	1.615	1.039	.250	.012	45,000	22,320	45,000	18.00
D18	N18	B18	C18	1 1/8-12UNF-3B	.672	1.627	1.614	1.826	1.166	.313	.013	58,350	28,940	58,350	25.00
D20	N20	B20	C20	1 1/4-12UNF-3B	.766	1.815	1.801	2.038	1.290	.328	.014	73,970	36,690	73,970	36.00
D22	N22	B22	C22	1 3/8-12UNF-3B	.828	2.008	1.973	2.249	1.447	.281	.015	90,700	44,000	90,700	43.00
D24	N24	B24	C24	1 1/2-12UNF-3B	.020	2.197	2.159	2.416	1.568	.328	.016	109,000	53,000	109,000	55.00

(1) THREADS IN ACCORDANCE WITH MIL-S-8879.
31 DECEMBER 1969. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL

BEARING SURFACE SHALL BE SQUARE WITH PITCH DIAMETER WITHIN X WHEN MEASURED IN ACCORDANCE WITH MIL-N-25027.

MINIMUM "A" LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.

STEEL, ALUMINUM ALLOY, COPPER BASE ALLOY, CRES; SEE PROCUREMENT SPECIFICATION.

INSERT, NYLON OR EQUIVALENT.

HARDNESS: STEEL NUTS: ROCKWELL C 35 MAXIMUM.

PLATING: STEEL AND COPPER BASE ALLOY NUTS, CADMIUM PLATED IN ACCORDANCE WITH QQ-P-416, TYPE II, CLASS 3.

SURFACE TREATMENT: CORROSION RESISTANT STEEL NUTS. SEE PROCUREMENT SPECIFICATION.

ALUMINUM ALLOY NUTS, ANODIZE OR CHEMICALLY SURFACE TREAT IN ACCORDANCE WITH PROCUREMENT

SPECIFICATION.

ALUMINUM ALLOY NUTS IN SIZES THRU 1/4-28 DYED BLUE PER PROCUREMENT SPECIFICATION.

LUBRICANT: LUBRICANT, WHEN USED, APPROVED IN ACCORDANCE WITH MIL-N-25027. LUBRICANTS SHALL BE SOLUBLE IN THE

CLEANER SPECIFIED IN THE PROCUREMENT SPECIFICATION.

BREAK ALL SHARP EDGES AND REMOVE ALL HANGING BURRS AND SLIVERS. SURFACE ROUGHNESS IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED, THE SURFACE ROUGHNESS SHALL NOT **EXCEED 125 MICRO INCHES. DIMENSIONS IN INCHES.**

> (A) FOR CHANGES SEE SHEET 1 F05-066S01

Figure 5-67. Drawing MS21083(ASG) (Sheet 1 of 2)

EXAMPLE OF PART NUMBERS:

MS21083N4 = 1/4-28 STEEL NUT, NON-METALLIC INSERT, CADMIUM PLATED.

MS21083D4 = 1/4-28 ALUMINUM ALLOY NUT, NON-METALLIC INSERT, ANODIZED.

MS21083B4 = 1/4-28 COPPER BASE ALLOY NUT, NON-METALLIC INSERT, CADMIUM PLATED.

DESIGN AND USAGE LIMITATIONS:

THESE NUTS ARE INTENDED FOR SHEAR APPLICATIONS AND ARE DESIGNED TO DEVELOP AN ULTIMATE STRESS (Ftu) OF 70 KSI (35 KSI FOR ALUMINUM PARTS -5 AND LARGER) BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QPL25027 SHALL BE USED FOR DESIGN, UNLESS THE PROCEDURES OF ANA BULLETIN 437 ARE FOLLOWED.

VIBRATION LIFE: MINIMUM VIBRATION LIFE REQUIREMENT SHALL BE THREE TIMES AVERAGE VIBRATION LIFE LISTED IN

MIL-N-25027.

INTERCHANGEABILITY RELATIONSHIP:

(STATUS NOTE)

MS21083 NUTS CAN UNIVERSALLY REPLACE AN364, MS20364 AND NAS1022 NUTS OF LIKE MATERIAL, PLATING, THREAD SIZE AND LOCKING DESIGN (ALL-METAL OR WITH NON-METALLIC INSERT). BUT THESE AN364, MS20364 AND NAS1022 NUTS CANNOT UNIVERSALLY REPLACE THE MS21083 NUTS. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES SEE MIL-STD-32.

CERTAIN PROVISIONS (THE DIMENSIONS ACROSS THE WRENCHING FLATS) OF THE STANDARD ARE THE SUBJECT OF INTERNATIONAL STANDARDIZATION AGREEMENT ABC AIR STD 17/2. WHEN REVISION OR CANCELLATION OF THIS STANDARD IS PROPOSED, THE DEPARTMENTAL CUSTODIAN WILL INFORM THEIR RESPECTIVE DEPARTMENTAL STANDARDIZATION OFFICE SO THAT APPROPRIATE ACTION MAY BE TAKEN RESPECTING THE INTERNATIONAL AGREEMENT CONCERNED.

FOR DESIGN FEATURE PURPOSES, THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-066S02

Figure 5-67. Drawing MS21083(ASG) (Sheet 2)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

THREAD	(1) (R)				(3)				(5)			WEIGHT	(MAX)
SIZE DASH No.	(1) R THREAD MIL-S-8879/MOD.	B	D	F	(2) H MAX	MIN SPACING AVAILABLE	M	MAX	MIN	V	AXIAL STRENGTH LBS MIN	NUT ELEMENTS LBS/100	CHANNEL LBS/INCH
L08	8-32UNC-3B	.416	.168	.343	.250	.625	.062	.270	.184	.035	1,720	.19	.0028
L3	10-32UNF-3B	.416	.194	.343	.250	.625	.062	.210	.210	.035	2,460	.20	.0028
L4	1/4-28UNF-3B	.516	.254	.406	.281	.750	.062	.330	.270	.045	4,580	.40	.0032
L5	5/16-24UNF-3B	.609	.317	.469	.328	.875	.062	.393	.333	.045	7,390	.64	.0053
L6	3/8-24UNF-3B	.726	.379	.562	.344	1.000	.062	.455	.395	.055	11,450	1.08	.0073

(1) THREADS BEFORE LUBRICATION PER MIL-S-8879. ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.

THREADS IN ACCORDANCE WITH MIL-S-7742

(2) "H" MAX APPLIES TO NUT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.

(3) FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION. MAXIMUM AXIAL FLOAT .020 INCH FOR

MS21086L08 AND MS21088L3, .030 FOR LARGER SIZES.

(4) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING. THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES. THE NUT ELEMENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.

(5) HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCULAR.

MATERIAL: NUT ELEMENT - CORROSION AND HEAT RESISTANT STEEL, (A286) AMS5525, AMS5735 OR AMS5737.

CHANNEL - ALUMINUM ALLOY.

HARDNESS: NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL C 49.

PLATING: NUT ELEMENTS - DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027.
FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS

FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICAN SHALL NOT BE USED ININTERNAL FUEL SYSTEMS APPLICATIONS.

CHANNEL - SEE PROCUREMENT SPECIFICATION.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT NUT ELEMENTS LIMITED TO FIVE REUSE CYCLES.

DESIGN AND USAGE LIMITATIONS: THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS OF SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON QP125027 SHALL BE USED.

CODE: FIRST DASH NUMBER, AS LISTED ABOVE, DESIGNATES THREAD SIZE. SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH. THIRD DASH NUMBER INDICATES NUMBER OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES) IS DESIRED.

EXAMPLE OF PART NUMBERS:

MS21088L4-7-10 = GANG CHANNEL ASSEMBLY CONSISTING OF TEN, 1/4-28, DRY FILM LUBRICATED NUT ELEMENTS, SPACED AT 875 INCH.

(B)

SURFACE ROUGHNESS: IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT EXCEED 125 MICRO INCHES.

BREAK SHARP CORNERS.

DIMENSIONS IN INCHES.

DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.
REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F05-067

NUT

ELEMENT

SPACING

DASH No.

-6

-8

-9

-10

-11

-12

-13

-14

-15

-16

-18

-20

-24

NUT

ELEMENT

SPACING

.625

.750

.875

1.000

1.125

1.250

1.375

1.500

1.625

1.750

1.875

2.000

2.250

2 500

3.000

MAX

No. OF

NUT

ELEMENTS

96

82

72

64

57

52

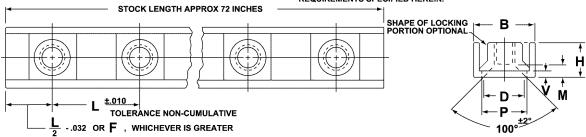
48

44

41

38

36


32

28

24

Figure 5-68. Drawing MS21088(ASG)

CONFIGURATION OF NUT OPTIONAL WITHIN THE LIMITATIONS IMPOSED BY DIMENSIONS AND REQUIREMENTS SPECIFIED HEREIN.

THREAD	(B)				(2)	1			(5)			WEIGHT	(MAX)
SIZE DASH	(1) THREAD	В	D	F	н	MIN SPACING	м	F	>	V	AXIAL STRENGTH	NUT ELEMENTS	CHANNEL
No.	MIL-S-8879/MOD.	MAX	MIN	MIN	MAX	AVAILABLE	MIN	MAX	MIN	MAX	LBS MIN	LBS/100	LBS/INCH
L08	8-32UNC-3B	.593	.360	.406	.272	.750	.084	.491	.385	.035	1,720	.24	.0038
L3	10-32UNF-3B	.593	.406	.406	.281	.750	.093	.491	.431	.035	2,460	.26	.0038
L4	1/4-28UNF-3B	.874	.535	.562	.340	1.000	.107	.620	.560	.045	4,580	.50	.0052

(1) THREADS BEFORE LUBRICATION PER MIL-S-8879. THREADS IN ACCORDANCE WITH MIL-S-7742 ARE ACCEPTABLE UNTIL 31 DECEMBER 1969.

(2) "H" MAX APPLIES TO NUT ELEMENT AND CHANNEL. MIN "H" NOT SPECIFIED, LIMITED ONLY

- (3) FLOAT OF NUT ELEMENT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION, MAXIMUM AXIAL FLOAT .020 INCH FOR MS21089L08 AND MS21089L3, .030 FOR MS21089L4,
- (4) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT ELEMENT WITHIN THE HOUSING. THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES. THE NUT ELEMENT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT
- (5) HOLE IN CHANNEL MUST PROVIDE FOR FULL FLOAT OF NUT ELEMENT BUT NEED NOT BE CIRCIII AR

MATERIAL: NUT ELEMENT - CORROSION AND HEAT RESISTANT STEEL, (A286) AMS5525, AMS5735 OR AMS5737.

CHANNEL - ALUMINUM ALLOY.

HARDNESS: NUT ELEMENTS SHALL HAVE A MAXIMUM HARDNESS OF ROCKWELL C 49.

PLATING: NUT ELEMENTS - DRY FILM LUBRICANT APPROVED IN ACCORDANCE WITH MIL-N-25027,

FOR USAF APPLICATIONS, NUTS TREATED WITH DRY FILM LUBRICANTS SHALL NOT BE USED INTERNAL FUEL SYSTEMS APPLICATIONS.

4,500	.50	.0032
L	NUT	MAX
NUT	ELEMENT	No. OF
ELEMENT	SPACING	NUT
SPACING	DASH No.	ELEMENTS
.750	-6	96
.875	-7	82
1.000	-8	72
1.125	-9	64
1.250	-10	57
1.375	-11	52
1.500	-12	48
1.625	-13	44
1.750	-14	41
1.875	-15	38
2.000	-16	36
2.250	-18	32
2.500	-20	28
3.000	-24	24

CHANNEL - SEE PROCUREMENT SPECIFICATION.

MAGNETIC PERMEABILITY: SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

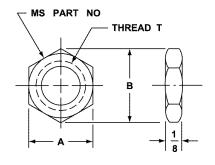
PERFORMANCE: SEE PROCUREMENT SPECIFICATION, EXCEPT NUT ELEMENTS LIMITED TO FIVE REUSE CYCLES.

THESE NUTS ARE DESIGNED TO DEVELOP THE TENSILE STRENGTH OF BOLTS OF SCREWS WITH AN ULTIMATE STRESS (Ftu) OF 125 KSI BASED ON THE CROSS SECTIONAL AREA AT THE BASIC ROOT DIAMETER OF THE THREAD. THESE NUTS ARE DESIGNED TO BE USED ON 3A EXTERNAL THREADS. THESE NUTS SHALL BE USED IN ACCORDANCE WITH THE LIMITATIONS OF MS33588. ONLY NUTS FOR WHICH THERE ARE QUALIFIED PRODUCTS LISTED ON OPI 25027 SHALL BE USED.

CODE: FIRST DASH NUMBER, AS LISTED ABOVE, DESIGNATES THREAD SIZE. SECOND DASH NUMBER DESIGNATES NUT ELEMENT SPACING IN EIGHTHS OF AN INCH. THIRD DASH NUMBER INDICATES NUMBER OF NUT ELEMENTS WHEN LESS THAN STOCK LENGTH (APPROX 72 INCHES) IS DESIRED.

EXAMPLE OF PART NUMBERS:

(B)

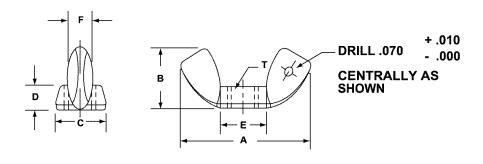

MS21089L4-7-10 = GANG CHANNEL ASSEMBLY CONSISTING OF TEN, 1/4-28, DRY FILM LUBRICATED NUT ELEMENTS, SPACED AT .875 INCH.

SURFACE ROUGHNESS: IN ACCORDANCE WITH MIL-STD-10. UNLESS OTHERWISE SPECIFIED THE SURFACE ROUGHNESS SHALL NOT **EXCEED 125 MICRO INCHES.**

BREAK SHARP CORNERS. **DIMENSIONS IN INCHES.** DIMENSIONS TO BE MET PRIOR TO LUBRICATION.

THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

Figure 5-69. Drawing MS21089(ASG)


MS PART NUMBER	A	В	THREAD T	MATERIAL
MS24017-1	0.502 0.492	9/16	3/8-24 UNF-2B	Brass
MS24017-2	0.564 0.553	21/32	1/2-20 UNF-2B	Brass
MS24017-3	0.502 0.492	9/16	3/8-24 UNF-2B	Steel
MS24017-4	0.564 0.553	21/32	1/2-20 UNF-2B	Steel

NOTES:

- MATERIAL BRASS SPEC. QQ-B-626, COMP. 22, HALF HARD STEEL SPEC. QQ-S-624, COMP. FS 1330. FINISH: SEE PROCUREMENT SPEC.
- 2.
- **DIMENSIONS IN INCHES: UNLESS OTHERWISE SPECIFIED, TOLERANCES:** 3. FRACTIONS ± 1/64.
- REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON THE DATE 4. OF INVITATION FOR BIDS.
- THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN. 5. THE MS PART NUMBER MAKING REQUIRED ON THE ITEM MAY BE OMITTED BY MARKING THE PACKAGES OR TAGGING THE PARTS PER MIL-STD-130.

(B) ENTIRE STANDARD REVISED

Figure 5-70. Drawing MS24017

									DIMEN	SIONS					
					4	ı	В	C	;	[)	E		F	:
DASH NO.	SIZE	MATERIAL	Т	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
17 18	NO. 6 (.138)	STEEL BRASS	32UNC-2B	.670	.640	.360	.330	.328	.296	.140	.109	.210	.171	.109	.078
19 20	NO. 8 (.164)	STEEL BRASS	32UNC-2B	.670	.640	.360	.330	.328	.296	.140	.109	.210	.171	.109	.078
37 38	NO. 10 (.190)	STEEL BRASS	24UNC-2B	.858	.828	.452	.422	.425	.390	.173	.140	.265	.228	.140	.109
39 40	1/4	STEEL BRASS	20UNC-2B	1.082	1.042	.520	.480	.499	.453	.211	.171	.324	.265	.171	.140
41 24	5/16	STEEL BRASS	18UNC-2B	1.243	1.193	.635	.595	.575	.515	.242	.203	.387	.328	.203	.171
42 28	3/8	STEEL BRASS	16UNC-2B	1.436	1.376	.755	.695	.695	.640	.296	.261	.483	.421	.234	.203
43 32	7/16	STEEL BRASS	14UNC-2B	1.915	1.835	.941	.871	.921	.866	.390	.359	.642	.546	.312	.265
44 36	1/2	STEEL BRASS	13UNC-2B	1.915	1.835	.941	.871	.921	.866	.390	.359	.642	.546	.312	.265

COLD FORCED (TYPE I OF PROCUREMENT SPECIFICATION) TYPE:

STEEL, CARBON, 50,000 PSI TENSILE STRENGTH BRASS, COMMERCIAL MATERIAL:

PROTECTIVE COATING: STEEL NUTS ARE CADMIUM PLATED, SPECIFICATION QQ-P-416, TYPE II, CLASS 3.

THREADS: THE THREADS SHALL BE IN ACCORDANCE WITH SCREW-THREAD STANDARDS FOR FEDERAL

SERVICES, HANDBOOK H-28.

REFERENCED DOCUMENTS OF ISSUE IN EFFECT ON DATE OF INVITATION FOR BIDS SHALL NOTES: (1)

APPLY.

(2) IN CASE OF CONFLICT WITH ANY REFERENCED DOCUMENT, THIS STANDARD WILL GOVERN.

THE MS PART NUMBER CONSISTS OF THE MS SHEET NUMBER, PLUS THE DASH NUMBER. EXAMPLE: MS35425-17. (3)

(4) ALL DIMENSIONS IN INCHES.

INTERCHANGEABILITY RELATIONSHIP WITH AN350. - After 3 February 1965, NC threaded wing nuts of AN350 are inactive for new design and replacement. Their existing stocks should be used until depleted. For new design and replacement use only applicable superseding wing nuts listed above.

Figure 5-71. Drawing MS35425

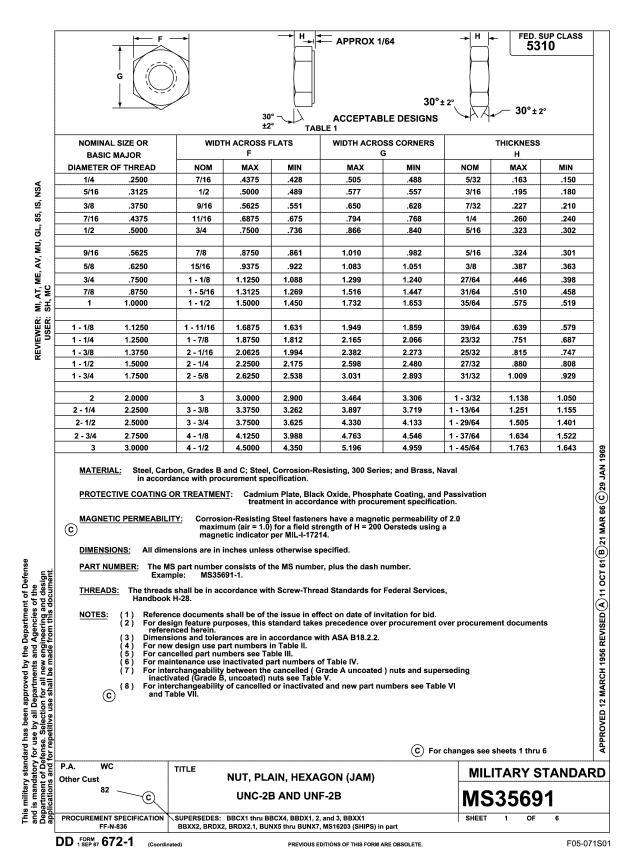


Figure 5-72. Drawing MS35691 (Sheet 1 of 6)

Figure 5-72. Drawing MS35691 (Sheet 2)

PREVIOUS EDITIONS OF THIS FORM OBSOLETE

DD 1 FORM 672-1

(Coordinated)

5-123

F05-071S02

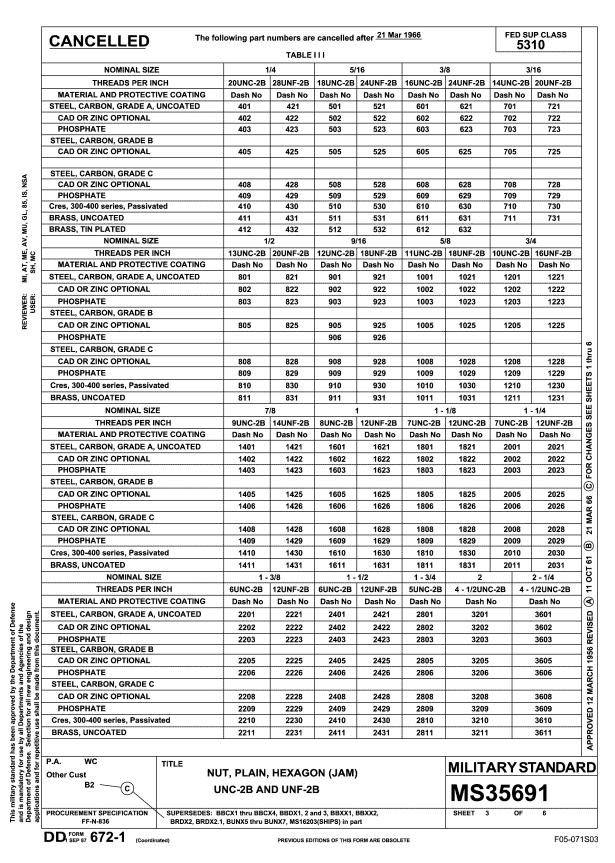


Figure 5-72. Drawing MS35691 (Sheet 3)

Department of Defense

DD 1 SEP 87 672-1

(Coordinated)

Figure 5-72. Drawing MS35691 (Sheet 4)

PREVIOUS EDITIONS OF THIS FORM ARE OBSOLETE

F05-071S04

PART NU	r * inactivated a	fter <u>21 MAR 19</u>	sh numbers given 166 The cance Use only the su	lled nuts shoul	ld be used for m	iaintenance pur	ncelled poses
				poraconing nuts	tor new design	•	-
			TABI	.E VI			
CANCELLED	MBERS	PART I	NUMBERS	PART N	UMBERS	PART N	JMBERS
		CANCELLED		CANCELLED		CANCELLED	
OR INACTIVATED	SUPERSEDING	OR INACTIVATED	SUPERSEDING	OR INACTIVATED	SUPERSEDING	OR INACTIVATED	SUPERSEDING
MS35691-401	MS35691-1	MS35691-623	MS35691-21	MS35691-910	MS35691-43	MS35691*1407	MS35691-66
402	1	*624		911	44	1408	66
403	1	625	21 21	921	45	1409	66
*404	1	*627	22	922	45	1410	67 68
403	'	027		523	"	1411	""
****		628	22	*924	45	1421	69
							69 69
409	2	631	24	*927	46	*1424	69
410	3	632	24	928	46	1425	69
411	4	701	25	929	46	1426	69
412	4	702	25	930	47	*1427	70
							70
							70 71
		103	25				
*424	5	*707	26	1003 *1004	49	1431	72 73
425	2	708	26	1004	49 49	1601	73
*427	6	709	26			1603	73
428	6	710	27	*1007	50	*1604	73
429	6	711	28	1008	50	1605	73
							73 74
431	8	723		1011		1608	74
501	9	*724	29	1021	53	1609	74
502	α	725	20	1022	52	1610	75
503	9			1023	53	1611	76
*504	9	*727	30	*1024	53	1621	77
505	9			1025	53		77 77
*507	10	730	31	*1027	54	*1624	77
			32		54 54		77 77
510	11	802	33	1030	55	*1627	78
511	12	803	33	1031	56	1628	78
512	12	*804	33	1201	57	1629	78
521	13	805	33	1202	57	1630	79
		*ԶՈ7	34		57 57		80 81
*524	13	808	34	1205	57	1802	81
525	13	ens	3.4			1802	81
		810	35	*1207	58	*1804	81
*527	14	811		1208	58	1805	81
		821 822					81 82
530 531	15 16	823 *824	37	1211 1221	60	1808 1809	82 82
532	16	825	37	1222	61	1810	83
601	17			1223	61	1811	84
602	17	*827	38	*1224	61	1821	85
603	17	828	38	1225	61	1822	85
		829	38	*4997	62		85 85
000	''	831		1228	62	1825	85
*607	18	901	41	1229	62	1826	85
608	18	qno	41	1230	63	*1927	86
609	18	903	41	1231	64	1828	86
610	19	*904	41	1401	65	1829	86
	20 20		41				87 88
621	21	*907	42	*1404	65	2001	89
622	21	908 909	42 42	1405 1406	65 65	2002 2003	89 89
P.OA. WC	TIT						,
	'''		T, PLAIN, HEX	AGON (JAM))	MILITA	RY STANDA
B2 ~				•		RACO	ECO4
		U	110-20 AND U	111 -20		□ IVI 5 3 3	5691
ROCUREMENT SP	ECIFICATION	eupepernre n	DOV4 Abril DDOV	L BBDV4 0 2 0	DDVV4 DDVV4		
		RDX2, BRDX2.1. E	BUNXS thru BUNX7	i, DBDA1, 2 and 3, ', MS16203 (SHIPS	, DDAX1, BBXX2, 6) in part	SHEET 5	OF 6
	*407 *408 *409 *410 411 412 421 422 423 *424 425 *427 428 429 430 431 431 430 *504 505 *507 508 509 510 511 512 521 522 523 *524 525 *527 528 529 530 601 602 603 *604 605 *607 608 609 611 612 621 622 COA. WC ther Cust B2 ROCUREMENT SP FF-N-8	405	### A05	### 405	### 405	### 405	405

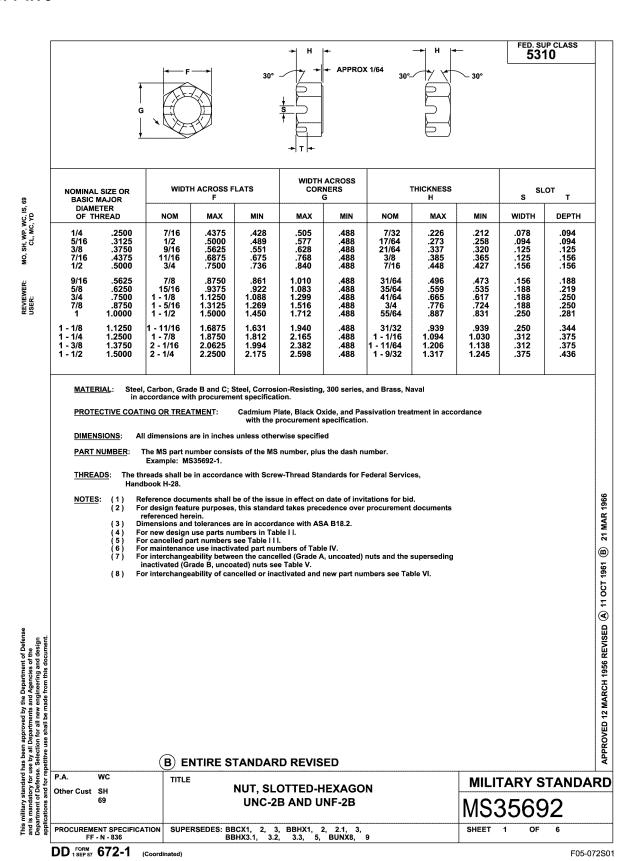

Figure 5-72. Drawing MS35691 (Sheet 5)

Figure 5-72. Drawing MS35691 (Sheet 6)

PREVIOUS EDITIONS OF THIS FORM ARE OBSOLETE.

DD 1 SEP 87 672-1 (Coordinated)

F05-071S06

Figure 5-73. Drawing MS35692 (Sheet 1 of 6)

									IP CLASS
The part	numbers in Tab	le II only will	be used for	r new desig	n and engi	neering.			
			TABLE	: II					
NOMINAL SIZ	Ē	1/	4	5	116	3/	8	7/	16
THREADS PER INC	ЭН	20UNC-2B	28UNF-2B	18UNC-2B	24UNF-2B	16UNC-2B	24UNF-2B	14UNC-2B	20UNF-2B
MATERIAL AND PROTECTIV	E COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE B, C	AD PLATED	1	5	9	13	17	21	25	29
STEEL, CARBON, GRADE C, C	AD PLATED	2	6	10	14	18	22	26	30
CRES, 300 SERIES, PASSIVAT	ED	3	7	11	15	19	23	27	31
BRASS, BLACK OXIDE		4	8	12	16	20	24	28	32
NOMINAL SIZ	E	1/	2	9/	16	5/	8	3,	14
THREADS PER INC	ЭН	13UNC-2B	20UNF-2B	12UNC-2B	18UNF-2B	11UNC-2B	18UNF-2B	10UNC-2B	16UNF-2B
MATERIAL AND PROTECTIV	E COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE B, C	AD PLATED	33	37	41	45	49	53	57	61
STEEL, CARBON, GRADE C, C	CAD PLATED	34	38	42	46	50	54	58	62
CRES, 300 SERIES, PASSIVAT	ED	35	39	43	47	51	55	59	63
BRASS, BLACK OXIDE		36	40	44	48	52	56	60	64
NOMINAL SIZ	E	7/	8	1		1 - 1	1/8	1 -	1/4
THREADS PER INC	CH	9UNC-2B	14UNF-2B	8UNC-2B	12UNF-2B	7UNC-2B	12UNF-2B	7UNC-2B	12UNF-2B
MATERIAL AND PROTECTIV	E COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE B, C	CAD PLATED	65	69	73	77	81	85	89	93
STEEL, CARBON, GRADE C, C	CAD PLATED	66	70	74	78	82	86	90	94
CRES, 300 SERIES, PASSIVAT	ED	67	71	75	79	83	87	91	95
BRASS, BLACK OXIDE		68	72	76	80	84	88	92	96
NOMINAL SIZ	E	1/	4	1.	14				
THREADS PER INC	ЭН	6UNC-2B	12UNF-2B	6UNC-2B	12UNF-2B				
MATERIAL AND PROTECTIV	E COATING	DASH NO	DASH NO	DASH NO	DASH NO				
STEEL, CARBON, GRADE B, C	CAD PLATED	97	101	105	109				
STEEL, CARBON, GRADE C, C	CAD PLATED	98	102	106	110				
CRES, 300 SERIES, PASSIVAT	ED	99	103	107	111				
BRASS, BLACK OXIDE		100	104	108	112				
CANCELLED The fol	llowing part number	ers are cancell	ed after 21	MAR 19	<u>966</u>				
NOMINAL SIZ		1	/4	5	/16	3	/8	7	7/16
THREADS PER INC	ЭН	20UNC-2B	28UNF-2B	18UNC-2B	24UNF-2B	16UNC-2B	24UNF-2B	14UNC-2B	20UNF-2B
MATERIAL AND PROTECTIV	E COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE A, C	AD PLATED	401	421	501	521	601	621	701	721
CAD OR ZINC OPTIONAL	***************************************	402	422	502	522	602	622	702	722
PHOSPHATE		403	423	503	523	603	623	703	723
STEEL, CARBON, GRADE B									
CAD OR ZINC OPTIONAL PHOSPHATE		405 406	425 426	505 506	525 526	605 606	625 626	705 706	725 726
STEEL, CARBON, GRADE C		400	420	300	520	000	020	700	720
CAD OR ZINC OPTIONAL		408	428	508	528	608	628	708	728
PHOSPHATE CRES, 300-400 SERIES, PASS	IVATED	409 410	429 430	509 510	529 530	609 610	629 630	709 710	729 730
BRASS, UNCOATED	·	411	431	511	531	611	631	711	731
P.A. WC	TITLE					•	MILIT	ARY ST	ANDA
Other Cust SH 69		-	LOTTED		N			3569	

Figure 5-73. Drawing MS35692 (Sheet 2)

This military standard has been approved by the Deartment of Defense

		TABLE III	CONT'D					P CLASS
NOMINAL SIZE	1	/2	9/	16	5/	8	3	14
THREADS PER INCH	13UNC-2B	20UNF-2B	13UNC-2B	20UNF-2B	11UNC-2B	18UNF-2B	10UNC-2B	16UNF-2B
MATERIAL AND PROTECTIVE COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE A, UNCOATED	801	821	901	921	1001	1021	1201	1221
CAD OR ZINC OPTIONAL	802	822	902	922	1002	1022	1202	1222
PHOSPHATE	803	823	903	923	1003	1023	1203	1223
STEEL, CARBON, GRADE B								
CAD OR ZINC OPTIONAL	805	825	905	925	1005	1025	1205	1225
PHOSPHATE	806	826	906	926	1006	1026	1206	1226
STEEL, CARBON, GRADE C								
CAD OR ZINC OPTIONAL	808	828	908	928	1008	1028	1208	1228
PHOSPHATE	809	829	909	929	1009	1029	1209	1229
CRES, 300-400 SERIES, PASSIVATED	810	830	910	930	1010	1030	1210	1230
BRASS, UNCOATED	811	831	911	931	1011	1031	1211	1231
NOMINAL SIZE	7	7/8	1		1-	1/8	1 -	1/4
THREADS PER INCH	9UNC-2B	14UNF-2B	8UNC-2B	12UNF-2B	7UNC-2B	12UNF-2B	7UNC-2B	12UNF-2B
MATERIAL AND PROTECTIVE COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE A, UNCOATED	1401	1421	1601	1621	1001	1021	2001	2021
CAD OR ZINC OPTIONAL	1402	1422	1602	1622	1002	1022	2002	2022
PHOSPHATE	1403	1423	1603	1623	1003	1023	2003	2023
STEEL, CARBON, GRADE B	1							
CAD OR ZINC OPTIONAL	1405	1425	1605	1625	1005	1025	2005	2025
PHOSPHATE	1406	1426	1606	1626	1006	1026	2006	2026
STEEL, CARBON, GRADE C								
CAD OR ZINC OPTIONAL	1408	1428	1608	1628	1008	1028	2008	2028
PHOSPHATE	1409	1429	1609	1629	1009	1029	2009	2029
CRES, 300-400 SERIES, PASSIVATED	1410	1430	1610	1630	1010	1030	2010	2030
BRASS, UNCOATED	1411	1431	1611	1631	1011	1031	2011	2031
NOMINAL SIZE	1-:		1-					
THREADS PER INCH	6UNC-2B	12UNF-2B	6UNC-2B	12UNF-2B				
MATERIAL AND PROTECTIVE COATING	DASH NO	DASH NO	DASH NO	DASH NO				
STEEL, CARBON, GRADE A, UNCOATED	2201	2221	2401	2421				
CAD OR ZINC OPTIONAL	2202	2222	2402	2422				
PHOSPHATE	2203	2223	2403	2423				
STEEL, CARBON, GRADE B,								
CAD OR ZINC OPTIONAL	2205	2225	2405	2425				
PHOSPHATE	2206	2226	2406	2426				
STEEL, CARBON, GRADE C,								
CAD OR ZINC OPTIONAL	2208	2228	2408	2428				
PHOSPHATE	2209	2229	2409	2429				
CRES, 300-400 SERIES, PASSIVATED	2210	2230	2410	2430				
BRASS, UNCOATED	2211	2231	2411	2431				
The following part numbers in Use for maintenance purpose		inactive for d	•	21 MAR	1966 .			
NOMINAL SIZE	1	/4		5/16	3	/8		7/16
THREADS PER INCH	20UNC-2B	28UNF-2B	18UNC-2B	24UNF-2B	16UNC-2B	24UNF-2B	14UNC-2B	20UNF-2E
MATERIAL AND PROTECTIVE COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE B, UNCOATED	404	424	504	524	604	624	704	724
STEEL, CARBON, GRADE C, UNCOATED	407	427	507	527	607	627	707	727
NOMINAL SIZE	1	/2		9/16	5	/8	3	3/4
THREADS PER INCH	13UNC-2B	20UNF-2B	12UNC-2B	18UNF-2B	11UNC-2B	18UNF-2B	10UNC-2B	16UNF-2
MATERIAL AND PROTECTIVE COATING	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO	DASH NO
STEEL, CARBON, GRADE B, UNCOATED	804	824	904	924	1004	1024	1204	1224
STEEL, CARBON, GRADE C, UNCOATED	807	827	907	927	1007	1027	1207	1227
P.A. WC TITLE Other Cust SH	NUT SI	_OTTED-	HEXAGO)N		MILITA	ARY STA	NDAR
69		B AND U		··•		MS	3569	2
PROCUREMENT SPECIFICATION SUPERSEDES:	BBCX1, 2, 3, B	BHX1.2.21	3			SHEET 3		6
PROCUREMENT SPECIFICATION SUPERSEDES:								

Figure 5-73. Drawing MS35692 (Sheet 3)

Figure 5-73. Drawing MS35692 (Sheet 4)

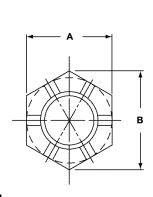
DD 1 FORM 672-1

(Coordinated)

F05-072S04

-	DADTN	UMBERS	DADT	UMBERS	DADT NI	UMBERS	DADT	5310 NUMBERS
+	PARIN	UMBERS	PARIN	U-MDEKO	PARIN	UMBERS	PARI	CARDINO
	CANCELLED OR		CANCELLED OR		CANCELLED OR		CANCELLED OR	
F	INACTIVATED	SUPERSEDING	INACTIVATED	SUPERSEDING	INACTIVATED	SUPERSEDING	INACTIVATED	SUPERSEDING
	MS35692 - *707 708	MS35692 - 26 26	MS35692 - 909 910	MS35692 - 42 43	MS35692 - 1210 1211	MS35692 - 59 60	MS35692 - 1611	
	709 710	26 27	911 921	44 45	1221 1222	61 61	162: 162:	2 77
	711	28	922	45	1223	61	*1624	
2	721 722	29 29	923 *924	45 45	*1224 1225	61 61	162: 162:	6 77
ည်	723 *724	29 29	925 926	45 45	1226 *1227	61 62	*162 162	7 8 78
, CL, MC, YD	725	29	*927	46	1228	62	162	
	726 *727	29 30	928 929	46 46	1229 1230	62 63	1630 163	
	728 729	30 30	930 931	47 48	1231 1401	64 65	180 180	1 81
USER:	730	31	1001	49	1401	65	180	
<u>s</u>	731 801	32 33	1002 1003	49 49	1403 1404	65 65	*180- 180	
	802	33	*1004	49	*1405	65	180	6 81
	803 *804	33 33	1005 1006	49 49	1406 1407	65 66	*180° 180°	7 82 8 82
	805 806	33 33	*1007 1008	50 50	*1408 1409	66 66	180: 181:	
	*807	34	1009	50	1410	67	181	1 84
	808 809	34 34	1010 1011	51 52	1411 1412	68 69	182 182	
	810 811	35 36	1021 1022	53 53	1422 1423	69 69	182 *182	
	821 822	37 37	1023 *1024	53 53	1424 *1425	69 69	182 182	5 85
	823	37	1025	53	1426	69	*182	86
	*824 825	37 37	1026 *1027	53 54	1427 *1428	70 70	182 182	9 86
	826 *827	37 38	1028 1029	54 54	1429 1430	70 71	183 183	0 87 1 88
	828	38	1030	55	1431	72	200	1 89
	829 830	38 39	1031 1201	56 57	1601 1602	73 73	200 200	3 89
	831 901	40 41	1202 1203	57 57	1603 1604	73 73	*200 200	4 89 5 89
	902	41	*1204	57	*1605	73	200	
	903 *904	41 41	1205 1206	57 57	1606 1607	73 74	*200 200	7 90 8 90
	905 906	41 41	*1207 1208	58 58	*1608 1609	74 74	200 201	0 91
	*907 908	42 42	1209	58	1610	75	201	1 92
applications and for repetitive use shall be made from this document.								
cations and for rep	P.A. WC Other Cust SH 69	TITLE	NU	T, SLOTTED NC-2B AND I			MILITARY MS35	7 STANDARI
≝	PROCUREMENT SPE	CIFICATION SUPER	05550	2, 3, BBHX1, 2, 2.1,			SHEET 5	OF 6

•


Figure 5-73. Drawing MS35692 (Sheet 5)

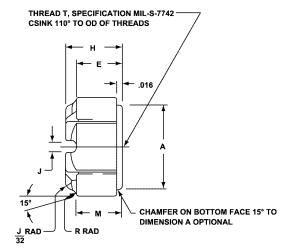

					T			FED. SUP CLAS 5310
CANCE	PART N	UMBER		NUMBER		NUMBER	 	NUMBER
CANCE OR INACTIV		SUPERSEDING	CANCELLED OR INACTIVATED	SUPERSEDING	CANCELLED OR INACTIVATED	SUPERSEDING	CANCELLED OR INACTIVATED	SUPERSED
MS35692		MS35692 - 93 93 93 93 93	MS35692 - 2205 2206 *2207 2208 2209		MS35692 - 2228 2229 2230 2231 2401	MS35692 - 102 102 103 104 105	MS35692 - 2411 2421 2422 2423 2423 *2424	MS35692 -
	2026 *2027 2028 2029 2030	93 94 94 94 95	2210 2211 2221 2222 2223	99 100 101 101 101	2402 2403 *2404 2405 2406	105 105 105 105 105	2425 2426 *2427 2428 2429	
	2031 2201 2202 2203 2204	96 97 97 97 97	*2224 2225 2226 *2227	101 101 101 102	*2407 2408 2409 2410	106 106 106 107	2430 2431	
NOTE			ial, protective coatin	g and other pertin	ent data, see sheet	1.		
^ in	active - S	ee Table IV.						
P.A.	wc	TITLE					MILITARY	′ STANDA
P.A. Other Cust	WC SH 69	TITLE	NU	T, SLOTTED-I			MILITARY MS35	STANDA

Figure 5-73. Drawing MS35692 (Sheet 6)

DD 150RM 672-1

F05-072S06

ROUND OR SQUARE BOTTOM **CASTELLATION OPTIONAL**

	(b) THREAD		SILE STRENGTH , POUNDS	(a)	В			J +1/32		
AN PART NO.	т Т	STEEL	AL ALLOY	A	APPROX	E	н	-0	M	R
AN310-3	NO. 10-32NF-3	2 210	1 100	.375 +.002 .010	7/16	7/64	1/4	5/64	.110	3/3
AN310-4	1/4 -28NF-3	4 080	2 030	.438 +.002 010	1/2	1/8	9/32	5/64	.125	3/3
AN310-5	5/16 -24NF-3	6 500	3 220	.500 +.002 010	37/64	11/64	21/64	5/64	.172	3/3
AN310-6	3/8 -24NF-3	10 100	5 020	.563 +.002 .563010	21/32	7/32	13/32	1/8	.218	3/3
AN310-7	7/16 -20NF-3	13 600	6 750	.625 +.002 .011	23/32	17/64	29/64	1/8	.265	3/3
AN310-8	1/2 -20NF-3	18 500	9 180	.750 +.002 012	7/8	23/64	9/16	1/8	.359	1/
AN310-9	9/16 -18NF-3	23 600	11 700	.875012	1 - 1/64	25/64	39/64	5/32	.390	5/3
AN310-10	5/8 -18NF-3	30 100	14 900	1.000 +.002 014	1 - 5/32	15/32	23/32	5/32	.468	5/
AN310-12	3/4 -16NF-3	44 000	21 800	1.125 ^{+.002} 016	1 - 19/64	9/16	13/16	5/32	.562	3/
AN310-14	7/8 -14NF-3	60 000	29 800	1.313 +.002 1.313 ₀₁₇	1 - 33/64	21/32	29/32	5/32	.656	3/
AN310-16	1 -14NF-3	80 700	40 000	1.500 +.002 1.500 ₋ .019	1 - 47/64	3/4	1	5/32	.750	3/
AN310-18	1 - 1/8 -12NF-3	101 800	50 900	1.688021	1 - 61/64	13/16	1 - 5/32	5/32	.844	1/
AN310-20	1 - 1/4 -12NF-	130 200	64 400	1.875 +.002 023	2 - 11/64	7/8	1 - 1/4	5/32	.938	1/
										Γ

FOR AL-ALLOY NUTS LARGER THAN -5 SIZE, TOLERANCES ON A MAY CONFORM TO APPLICABLE MATERIAL SPECIFICATIONS FOR BAR AND ROD.

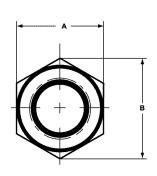
MATERIAL: STEEL, AL-ALLOY AND CORROSION-RESISTANT STEEL. SEE PROCUREMENT SPECIFICATION.

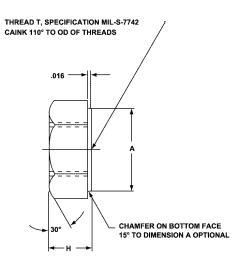
FINISH: SEE PROCUREMENT SPECIFICATION

ADD D BEFORE DASH NUMBER FOR AL-ALLOY NUTS.

ADD C BEFORE DASH NUMBER FOR CORROSION-RESISTANT STEEL NUTS.

EXAMPLES OF PART NO:


AN310-5 = STEEL NUT, 5/16-24NF-3.
AN310D5 = AL-ALLOY NUT, 5/16-24NF-3.
AN310C5 = CORROSION-RESISTANT STEEL NUT, 5/16-24NF-3.


REMOVE ALL BURRS.

DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: FRACTIONS ±1/64, DECIMALS ±.010, ANGLES ±1°.

(b) UNF-3B THREADS ARE ACCEPTABLE.

Figure 5-74. Drawing AN310

	(b)		ISILE STRENGTH	(a)		
AN	THREAD	MOMININ	PUUNDO		В	
PART NO.	Т	STEEL	AL ALLOY	Α	APPROX	н
AN315-640	NO. 6-40NF-3		-	.313 +.002 010	23/64	7/64
AN315-3	NO. 10-32NF-3	2 210	1 100	.375 +.002 010	7/16	9/64
AN315-4	1/4 -28NF-3	4 080	2 030	.438 +.002 010	1/2	3/16
AN315-5	5/16 -24NF-3	6 500	3 220	.500 +.002 010	37/64	15/64
AN315-6	3/8 -24NF-3	10 100	5 020	.563 +.002 010	21/32	9/32
AN315-7	7/16 -20NF-3	13 600	6 750	.625 +.002 011	23/32	21/64
AN315-8	1/2 -20NF-3	18 500	9 180	.750 +.002 012	7/8	3/8
AN315-9	9/16 -18NF-3	23 600	11 700	.875 +.002 012	1 - 1/64	27/64
AN315-10	5/8 -18NF-3	30 100	14 900	1.000 +.002 014	1 - 5/32	15/32
AN315-12	3/4 -16NF-3	44 000	21 800	1.125 ^{+.002} 016	1 - 19/64	5/8
AN315-14	7/8 -14NF-3	60 000	29 800	1.313 +.002 017	1 - 33/64	21/32
AN315-16	1 -14NF-3	80 700	44 000	1.500 +.002 019	1 - 47/64	3/4
AN315-18	1- 1/8 -12NF-3	101 800	50 500	1.688 ^{+.002} 021	1 - 61/64	13/16
AN315-20	1- 1/4 -12NF-3	130 200	64 400	1.875 +.002 023	2 - 11/64	7/8

FOR ALUMINUM-ALLOY NUTS LARGER THAN -5 SIZE, TOLERANCES ON A MAY CONFORM TO APPLICABLE MATERIAL SPECIFICATIONS FOR BAR AND ROD.

MATERIAL: STEEL, ALUMINUM ALLOY, AND CORROSION-RESISTANT STEEL. SEE PROCUREMENT SPECIFICATION FINISH: SEE PROCUREMENT SPECIFICATION.

ADD C BEFORE DASH NUMBER FOR CORROSION-RESISTANT STEEL NUTS.

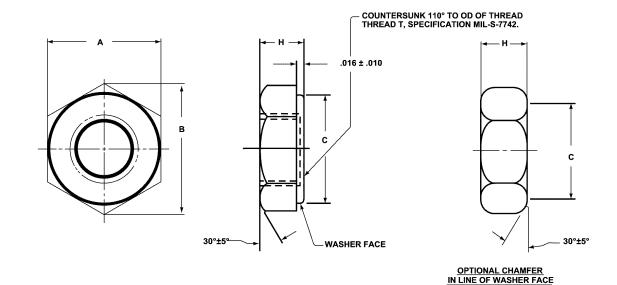
ADD D BEFORE DASH NUMBER FOR ALUMINUM-ALLOY NUTS.

ADD R AFTER DASH NUMBER FOR RIGHT-HAND THREAD.

ADD L AFTER DASH NUMBER FOR LEFT-HAND THREAD.

EXAMPLES OF PART NO.: AN315-7L = STEEL NUT, 7/16-20NF-3, LEFT-HAND THREAD

AN315D7R = ALUMINUM-ALLOY NUT, 7/16-20NF-3, RIGHT-HAND THREAD.


AN315C7R = CORROSION-RESISTANT STEEL NUT, 7/16-20NF-3, RIGHT-HAND THREAD.

REMOVE ALL BURRS.

DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: FRACTION ±1/64, DECIMALS ±.010, ANGLES ±1°.

(6) (b) UNF-3B THREADS ARE ACCEPTABLE.

Figure 5-75. Drawing AN315

		AN PART N	NUMBERS						
	ALLOY STEEL	CORROSION- RESISTANT STEEL	BRASS	(f) VALUMINUM ALLOY	(a) THREAD T	(b) A MAX MIN	(c) B REF	C DIA	(d) H MAX MIN
	AN340-2 AN340-3 AN340-4	AN340C2 AN340C3 AN340C4	AN340B2 AN340B3 AN340B4		NO. 2-56 NC-2B NO. 3-48 NC-2B NO. 4-40 NC-2B	.188 .180 .188 .180 .250 .241	.217 .217 .289	.188 .169 .188 .169 .250 .225	.066 .057 .066 .057 .098 .087
	AN340-5 AN340-6 AN340-8 AN348-10	AN340C5 AN340C6 AN340C8 AN340C10	AN340B5 AN340B6 AN340B7 AN340B10	AN3400D6 AN340D08 AN340D010	NO. 5-40 NC-2B NO. 6-32 NC-2B NO. 8-32 NC-2B NO.10-24 NC-2B	.313 .302 .313 .302 .344 .332 .375 .308	.362 .362 .398 .423	.313 .282 .313 .282 .344 .310 .375 .338	.114 .102 .114 .102 .130 .117
(e) -	AN340 426 AN340 526 AN340 626	AN340G426 AN340G526 AN340G626	AN349B426 AN349B626 AN349B626	AN340DD426 AN340DD528 AN340DD626	1/4 20 UNC 2B 5/16 18 UNC 2B 3/8 16 UNC 2B	.400 .420	.506 .650 .722	.438 .394 .563 .507 .625 .563	.103 .178 .225 .208 .257 .230

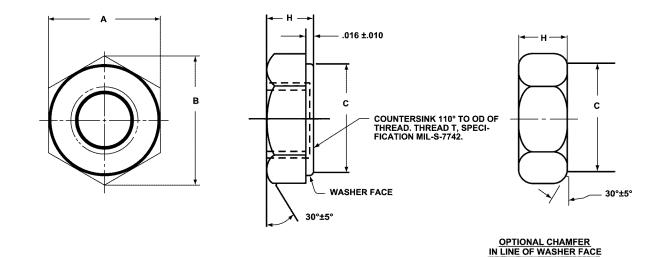
- (a) CLASS 2 THREADS MAY BE SUBSTITUTED FOR CLASS 2B THREADS UNTIL EXISTING STOCKS OF THE NUTS WITH CLASS 2 THREADS ARE EXHAUSTED.
- (b) FOR ALUMINUM ALLOY NUTS, TOLERANCES ON A MAY CONFORM TO APPLICABLE MATERIAL SPECIFICATIONS FOR BAR AND ROD.
- (c) REFERENCE DIMENSIONS ARE FOR DESIGN PURPOSES ONLY AND ARE NOT AN INSPECTION REQUIREMENT.
- (d) THE H DIMENSION SHALL BE MEASURED AT A POINT APPROXIMATELY HALFWAY BETWEEN THE MINOR DIAMETER OF THE HOLE AND THE FLAT OF THE NUT.
- (e) NO. 10. 1/4, 5/16, AND 3/8 SIZES ARE NOT RECOMMENDED FOR NEW DESIGN
- (f) ALUMINUM ALLOY NUTS INACTIVE FOR DESIGN AFTER 19 JULY 1955.

FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE ANA BULLETIN NO. 337.

STEEL, 50,000-PSI TENSILE STRENGTH MINIMUM, COMMERCIAL GRADE.
CORROSION-RESISTANT STEEL, SPECIFICATION AN-QQ-8-770, CONDITION QT, CLASS II (431) OR SPECIFICATION MIL-S-7720, COMPOSITION FM (303).
BRASS, COMMERCIAL GRADE.
ALUMINUM ALLOY, SPECIFICATION QQ-A-268 OR QQ-A-355.

HEAT TREAT: (f) ALUMINUM ALLOY, 62,000 PSI TENSILE STRENGTH, MINIMUM, SPECIFICATION ON MIL-H-6088.

FINISH: STEEL, CADMIUM PLATE, SPECIFICATION QQ-P-416. TYPE 1, CLASS C. CORROSION-RESISTANT STEEL, PASSIVATE.


BRASS, NONE ALUMINUM ALLOY, ANODIZE, SPECIFICATION MIL-A-8625.

NUTS SHALL BE FREE OF ALL LOOSE OR HANGING BURRS OR SLIVERS WHICH MIGHT BECOME DISLODGED UNDER USAGE. DIMENSIONS IN INCHES.

IN CASE OF CONFLICT, THE REQUIREMENTS SPECIFIED HEREON SHALL TAKE PRECEDENCE OVER THE REQUIREMENTS SPECIFIED IN SPECIFICATION MIL-S-933.

3 ENTIRE DRAWING REVISED.

Figure 5-76. Drawing AN340

		AN PART N	UMBERS		, (a)		(b)		(c)	C DIA		(d) _F	
	ALLOY STEEL	CORROSION- RESISTANT STEEL	BRASS	(f) \ALUMINUM \ALLOY	THRE	AD	MAX	A MIN	B REF	MAX	MIN	MAX	MIN
	AN345 - 0	AN345C0	AN345B0		NO. 0-80	NF-2B	.156	.150	.180	.156	.140	.050	.043
ſl	AN345 - 2	AN34502	AN945B2		NO. 2-64	NF-2B	.180	.100	.100	.100	.169	.066	.057
	AN345 - 3	AN34503	AN945D9	$\overline{}$	NO. 3-56	NF-2D	.100	.100	.227	.100	.169	.066	.057
(e) {	AN345 - 4 AN345 - 5	AN345C4 AN345C5	AN345B4 AN345B5		NO. 4-48 NO. 5-44	NF-2B NF-2B	.250 .323	.242 .302	.269 .362	.250 .333	.205 .282	.098 .114	.089 .102
	AN345 6	AN345C6 AN345C0	AN345B6 AN345B8		NO. 6 40 NO. 8-36	NF 2B NF-2D	.333	.302	.362 .390	.333 .344	.282	.114 .130	.102 .117
Ч	AN345 - 10	AN345C10	AN345B10	AN3450B10	NO. 10-32	NF-2B	.375	.362	.433	.375	.338	.130	.117
	AN345 - 416 AN345 - 516 AN345 - 626	AN345C416 AN345C516 AN345C616	AN345B416 AN345B516 AN345B616	AN345DD416	1/4 - 28 5/16 - 24 3/8 - 24	UNF-2B UNF-2B UNF-2B	.438 .563 .625	.423 .545 .607	.506 .650 .722	.438 .563 .625	.394 .507 .563	.193 .225 .257	.178 .208 .239

- CLASS 2 THREADS MAY BE SUBSTITUTED FOR CLASS 2B THREADS UNTIL EXISTING STOCKS OF THE NUTS WITH CLASS 2 THREADS
- (b) FOR ALUMINUM ALLOY NUTS, TOLERANCES ON A MAY CONFORM TO APPLICABLE MATERIAL SPECIFICATIONS FOR BAR AND ROD.
- (c) REFERENCE DIMENSIONS ARE FOR DESIGN PURPOSES ONLY AND ARE NOT AN INSPECTION REQUIREMENT.
- THE H DIMENSION SHALL BE MEASURED AT A POINT APPROXIMATELY HALFWAY BETWEEN THE MINOR DIAMETER OF THE HOLE AND THE FLAT OF THE NUT.
- (e) NUMBERS 1, 2, 3, 4, 5, 6, AND 8 SIZES ARE NOT RECOMMENDED FOR NEW DESIGN.
- (f) ALUMINUM ALLOY NUTS INACTIVE FOR DESIGN AFTER 19 JULY 1955.

FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE ANA BULLETIN NO. 337.

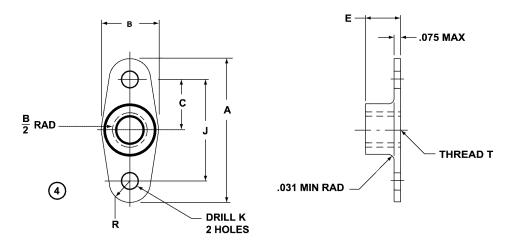
MATERIAL: STEEL, 50,000-PSI TENSILE STRENGTH, MINIMUM, COMMERCIAL GRADE.

CORROSION-RESISTANT STEEL, SPECIFICATION AN-QQ-8-770, CONDITION QT, CLASS II (431) OR SPECIFICATION

MIL-S-7720, COMPOSITION FM (303). BRASS, COMMERCIAL GRADE. ALUMINUM ALLOY, SPECIFICATION QQ-A-268 OR QQ-A-355.

HEAT TREAT: (f) ALUMINUM ALLOY, 62,000 PSI TENSILE STRENGTH, MINIMUM, SPECIFICATION MIL-H-6088.

STEEL, CADMIUM PLATE, SPECIFICATION QQ-P-416, TYPE 1, CLASS C. CORROSION-RESISTANT STEEL, PASSIVATE. BRASS, NONE.


(f) ALUMINUM ALLOY, ANODIZE, SPECIFICATION MIL-A-8625.

NUTS SHALL BE FREE OF ALL LOOSE OR HANGING BURRS OR SLIVERS WHICH MIGHT BECOME DISLODGED UNDER USAGE.

DIMENSIONS IN INCHES.

IN CASE OF CONFLICT, THE REQUIREMENTS SPECIFIED HEREON SHALL TAKE PRECEDENCE OVER THE REQUIREMENTS SPECIFIED IN SPECIFICATION MIL-S-933.

Figure 5-77. Drawing AN345

	A	1	В	(b)	(a) E	J	K +.005	R
SIZE	MAX	MAX	MIN	NOM	MAX	±.002	000 DIA	MIN RAD
NO. 6			.250		.234			
NO. 8	.985	.407	.282	.344	.297	.688		.100
NO. 10			.314	1	.312		.098	
1/4		.516	.374		075			.115
5/16	1.297	.532	.500	.500	.375	1.000		
3/8		.641	.609		.453		.130	.125

	DASH	NUMBERS	(4)
	STEEL	COR RES STEEL	THREAD T
(c)	F640	C640	NO. 6-40NF-2B
(c)	F836	C836	NO. 8-36NF-2B
	F1032	C1032	NO. 10-32NF-3B
	F428	C428	1/4 -28UNF-3B
	F524	C524	5/16 -24UNF-3B
	F624	C624	3/8 -24UNF-3B

	DASH	NUMBERS	
	STEEL	COR RES STEEL	THREAD T
	F632	C632	NO. 6-32NF-2B
	F832	C832	NO. 8-36NF-2B
(c)	F1024	C1024	NO. 10-24NF-3B
(c)	F420	C420	1/4 -20UNF-3B
(c)	F518	C518	5/4618UNF-3B
(c)	E618	C616	3/8 -16UNF-3B

- (a) MINIMUM E NOT SPECIFIED. LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- (c) DASH NUMBERS F640, F836, C640, C836, F1024, F420, F518, F616, C1024, C420, C518, AND C616 INACTIVE FOR DESIGN AFTER 14 APRIL 1949.

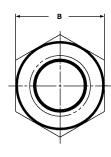
FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTE, SEE ANA BULLETIN NO. 337. SHAPE OF TOP OPTIONAL TO SUIT LOCKING METHOD.

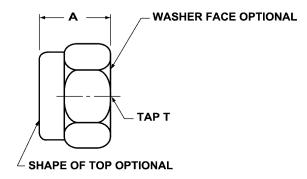
NUTS MAY BE MADE OF SHEET METAL.

NUTS FOR USE BY WELDING TO BE MADE OF COR RES STEEL AND WITHOUT RIVET HOLES. SPACING OF WELDING PROJECTIONS MUST BE EQUAL TO DIMENSION J.

ADD W BEFORE COR RES STEEL DASHNUMBERS FOR PLATE NUTS FOR USE BY WELDING.

EXAMPLES OF PART NUMBERS: AN362F428 = 1/4 - 28 STEEL NUT.


AN362C428 = 1/4 - 28 COR RES STEEL NUT.


AN362WC428 = 1/4-28 COR RES STEEL NUT FOR USE BY WELDING.

DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: DECIMALS ±.016.

- (4) FOR INSTALLATION INSTRUCTIONS SEE MS33588
- ALTHOUGH THIS SPECIFICATION HAS BEEN SUPERSEDED BY MIL-N-25027, PARTS CONFORMING TO AN-N-10 ARE REQUIRED FOR REPLACEMENT. F05-077

Figure 5-78. Drawing AN362

FINE THREAD

	DASH NUM	/BERS		(a)	В
COR RES STEEL	STEEL	COPPER BASE ALLOY	TAP T	A + .016	B + .002 010
C1032	1032	B1032	NO. 10-32 NF-3B	.234	.375
C428	428	B428	1/4 -28UNF-3B	.312	.438
C524	524	B524	5/16-24UNF-3B	.344	.500
C624	624	B624	3/8 -24UNF-3B	.453	.563
C720	720	B720	7/16-20UNF-3B	.453	.625
C820	820	B820	1/2 -20UNF-3B	.594	.750
C918	918	B918	9/16-18UNF-3B	.688	.875
C1018	1018	B1018	5/8 -18UNF-3B	.750	.938
C1216	1216	B1216	3/4 -16UNF-3B	.875	1.063

COARSE THREAD

	C632	632	B632	NO. 6-32 NC-2B	.172	.312
	C832	832	B832	NO. 8-32 NC-2B	.234	.344
	61024	1024	B1024	NO. 10-24 NC-2B	.234	375
	C420	420	B420	1/4 -20UNC-3B	312	.438
	C518	518	B518	5/16-18UNC-3B	.344	.500
	C616	616	B616	3/8 -16UNC-3B	.453	.563
(b)	C714	714	B714	7/16-14UNC-3B	.453	.625
	C813	813	B813	1/2 -13UNC-3B	.594	.750
	C913	913	B913	9/16-12UNC-3B	.688	.875
	C1011	1011	B1011	5/8 -11UNC-3B	.750	.938
	e 1210	1210	B1210	3/4 -10UNC-3B	.875	1.063

- (a) MINIMUM A NOT SPECIFIED. LIMITED ONLY BE STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) DASH NUMBERS C1024 THROUGH C1210, 1024 THROUGH 1210, AND B1024 THROUGH B1210 FOR COARSE THREAD NUTS INACTIVE FOR DESIGN AFTER 14 APRIL 1949.

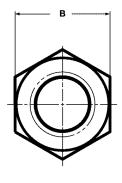
- EXAMPLES OF PART NUMBERS: AN363-428 = 1/4 28 STEEL NUT.
 AN363B632 = NO. 6-32 COPPER-BASE ALLOY NUT.
 SHEET 2 ADDED. AN363C428 = 1/4-28 CORROSION-RESISTANT STEEL NUT. 4 SHEET 2 ADDED.
- (4) INACTIVE FOR DESIGN AFTER 17 JUNE 1964, USE MS21044, MS21045 OR MS21046.
- INTERCHANGEABILITY RELATIONSHIP: MS21044, MS21045 AND MS21046 CAN UNIVERSALLY REPLACE THE INACTIVATED AN363 NUTS IN ACCORDANCE WITH TABLE ON SHEET 2. AN363 NUTS CANNOT UNIVERSALLY REPLACE MS21044, MS21045 OR MS21046.

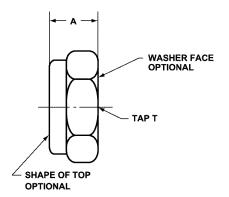
DIMENSIONS IN INCHES.

FOR INSTALLTION INSTRUCTIONS, SEE MS33588

(4) FOR CHANGES SEE SHEET 1 AND 2.

Figure 5-79. Drawing AN363 (Sheet 1 of 2)


(4)


		FINE TH	READ				
	INACTIVE PART	s	SUBSTITUTIVE PARTS				
CRES	STEEL	COPPER BASE ALLOY	CRES	STEEL	COPPER BASE ALLOY		
AN363C1032 C428 C524 C624 C720 C820 C918 C1018 C1216	AN363-1032 -428 -524 -624 -720 -820 -918 -1018 -1216	AN363B1032 B428 B524 B624 B720 B820 B918 B1018 B1216	MS21046C3 C4 C5 C6 (a) C8 C9 C10 C12	MS21045-3 -4 -5 -6 (a) -8 -9 -10	MS21044E3 E4 E5 E6 (a) E8 E9 E10		
		COARSE	THREAD				
AN363C632 C832 C1024 C420 C518 C616 C714 C813 C913 C1011	AN363-632 -832 -1024 -420 -518 -616 -714 -813 -913 -1011 -1210	AN363B632 B832 B1024 B420 B518 B616 B714 B813 B913 B1011 B1210	MS21046C06 C08 (b)	MS21045-06 -08 (b)	MS21044E06 E08 (b)		

- (a) AN363 NUTS WITH 7/16-20 THREAD HAVE NO SUBSTITUTIVE PARTS ON MS21044, MS21045 AND MS21046 BECAUSE THE CORRESPONDING MS NUTS HAVE A LARGER HEX SIZE TO CONFORM TO INTERNATIONAL STANDARD.
- (b) AN363 NUTS WITH THREAD SIZES 10-24 THRU 3/4-10 HAVE NO SUBSTITUTIVE PARTS ON MS21044, MS21045 AND MS21046 BECAUSE THESE ARE NON-PREFERRED THREAD SIZES PER MIL-S-7742.

F05-078S02

Figure 5-79. Drawing AN363 (Sheet 2)

.344

.375

.172

.272

FINE THREAD

		DASH NUMI	BERS		(a)	
	STEEL	COPPER BASE ALLOY	ALUMINUM ALLOY	TAP T	A +.016	B +.002 010
(h)	640			NO. 6-40 NF-2	.125	.312
(b) 	836	B836		NO. 8-36 NF-2	.170	344
	1032	B1032	D1032	NO. 10-32 NF-3	.172	.375
	428	B428	D428	1/4 -28 NF-3	.203	.438
	524	B524	D524	5/16-24 NF-3	.250	.500
	624	B624	D624	3/8 -24 NF-3	.266	.563
	720	B720	D720	7/16-20 NF-3	.312	.625
	820	B820	D820	1/2 -20 NF-3	.312	.750
	918	B918	D918	9/16-18 NF-3	.359	.875
	1018	B1018	D1018	5/8 -18 NF-3	.391	.938
	1216	B1216	D1216	3/4 -16 NF-3	.406	1.063
	1414	B1414	D1414	7/8 -14 NF-3	.469	1.250
	1614	B1614	D1614	1 -14 NF-3	.562	1.438
	1812	B1812	D1812	1 - 1/8 -14 NF-3	.656	1.625
	2012	B2012	D2012	1 - 1/4 -14 NF-3	.750	1.813
	COARSE	THREAD				
	632		D632	NO. 6-32 NF-2	.125	.312

(a) MINIMUM A NOT SPECIFIED. LIMITED ONLY BE STRENGTH REQUIREMENT OF SPECIFICATION.

D832

(b)D1024

(b) DASH NOS. 640 THRU 836 AND B836 FOR FINE THREAD NUTS AND D1024 FOR COARSE THREAD NUTS INACTIVE FOR DESIGN **AFTER 14 APRIL, 1949.**

NO.

NO.

FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTE SEE ANA BULLETIN NO. 337.

ADD A AFTER DASH-NUMBER FOR NUTS HAVING NON-METALLIC INSERTS.

832

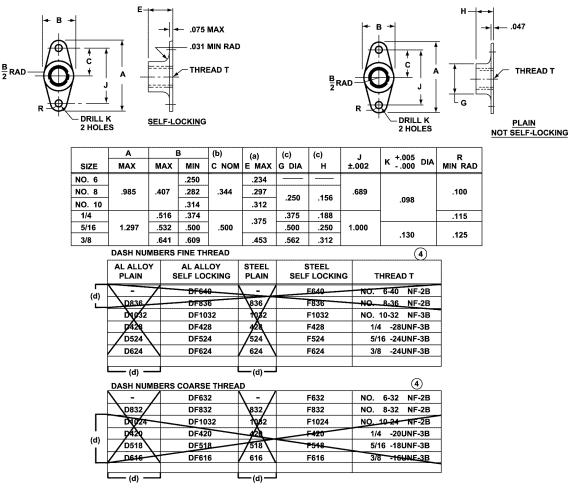
ADD C AFTER DASH-NUMBER FOR NUTS FABRICATED ENTIRELY FROM METAL.

EXAMPLES OF PART NOS. AN364-428 = 1/4-28 STEEL NUT, EITHER ALL METAL OR WITH NON-METALLIC INSERT.

AN364D428 = 1/4-28 ALUMINUM ALLOY NUT, EITHER ALL METAL OR WITH NON-METALLIC INSERT.
AN364B428A = 1/4-28 COPPER BASE ALLOY NUT WITH NON-METALLIC INSERT.
AN364-428C = 1/4-28 STEEL NUT, ALL METAL

6-32 NF-2

10-04 NF-3


DIMENSIONS IN INCHES.

FOR INSTALLATION INSTRUCTIONS SEE DRAWING AND10068.

INACTIVE FOR DESIGN AFTER 13 MARCH 1957. USE STANDARD MS20364

MS20364 PARTS AND AN364 PARTS OF LIKE DASH NUMBERS ARE UNIVERSALLY, FUNCTIONALLY AND DIMENSIONALLY INTERCHANGEABLE.

Figure 5-80. Drawing AN364

- (a) MINIMUM E NOT SPECIFIED. LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES BY MORE THAN .005.
- REQUIREMENTS OF MATERIAL AND DIMENSIONS G AND H MINIMUM WAIVED IF PLAIN PLATE NUT MEETS THE TENSILE REQUIREMENT FOR CORRESPONDING SIZE OF SELF-LOCKING PLATE NUT.
- DASH NO. D836 AND DF64C THRU DF836 AND 836 AND F640 THRU F836 FOR FINE THREAD NUTS AND D1024 THRU D616 AND DF1024 THRU DF616 AND 1024 THRU 616 AND F1024 THRU F616 FOR COARSE THREAD NUTS INACTIVE FOR DESIGN AFTER 14 APRIL, 1949.

PLAIN (NOT SELF-LOCKING) NUTS INACTIVE FOR DESIGN AFTER 14 APRIL, 1949.

CORROSION-RESISTING STEEL SELF-LOCKING PLATE NUTS FOR USE BY WELDING, DESIGNATED BY WC BEFORE STEEL DASH NO. INACTIVE FOR DESIGN AFTER 14 APRIL, 1949; SEE DRAWING AN362.

FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTE, SEE ANA BULLETIN NO. 337.

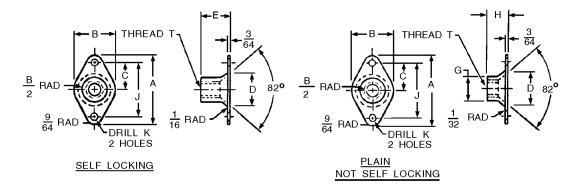
SHAPE OF TOP OF SELF-LOCKING NUTS OPTIONAL TO SUIT LOCKING METHOD.

SELF-LOCKING NUTS MAY BE MADE OF SHEET METAL.

ADD A AFTER DASH NO. FOR SELF-LOCKING PLATE NUTS HAVING NON-METALLIC INSERTS.

ADD B AFTER DASH NO. FOR SELF-LOCKING PLATE NUTS FABRICATED ENTIRELY FROM METAL.

EXAMPLES OF PART NOS.: AN366-428


AN366-428 = 1/4-28 PLAIN STEEL PLATE NUT.
AN366F428 = 1/4-28 PLAIN ALUMINUM-ALLOY PLATE NUT.
= 1/4-28 SELF-LOCKING STEEL PLATE NUT, EITHER ALL METAL OR WITH
NON-METALLIC INSERT.
AN366DF428 = 1/4-28 SELF-LOCKIGN ALUMINUM-ALLOY PLATE NUT, EITHER ALL METAL
OR WITH NON-METALLIC
AN366DF428A = 1/4-28 SELF-LOCKING ALUMINUM-ALLOY PLATE NUT WITH NON-METALLIC INSERT
AN366F428B = 1/4-28 SELF-LOCKING STEEL ALL METAL PLATE NUT.

DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: DECIMALS +.016.

FOR ACCEPTABLE PRODUCTS, SEE ANA BULLETIN NO. 159

- (4) FOR INSTALLATION INSTRUCTIONS FOR SELF-LOCKING NUTS, SEE MS33588.
 - ALTHOUGH THIS SPECIFICATION HAS BEEN SUPERSEDED BY MIL-N-25027, PARTS CONFORMING TO AN-N-5 ARE REQUIRED FOR REPLACEMENT.

Figure 5-81. Drawing AN366

SIZE	A	В	С	D	(a) E MAX	н	G	J <u>+</u> .005	K +.005 000 DIA
NO. 8	31/32	7/16	11/12	.320	23/64	1/4	1/4	.688	.098
NO.10	31/32	7/16	11/32	.372	13/32	1/4	1/4	.688	.098
1/4	1-9/32	9/16	1/2	.492	29/64	5/16	3/8	1.000	.098
5/16	1-9/32	3/4	1/2	.616	17/32	3/8	7/16	1.000	.130

DASH NUMBERS FINE THREAD

AL ALLOY PLAIN	AL ALLOY SELF-LOCKING	STEEL PLAIN	STEEL SELF-LOCKING	THREADT
D836	DF836	836	F836	NO. 8-36 NF-2
D1032	DF1032	1032	F1032	NO. 10-32NF-3
D 428	DF428	428	F428	1/4-20 NF-3
D524	DF524	524	F524	5/16-18 NF-3

DASH NUMBERS COARSE THREAD

D832	DF832	832	F832	NO. 8-32 NC-2
D1024	DF1024	1024	F1024	NO. 10-24NC-2
D420	DF420	420	F420	1/4-20 NC-3
D518	DF518	518	② F518	5/16-18 NC-3

MINIMUM E NOT SPECIFIED. LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.

INACTIVE FOR DESIGN AFTER 14 APR 1949. NO SUPERSEDING AN STANDARD. 2 2

FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTE SEE ANA BULLETIN NO. 337.

SELF LOCKING PLATE NUTS: SHAPE OF TOP OPTIONAL TO SUIT LOCKING METHOD.

NUTS MAY BE MADE OF SHEET METAL.

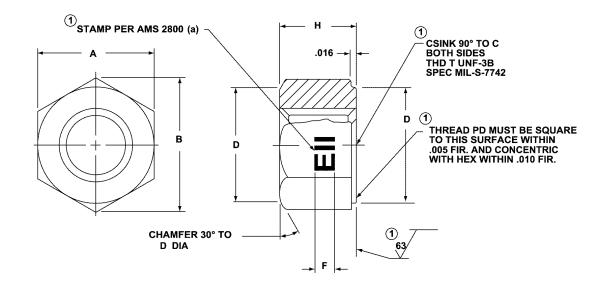
NUTS FOR USE BY WELDING TO BE MADE OF CORROSION RESISTING STEEL AND WITHOUT RIVET HOLES. SPACING OF WELDING PROJECTIONS MUST BE EQUAL TO DIMENSION J.

PLAIN PLATE NUTS, MATERIAL AND FINISH:
STEEL, SPECIFICATION AN-S-11 OR SPECIFICATION AN-QQ-S-646, CADMIUM PLATE, SPECIFICATION AN-P-61 OR ZINC PLATE,

SPECIFICATION AN-F-32.
ALUMINUM ALLOY, SPECIFICATION QQ-A-351 RO QQ-A-355, TENSILE STRENGTH 55000 PSI. ANODIZE, SPECIFICATION AN-QQ-A-696, REQUIREMENTS ON MATERIAL AND DIMENSIONS G AND H WAIVERED IF PLAIN PLATE NUT MEETS THE TENSILE STRENGTH REQUIREMENT 2 FOR CORRESPONDING SIZE OF SELF LOCKING PLATE NUT.

ADD WC BEFORE PLAIN STEEL DASH NUMBERS FOR CORROSION RESISTING STEEL SELF LOCKING NUTS FOR USE BY WELDING.

EXAMPLES OF PART NUMBERS: AN367DF836 = NO. 8-36 SELF LOCKING ALUMINUM ALLOY PLATE NUT.


AN367 -836 = NO. 8-36 PLAIN STEEL PLATE NUT.

AN367WC836 = NO. 8-36 SELF LOCKING CORROSION RESISTING STEEL PLATE NUT FOR BY WELDING.

② DIMENSIONS IN INCHES, UNLESS OTHERWISE SPECIFIED, TOLERANCES: FRACTIONS ±1/64, DECIMAL ±.010, ANGLES ±1/2. THREADS IN ACCORDANCE WITH AN-S-126.

FOR INSTALLATION INSTRUCTIONS SEE DRAWING AND10068.

Figure 5-82. Drawing AN367

		A	_			D F			APPROX WT	
THD T	MIN	MAX	B MIN	С	D			н	LBS/100	PART NO.
.190 (NO.10) -32 .250-28 .3125-24 .375-24 (b) .4375-20 .500-20	.367 .430 .492 .553 .616 .741	.376 .439 .502 .564 .627 .752	.419 .491 .561 .631 .703	.200 .260 .322 .385 .448 .510	.375 .438 .500 .562 .625 .750	.060 .060 .120 .120 .120 .120	±.020 ±.020 ±.030 ±.030 ±.030 ±.030	.156 .219 .266 .328 .375 .438	0.40 0.80 1.10 1.60 2.20 3.90	AN121501 AN121502 AN121503 AN121504 AN121505 AN121506
.5625-18 .625-18 .750-16 .875-14 1.000-12 .4375-20	.865 .928 1.052 1.239 1.427 .679	.877 .940 1.064 1.252 1.440 .690	.987 1.059 1.200 1.414 1.628	.572 .635 .760 .885 1.010 .448	.875 .938 1.062 1.250 1.438 .688	.120 .120 .120 .120 .120 .120	±.030 ±.030 ±.030 ±.030 ±.030 ±.030	.484 .547 .656 .766 .875 .375	6.10 7.60 10.80 13.90 17.00 2.40	AN121507 AN121508 AN121509 AN121510 AN121511 AN121512

- (a) IN MULTIPLE MARKING OF BAR STOCK, DUPLICATION OF WHOLE OR PART OF SYMBOL OR OFFSET OR SYMBOL SUCH THAT UPPER PORTION APPEARS BELOW LOWER PORTION ON FINISHED PART IS PERMISSIBLE PROVIDED POSITIVE IDENTIFICATION IS SHOWN. PARTS MUST BE MARKED BEFORE THREADING.
- 1 MATERIAL: STEEL AMS 6322

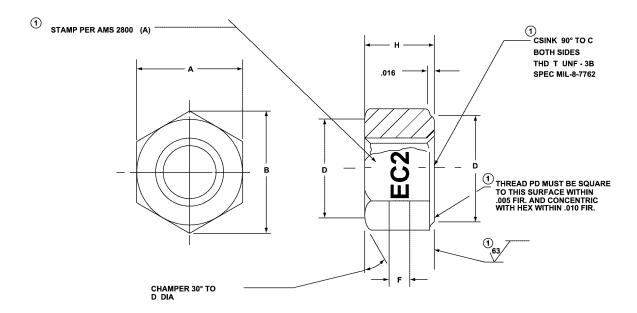
SURFACE ROUGHNESS: AS 107

HARDNESS: ROCKWELL C19-26. PARTS MUST BE HARDENED (OIL QUENCHED) AND TEMPERED BEFORE THREADING.

FINISH: CADMIUM PLATE AMS 2400

PARTS SUBJECT TO MAGNETIC INSPECTION PER AMS 2640

BREAK SHARP EDGES .003-.015 UNLESS OTHERWISE SPECIFIED.


① DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED: TOLERANCES; LINEAR DIMENSIONS ±.010, ANGULAR DIMENSIONS ±5°.

DO NOT USE UNASSIGNED PART NUMBERS

(b) PART NO. AN121505 INACTIVE FOR DESIGN AFTER 5 MARCH 55. USE AN121512 For definition and application of drawing status notes, see ANA Bullet No. 337

THIS STANDARD WAS DEVELOPED COOPERATIVELY WITH THE ENGINE AND PROPELLER STANDARD PARTS COMMITTEE OF THE SAE.

Figure 5-83. Drawing AN121501 thru AN121525

1

			В						APPROX WT	
THD T	MIN	MAX	MIN	С	D		F	н	LBS/100	PART NO.
.190 (NO. 10) -32	.367	.376	.419	.200	.375	.060	±.020	.156	0.50	AN121526
.250-28	.430	.439	.491	.260	.438	.060	±.020	.219	0.71	AN121527
.3125-24	.492	.502	.561	.322	.500	.120	±.030	.266	1.00	AN121528
.375-24	.553	.564	.633	.385	.562	.120	±.030	.328	1.65	AN121529
(b) .4375-20	.616	.627	.703	.448	.625	.120	±.030	.375	2.20	AN121530
.500-20	.741	.752	.846	.510	.750	.120	±.030	.438	3.70	AN121531
.5625-18	.865	.877	.987	.572	.875	.120	±.030	.484	6.10	AN121532
.625-18	.928	.940	1.059	.635	.938	.120	±.030	.547	7.50	AN121533
.750-16	1.032	1.064	1.200	.760	1.062	.120	±.030	.656	10.80	AN121534
.875-14	1.239	1.252	1.414	.885	1.250	.120	±.030	.766	13.90	AN121535
1.000-12	1.427	1.440	1.628	1.010	1.438	.120	±.030	.875	17.00	AN121536
.4375-20	.679	.775	.775	.448	.688	.120	±.030	.375	2.40	AN121537
	1									

(a) IN MULTIPLE MARKING OF BAR, STOCK, DUPLICATION OF WHOLE OR PART OF SYMBOL OR, OFFSET OF SYMBOL SUCH THAT UPPER PORTION APPEARS BELOW LOWER PORTION ON FINISHED PART IS PERMISSIBLE PROVIDED POSITIVE IDENTIFICATION IS SHOWN. PART MUST BE MARKED BEFORE THREADING.

MATERIAL: CORROSION RESISTANT STEEL ANS 5628

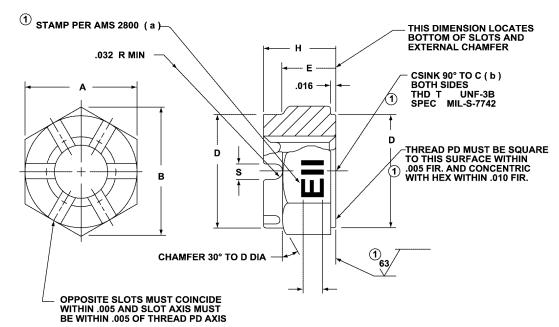
SURFACE ROUGHNESS: AS 107

CLEANING: FINISHED PERTS SHALL BE DEGREASED FOR NOT LESS THAN 20 MINUTES IN A SOLUTION OF 1 VOLUME OF NITRIC ACID (SP OR 1.42) AND 9 VOLUMES OF WATER AT ROOM TEMPERATURE

PARTS SUBJECT TO MAGNETIC INSPECTION PER ANS 2640

BREAK SHARP EDGES .003-.015 UNLESS OTHERWISE SPECIFIED.

DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED: TOLERANCES: LINEAR DIMENSIONS .010 ANGULAR DIMENSIONS 50.


DO NOT USE UNASSIGNED PART NUMBERS.

(b) PART NUMBER AN121530 INACTIVE FOR DESIGN AFTER 25 MAR 55. USE AN 121537. FOR DEFINITION AND APPLICATION OF DRAWING STATUS NOTES, SEE ANA BULLETIN NO. 337

THIS STANDARD WAS DEVELOPED COOPERATIVELY WITH THE ENGINE AND PROPELLER STANDARD PARTS COMMITTEE OF THE SAE.

Figure 5-84. Drawing 121526 thru 121550

(1)

		В									APPROX WT	
MIN	MAX	MIN	С	D	E	l	F	Н		S	LBS/100	PART NO
.367	.376	.419	.200	.375	.156	.060	±.020	.250	.078	+.010 005	0.50	AN121551
.430	.439	.491	.260	.438	.188	.060	±.020	.262	.078	+.010 005	0.80	AN121552
.492	.502	.561	.322	.500	.234	.120	±.030	.328	.078	+.010 005	1.20	AN121553
.553 .616	.564 .627	.631 .703	.385 .448	.562 .625	.281 .328	.120 .120	±.030 ±.030	.406 .454		.125 .125	1.70 2.30	AN121554 AN121555
.741 .865	.752 .877	.846 .987	.510 .572	.750 .875	.375 .422	.120 .120	±.030 ±.030	.562 .610		.125 .156	4.20 6.50	AN121556 AN121557
.928 1.052	.940 1.064	1.059 1.200	.635 .760	.938 1.062	.468 .562	.120 .120	±.030 ±.030	.718 .812		.156 .156	8.30 11.50	AN121558 AN121559
1.239 1.427	1.252 1.440	1.414 1.628	.885 1.010	1.250 1.438	.656 .750	.120 .120	±.030 ±.030	.906 1.000		.156 .156	14.30 17.70	AN121560 AN121561 AN121562
111	.367 .430 .492 .553 .616 .741 .865 .928 .052 .239	.367 .376 .430 .439 .492 .502 .553 .564 .616 .627 .741 .752 .865 .877 .928 .940 .052 1.064 .239 1.252 .427 1.440	.367 .376 .419 .430 .439 .491 .492 .502 .561 .553 .564 .631 .616 .627 .703 .741 .752 .846 .865 .877 .987 .928 .940 1.059 .052 1.064 1.200 .239 1.252 1.414 .427 1.440 1.628	.367 .376 .419 .200 .430 .439 .491 .260 .492 .502 .561 .322 .553 .564 .631 .385 .616 .627 .703 .448 .741 .752 .846 .510 .865 .877 .987 .572 .928 .940 .1.059 .635 .052 .1.064 .1.200 .760 .239 .1.252 .1.414 .885 .427 .1.440 .1.628 1.010	.367 .376 .419 .200 .375 .430 .439 .491 .260 .438 .492 .502 .561 .322 .500 .553 .564 .631 .385 .562 .616 .627 .703 .448 .625 .741 .752 .846 .510 .750 .865 .877 .987 .572 .875 .928 .940 1.059 .635 .938 .052 1.064 1.200 .760 1.062 .239 1.252 1.414 .885 1.250 .427 1.440 1.628 1.010 1.438	.367 .376 .419 .200 .375 .156 .430 .439 .491 .260 .438 .188 .492 .502 .561 .322 .500 .234 .553 .564 .631 .385 .562 .281 .616 .627 .703 .448 .625 .328 .741 .752 .846 .510 .750 .375 .865 .877 .987 .572 .875 .422 .928 .940 1.059 .635 .938 .468 .052 1.064 1.200 .760 1.062 .562 .239 1.252 1.414 .885 1.250 .656 .427 1.440 1.628 1.010 1.438 .750	.367 .376 .419 .200 .375 .156 .060 .430 .439 .491 .260 .438 .188 .060 .492 .502 .561 .322 .500 .234 .120 .553 .564 .631 .385 .562 .281 .120 .516 .627 .703 .448 .625 .328 .120 .741 .752 .846 .510 .750 .375 .120 .865 .877 .987 .572 .875 .422 .120 .928 .940 1.059 .635 .938 .468 .120 .052 .1064 .1200 .760 .1.062 .562 .120 .239 .1.252 .1414 .885 .1.250 .656 .120 .427 .1.440 .1.628 .1.010 .1.438 .750 .120	.367 .376 .419 .200 .375 .156 .060 ±.020 .430 .439 .491 .260 .438 .188 .060 ±.020 .492 .502 .561 .322 .500 .234 .120 ±.030 .553 .564 .631 .385 .562 .281 .120 ±.030 .616 .627 .703 .448 .625 .328 .120 ±.030 .741 .752 .846 .510 .750 .375 .120 ±.030 .865 .877 .987 .572 .875 .422 .120 ±.030 .928 .940 1.059 .635 .938 .468 .120 ±.030 .052 1.064 1.200 .760 1.062 .562 .120 ±.030 .239 1.252 1.414 .885 1.250 .656 .120 ±.030 .427 1.440 1.628 1.010 1.438 .750 .120 ±.030	.367 .376 .419 .200 .375 .156 .060 ±.020 .250 .430 .439 .491 .260 .438 .188 .060 ±.020 .262 .492 .502 .561 .322 .500 .234 .120 ±.030 .328 .553 .564 .631 .385 .562 .281 .120 ±.030 .406 .616 .627 .703 .448 .625 .328 .120 ±.030 .454 .741 .752 .846 .510 .750 .375 .120 ±.030 .562 .865 .877 .987 .572 .875 .422 .120 ±.030 .610 .928 .940 1.059 .635 .938 .468 .120 ±.030 .718 .052 1.064 1.200 .760 1.062 .562 .120 ±.030 .812 .239 1.252 1.414 .885 1.250 .656 .120 ±.030 .906 .427 1.440 1.628 1.010 1.438 .750 .120 ±.030 1.000	.367 .376 .419 .200 .375 .156 .060 ±.020 .250 .078 .430 .439 .491 .260 .438 .188 .060 ±.020 .262 .078 .492 .502 .561 .322 .500 .234 .120 ±.030 .328 .078 .553 .564 .631 .385 .562 .281 .120 ±.030 .406 .616 .627 .703 .448 .625 .328 .120 ±.030 .454 .741 .752 .846 .510 .750 .375 .120 ±.030 .562 .865 .877 .987 .572 .875 .422 .120 ±.030 .610 .928 .940 1.059 .635 .938 .468 .120 ±.030 .718 .052 1.064 1.200 .760 1.062 .562 .120 ±.030 .812 .239 1.252 1.414 .885 1.250 .656 .120 ±.030 .906 .427 1.440 1.628 1.010 1.438 .750 .120 ±.030 1.000	.367 .376 .419 .200 .375 .156 .060 ±.020 .250 .078 +.010 .005 .005 .430 .439 .491 .260 .438 .188 .060 ±.020 .262 .078 +.010 .005 .492 .502 .561 .322 .500 .234 .120 ±.030 .328 .078 +.010 .005 .553 .564 .631 .385 .562 .281 .120 ±.030 .406 .125 .005 .553 .564 .631 .385 .562 .281 .120 ±.030 .406 .125 .616 .627 .703 .448 .625 .328 .120 ±.030 .454 .125 .741 .752 .846 .510 .750 .375 .120 ±.030 .562 .125 .865 .877 .987 .572 .875 .422 .120 ±.030 .610 .156 .928 .940 .1.059 .635 .938 .468 .120 ±.030 .718 .156 .052 .1.064 .1.200 .760 .1.062 .562 .120 ±.030 .812 .156 .239 .1.252 .1.414 .885 .1.250 .656 .120 ±.030 .906 .156 .427 .1.440 .1.628 .1.010 .1.438 .750 .120 ±.030 .906 .1.56	.367 .376 .419 .200 .375 .156 .060 ±.020 .250 .078 +.010 0.50 .430 .439 .491 .260 .438 .188 .060 ±.020 .262 .078 +.010 0.80 .492 .502 .561 .322 .500 .234 .120 ±.030 .328 .078 +.010 1.20 .553 .564 .631 .385 .562 .281 .120 ±.030 .406 .125 1.70 .553 .564 .631 .385 .562 .281 .120 ±.030 .406 .125 1.70 .616 .627 .703 .448 .625 .328 .120 ±.030 .454 .125 2.30 .741 .752 .846 .510 .750 .375 .120 ±.030 .562 .125 4.20 .865 .877 .987 .572 .875 .422 .120 ±.030 .510 .156 .550 .928 .940 1.059 .635 .938 .468 .120 ±.030 .510 .156 .50 .928 .940 1.059 .635 .938 .468 .120 ±.030 .812 .156 .150 .052 1.064 1.200 .760 1.062 .562 .120 ±.030 .812 .156 11.50 .239 1.252 1.414 .885 1.250 .656 .120 ±.030 .812 .156 11.50 .427 1.440 1.628 1.010 1.438 .750 .120 ±.030 1.000 .156 17.70

(a) IN MULTIPLE MARKING OF BAR STOCK, DUPLICATION OF WHOLE OR PART OF SYMBOL OR OFFSET OF SYMBOL SUCH THAT UPPER PORTION APPEARS BELOW LOWER PORTION ON FINISHED PART IS PERMISSIBLE PROVIDED POSITIVE IDENTIFICATION IS SHOWN. PARTS MUST BE

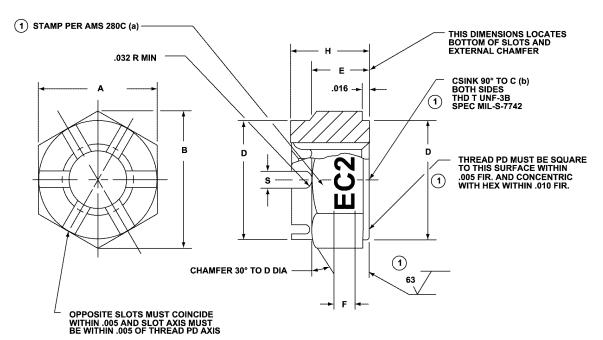
- MARKED BEFORE THREADING.
 (b) FOR SIZES .3125-24 AND SMALLER C DRILL "C" DIA FROM OPPOSITE END TO DEPTH OF SLOT.
- ① MATERIAL: STEEL AMS 6322 SURFACE ROUGHNESS: AS 107

HARDNESS: ROCKWELL C19-26. PARTS MUST BE HARDENED (OIL QUENCHED) AND TEMPERED BEFORE THREADING.

FINISH: CADMIUM PLATE AMS 2400

PARTS SUBJECT TO MAGNETIC INSPECTION PER AMS 2640.

BREAK SHARP EDGES .003-.015 UNLESS OTHERWISE SPECIFIED.


① DIMENSIONS IN INCHES, UNLESS OTHERWISE SPECIFIED: TOLERANCES; LINEAR DIMENSION \pm .010. ANGULAR DIMENSIONS \pm 5°.

DO NOT USE UNASSIGNED PART NUMBERS.

(c) PART NO. AN121556 INACTIVE FOR DESIGN AFTER MARCH 1955. USE AN121562 For definition and application of drawing status notes see ANA Bulletin No. 337.

THIS STANDARD WAS DEVELOPED COOPERATIVELY WITH THE ENGINE AND PROPELLER STANDARD PARTS COMMITTEE OF THE SAE.

Figure 5-85. Drawing AN121551 thru AN121575

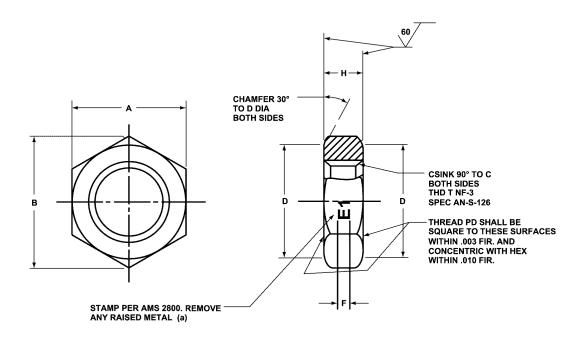
1	BE !	WITHIN .005	OF THREA	D PD AXIS									
тно т	MIN	A MAX	B MIN	С	D	E		F	н		s	APPROX WT LBS/100	PART NO.
.190 (NO .10) -32 .250-28 .3125-24 .375-24 (c) .4375-20 .500-20 .5625-18 .625-18 .750-16 .875-14 1.000-12	.367 .430 .492 .553 .616 .741 .865 .928 1.052 1.239 1.427 .679	.376 .439 .502 .564 .627 .752 .877 .940 1.064 1.252 1.440	.419 .491 .561 .633 .703 .846 .987 1.059 1.200 1.414 1.628	.200 .260 .322 .385 .448 .510 .572 .635 .765 .785 .785 .1010	.375 .438 .500 .562 .750 .875 .938 1.062 1.250 1.438 .688	.156 .188 .234 .281 .328 .375 .422 .468 .562 .656 .750 .328	.060 .060 .120 .120 .120 .120 .120 .120 .120 .12	+.020 +.020 +.030 +.030 +.030 +.030 +.030 +.030 +.030 +.030 +.030	.250 .282 .328 .406 .454 .562 .610 .718 .812 .906 1.000	.078 .078 .078	+.010 005 +.010 005 +.010 005 005 .125 .125 .125 .156 .156 .156 .156	0.50 0.80 1.20 1.70 2.30 4.20 6.50 8.30 11.50 14.30 17.70 2.20	AN121576 AN121577 AN121578 AN121579 AN121580 AN121581 AN121582 AN121583 AN121584 AN121585 AN121586 AN121587

- (a) IN MULTIPLE MARKING OF BAR STOCK, DUPLICATION OF WHOLE OR PART OF SYMBOL OR OFFSET OF SYMBOL SUCH THAT UPPER PORTION APPEARS BELOW LOWER PORTION ON FINISHED PART IS PRESIDED. PROVIDED POSITIVE IDENTIFICATION IS SHOWN. PARTS MUST BE MARKED DESCRIPTION OF THE PART OF THE PART OF T
- 1 BEFORE THREADING.
 (b) FOR SIZES .3125-24 AND SMALLER C DRILL "C" DIA FROM OPPOSITE END TO DEPTH OF SLOT.

MATERIAL: CORROSION RESISTANT STEEL AMS 5628

SURFACE ROUGHNESS: AS 107

CLEANING: FINISHED PARTS SHALL BE DEGREASED AND IMMERSED FOR NOT LESS THAN 20 MINUTES IN A SOLUTION OF 1 VOLUME OF NITRIC ACID (SP GR 1.42) AND 9 VOLUMES OF WATER AT ROOM TEMPERATURE.


PARTS SUBJECT TO MAGNETIC INSPECTION PER AMS 2640.

BREAK SHARP EDGES .003-.015 UNLESS OTHERWISE SPECIFIED.

- DIMENSIONS IN INCHES, UNLESS OTHERWISE SPECIFIED: TOLERANCES; LINEAR DIMENSION ±.010. ANGULAR DIMENSIONS ± 5°.
 - DO NOT USE UNASSIGNED PART NUMBERS.
- (c) PART NO. AN121580 INACTIVE FOR DESIGN AFTER 25 MARCH 1955. USE AN121587 For definition and application of drawing status notes see ANA Bulletin No. 337.

THIS STANDARD WAS DEVELOPED COOPERATIVELY WITH THE ENGINE AND PROPELLER STANDARD PARTS COMMITTEE OF THE SAE.

Figure 5-86. Drawing AN121576 thru AN121600

.420 .491 .562	.200 .260 .322	.375 .438 .500	.060± .020 .060± .020 .060± .020	.125 .125 .156	AN150407 AN150408 AN150409
.562	.322				1
622					
.633 .705	.385 .448	.562 .625	.120± .030 .120± .030	.188 .219	AN150410 AN150411
.847	.510	.750	.120± .030	.250	AN150412
.990 1.061 1.203	.572 .635 .760	.875 .938 1.062	.120± .030 .120± .030 .120± .030	.281 .312 .375	AN150413 AN150414 AN150415
	.847 .990 1.061	.847 .510 .990 .572 1.061 .635	.847 .510 .750 .990 .572 .875 1.061 .635 .938	.847 .510 .750 .120± .030 .990 .572 .875 .120± .030 1.061 .635 .938 .120± .030	.847 .510 .750 .120± .030 .250 .990 .572 .875 .120± .030 .281 1.061 .635 .938 .120± .030 .312

(a) IN MULTIPLE MARKING OF BAR STOCK, DUPLICATION OF WHOLE OR PART OF SYMBOL OR OFFSET OF SYMBOL SUCH THAT UPPER PORTION APPEARS BELOW LOWER PORTION ON FINISHED PART IS PERMISSIBLE PROVIDED POSITIVE IDENTIFICATION IS SHOWN. PARTS SHALL BE MARKED BEFORE THREADING.

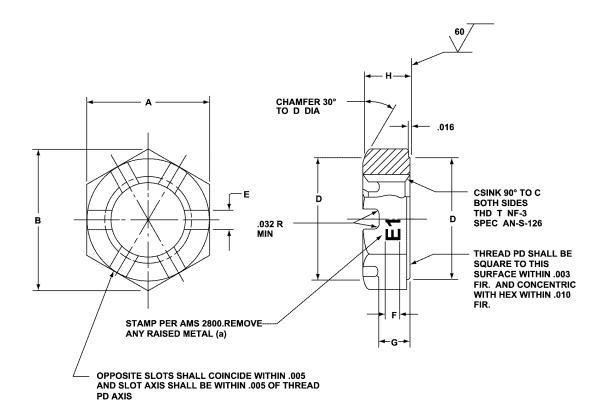
MATERIAL: STEEL AMS 6320 OR AMS 6325

HARDNESS: ROCKWELL C19-26, PARTS SHALL BE HARDENED (OIL QUENCHED) AND TEMPERED BEFORE THREADING.

FINISH: CADMIUM PLATE AMS 2400
SURFACE ROUGHNESS: AS 107

PARTS SUBJECT TO MAGNETIC INSPECTION PER AMS 2640.

BREAK SHARP EDGES .003 - .015 UNLESS OTHERWISE SPECIFIED.


DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED: TOLERANCES; LINEAR DIMENSIONS ±.010,

ANGULAR DIMENSIONS ±2°.

DO NOT USE UNASSIGNED PART NUMBERS.

THIS STANDARD WAS DEVELOPED COOPERATIVELY WITH THE ENGINE AND PROPELLER STANDARD PARTS COMMITTEE OF THE SAE.

Figure 5-87. Drawing AN150401 thru AN150425

THREAD T	A + .002 007	B MIN	C DIA	D DIA	В	F	G	н	PART NO.
.190 (NO. 10) - 32 .250-28 .3125-24 .375-24 .4375-20 .500-20 .5625-18 .625-18	.375 .437 .500 .562 .625 .750 .875 .938 1.062	.420 .491 .562 .633 .705 .847 .990 1.061 1.203	.200 .260 .322 .385 .448 .510 .572 .635	.375 .438 .500 .562 .625 .750 .875 .938 1.062	.078 +.010 .005 +.010 .078005 .078005 .078005 .125 .125 .125 .125 .156 .156	.060± .020 .060± .020 .060± .020 .060± .020 .060± .020 .060± .020 .120± .030 .120± .030 .120± .030	.094 .094 .094 .109 .109 .141 .188 .188	.188 .188 .188 .219 .219 .250 .312 .375	AN150432 AN150433 AN150434 AN150435 AN150436 AN150437 AN150438 AN150439 AN150440

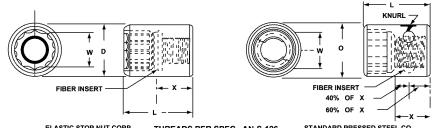
(a) IN MULTIPLE MARKING OF BAR STOCK, DUPLICATION OF WHOLE OR PART OF SYMBOL OR OFFSET OF SYMBOL SUCH THAT UPPER PORTION APPEARS BELOW LOWER PORTION ON FINISHED PART IS PERMISSIBLE PROVIDED POSITIVE IDENTIFICATION IS SHOWN. PARTS SHALL BE MARKED BEFORE THREADING.

MATERIAL: STEEL AMS 6320 OR AMS 6325

HARDNESS: ROCKWELL C19-26. PARTS SHALL BE HARDENED (OIL QUENCHED) AND TEMPERED BEFORE THREADING.

FINISH: CADMIUM PLATE AMS 2400 SURFACE ROUGHNESS: AS 107

PARTS SUBJECT TO MAGNETIC INSPECTION PER AMS 2640.


BREAKSHARP EDGES .003-.015 UNLESS OTHERWISE SPECIFIED.

DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED: TOLERANCES LINEAR DIMENSIONS $\pm .010$, ANGULAR DIMENSIONS $\pm 2^{\circ}$.

DO NOT USE UNASSIGNED PART NUMBERS.

THIS STANDARD WAS DEVELOPED COOPERATIVELY WITH THE ENGINE AND PROPELLER STANDARD PARTS COMMITTEE OF THE SAE.

Figure 5-88. Drawing AN150426 thru AN150450

	<u> </u>	ASTIC STOP NUT CORP.	THREADS PER SPE	J. AN-0-120	·		SED STEEL C		
MANUFACT	·	- NAS	THREAD				W		MIN. TENSILE
NAME	PART NO.	NO.	SIZE	D	L	MIN.	MAX.	K	STRENGTH (LBS.)
ELASTIC	12B-048					.378	.382	.297	
STD. PRD. STL.	UIWN-04	NAS-443-4	1/4 - 28 NF-3	.531	.656	.070	.002	.344	5,950
STD. PRD. STL.	UWN-428					.375	.379		
ELASTIC	12B-054					.440	.445		
STD. PRD. STL.	-UIWN-05	NAS-443-5	5/16 - 24 NF-3	.593	.750			.375	9,610
STD. PRD. STL.	UWN-524					.4375	.442		
ELASTIC	12B-064	_				.503	.509		
STD. PRD. STL.	-UIWN-06-	NAS-443-6	3/8 - 24 NF-3	.687	.875			.406	14,750
STD. PRD. STL.	UWN-624					.500	.5045		
ELASTIC	12B-070					.565	.571		
STD. PRD. STL.	UIWN-07	NAS-443-7	7/16 - 20 NF-3	.781	1.000			.516	19,800
STD. PRD. STL.	UWN-720					.5625	.568		
ELASTIC	12B-080					.628	.635		
STD. PRD. STL.	UIWN-08	NAS-443-8	1/2 - 20 NF-3	.875	1.094			.547	27,100
STD. PRD. STL.	UWN-820					.625	.631		
ELASTIC	12B-098					.690	.697	.594	
STD. PRD. STL.	-UIWN-09-	NAS-443-9 9/16 - 18 NF-3	.968	1.187			.656	34,500	
STD. PRD. STL.	UWN-918					.6875	.694		
ELASTIC	12B-108	_				.753	.761		
STD. PRD. STL.	-UIWN-10-	NAS-443-10	5/8 - 18 NF-3	1.062	1.281			.656	43,800
STD. PRD. STL.	UWN-1018		***************************************			.750	.757		
ELASTIC	12B-126					.878	.886	.750	
STD. PRD. STL.	UIWN-12	NAS-443-12	3/4 - 16 NF-3	1.250	1.468			.812	64,100
STD. PRD. STL.	UWN-1216					.875	.884		
ELASTIC	12B-144					1.003	1.012		
STD. PRD. STL.	-UIWN-14-	NAS-443-14	7/8 - 14 NF-3	1.437	1.625			.875	87,600
STD. PRD. STL.	UWN-1414					1.000	1.014		
ELASTIC	12B-164					1.128	1.138		
STD. PRD. STL.	UIWN-16	NAS-443-16	1 - 14 NF-3	1.625	1.843			1.031	117,900
STD. PRD. STL.	UWN-1614					1.125	1.139		
ELASTIC	12B-182				2.140	1.315	1.327	1.141	
STD. PRD. STL.	UIWN-18	NAS-443-18	1 - 1/8 - 12 N-3	1.875	2.125			1.125	145,600
STD. PRD. STL.	UWN-1812					1.3125	1.327		
STD. PRD. STL.	UIWN-20	NAS-443-20	1 - 1/4 - 12 N-3	2.125	2.437			4.050	497.000
STD. PRD. STL.	UWN-2012	1440-443-20	1 - 1/4 - 12 14-3	2.120	2.437	1.4375	1.453	1.250	187,000

PROCUREMENT:

ELASTIC STOP NUT CORP., UNION, NEW JERSEY
STANDARD PRESSED STEEL CO., JENKINTOWN, PENN. (DRAWING NO. 16499)
SIMILAR ITEMS OF COMPARABLE FUNCTION MUST BE APPROVED PRIDE TO USE ON AIRCRAFT IN LIEU OF TEMS SHOWN HEREON.

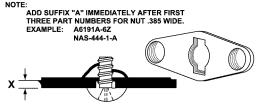
ENGINEERING INFORMATION:

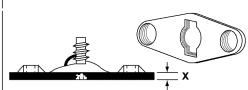
ITEMS CROSSED OF INACTIVE FOR NEW DESIGN.

ITEMS CROSSED OF INACTIVE FOR NEW DESIGN.
FOR RESTRICTIONS ON USE OF SELF-LOCKING NUTS SEE AND10068.
PROCUREMENT SPECIFICATION: AN-N-5 EXCEPT AS NOTED.

MATERIAL: 2330 STEEL, SPEC AN-QQ-S-689; NE-9430, STEEL, SPEC 57-107; NE-8630 STEEL, SPEC AN-S-14; NE-8740 STEEL, SPEC AN-8-16; OR 4340 STEEL, SPEC AN-QQ-S-756.

HEAT TREAT: 125,000 - 145,000 PSI SPEC AN-QQ-H-201.
COMMERCIAL PART CODE: 128-048 = NUT, INTERNAL WRENCHING, 1/4-28; L = 656.
NAS PART CODE: NAS-443-4 = NUT, INTERNAL WRENCHING, 1/4-29; L = 656.
FINISH: CADMIUM PLATE PER SPEC AN-P-61; OR ZINC PLATE PER SPEC AN-P-32.


1 INACTIVE FOR NEW DESIGN


Figure 5-89. Drawing NAS-443

TINNERMAN NO.	NAS NO.	TYPE	SCREW NO.	MATERIAL THICKNESS
A6191-6Z	NAS-444-1	Α		
A6195-6Z	NAS-444-2	В	AN530-6	.022
A6192-6Z	NAS-444-3	С		(.025 SS)
A6191-6Z	NAS-444-4	А		
A6195-6Z	NAS-444-5	В	AN530-8	.025 (.028 SS)
A6192-6Z	NAS-444-6	С		, ,
A6191-10Z	NAS-444-7	Α		
A6195-10Z	NAS-444-8	В	AN530-10	.028 (.031 SS)
A6192-10Z	NAS-444-9	С		(.001 00)

TINNERMAN NO.	NAS NO.	TYPE	MATERIAL THICKNESS
A6203-6Z	NAS-444-10	A-1	
A6162-6Z	NAS-444-11	B-1	.022
A6164-6Z	NAS-444-12	C-1	(.025 SS)
A6203-8Z	NAS-444-13	A-1	
A6162-8Z	NAS-444-14	B-1	.025 (.028 SS)
A6164-8Z	NAS-444-15	C-1	
A6203-10Z	NAS-444-16	A-1	
A6162-10Z	NAS-444-17	B-1	.028 (.031 SS)
A6164-10Z	NAS-444-18	C-1	(.501 00)

PROCUREMENT: TINNERMAN PRODUCTS, INC., CLEVELAND, OHIO.

SIMILAR ITEMS OF COMPARABLE FUNCTION MUST BE EQUIVALENT PRIDE TO USE ON AIRCRAFT IN LIEU OF

ITEMS SHOWN HEREON.

ENGINEERING INFORMATION:
PROCUREMENT SPECIFICATION: AAF25:
SCREW LENGTH: * * * * * * * * * * * * *

(TYPE A, B, C, 6Z, X PLUS 1/4"; 8% & 10Z, X PLUS 5/16".

(TYPE A-1, B-1, C-1, 6Z, X PLUS 5/16"; 8Z & 10Z, X PLUS 3/8".

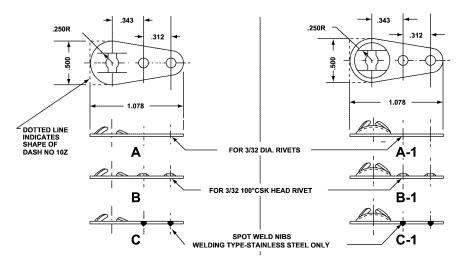
THE DOUBLE LUG ANCHOR TYPE NUT IS TO BE USED WHENEVER POSSIBLE IN APPLICATIONS THAT ARE NOT STRUCTURAL OR SUBJECT

TO EXCESSIVE VIBRATION. FOR ADDITIONAL SIZES AND SHAPES CONSULT THE STANDARDS UNIT.

MATERIAL: SAE 1060 STEEL OR STAINLESS STEEL.

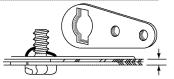
SUFFIXES: ADD SUFFIX "SS" FOR STAINLESS STEEL (EXAMPLE: A6191SS-6Z; NAS-444-1-SS).

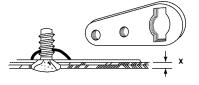
ADD SUFFIX "C" FOR RIVET HOLES FOR 1/8" DIA RIVETS (EXAMPLE: A6191-6Z-C; NAS-444-1-C). COMMERCIAL PART CODE: A6191-6Z = DOUBLE LUG ANCHOR TYPE SPEED NUT .968 LONG, .468 WIDE.


NAS PART CODE: NAS-444-1 = DOUBLE LUG ANCHOR TYPE SPEED NUT .968 LONG, .468 WIDE.

FINISH: SAE 1060 STEEL = METALLIC SPRAY (ZINC), AN-N-6

STAINLESS STEEL. NONE.


INACTIVE FOR NEW DESIGN


Figure 5-90. Drawing NAS-444

TINNERMAN NO.	NAS NO.	TYPE	MATERIAL THICKNESS		
A6194-6Z	NAS-445-1	А			
A6196-6Z	-2	В	.022 (.025 SS)		
A6193-6Z	-3	С	,		
A6194-8Z	-4	Α			
A6196-8Z	-5	В	.025 (.028 SS)		
A6193-8Z	-6	С			
A6194-10Z	-7	А			
A6196-10Z	-8	В	.028 (.031 SS)		
A6193-10Z	NAS-445-9	С	, ,,,,,		

TINNERMAN NO.	NAS NO.	TYPE	MATERIAL THICKNESS
A6204-6Z	NAS-445-10	A-1	
A6163-6Z	-11	B-1	.022 (.025 SS)
A6165-6Z	-12	C-1	
A6204-8Z	-13	A-1	
A6163-8Z	-14	B-1	.025 (.028 SS)
A6165-8Z	-15	C-1	
A6204-10Z	-16	A-1	
A6163-10Z	-17	B-1	.028 (.031 SS)
A6165-10Z	NAS-445-18	C-1	

PROCUREMENT:

TINNERMAN PRODUCTS, INC., CLEVELAND, OHIO. SIMILAR ITEMS OF COMPARABLE FUNCTION MUST BE EQUIVALENT PRIOR TO USE ON AIRCRAFT IN LIEU OF ITEMS

SHOWN HEREON.

ENGINEERING INFORMATION: PROCUREMENT SPECIFICATION:

AAF25533

(TYPE A-1, B-1, C-1; 6Z, X PLUS 5/16"; 8Z & 10Z X PLUS 3/8".

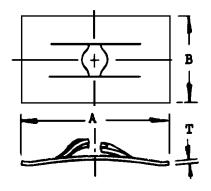
THIS OFFSET ANCHOR TYPE SPEED NUT IS TO BE USED WHENEVER POSSIBLE IN APPLICATIONS THAT ARE NOT STRUCTURAL OR SUBJECT TO EXCESSIVE VIBRATION.

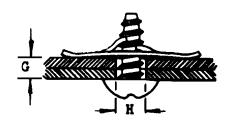
FOR ADDITIONAL SIZES AND SHAPES CONSULT THE STANDARDS UNIT.

MATERIAL: SAE 1060 STEEL OR STAINLESS STEEL.

SUFFIXES: ADD SUFFIX "SS" FOR STAINLESS STEEL (EXAMPLE: A6194SS-6Z, NAS-445-1-SS).

ADD SUFFIX "C" FOR RIVET HOLES FOR 1/8" DIA RIVETS (EXAMPLE: A6194-6Z-C; NAS-445-1-C). COMMERCIAL PART CODE: A6194-6Z = OFFSET ANCHOR TYPE SPEED NUT 1.078 LONG, .500 WIDE.


NAS PART CODE: NAS-445-1 = OFFSET ANCHOR TYPE SPEED NUT 1.078 LONG, 500 WIDE.
FINISH: SAE 1060 STEEL = METALLIC SPRAY (ZINC) AN-N-8


STAINLESS STEEL = NONE

EXAMPLE OF CALL-OUT:

A6194-6Z	NUT - OFFSET ANCHOR TYPE NAS-445-1			TINNERMAN PRODUCTS, IN (OR EQUI	
PART NUMBER (OPTIONAL)	NAME OF PART NAS PART NUMBER	ZONE CODE	SIZE - GAGE SEC NO.	MATERIAL	н. т.

Figure 5-91. Drawing NAS-445

TYPICAL INSTALLATION

BASIC				Inst	ALLATION DA	T A	MI
PART	A	В	T	SCR	E W (a)	H	LBS
NUMBER			±.002	CTOS	16 (167)	HOLE	PER
				SIZE	IG (MIN)	DIA	1000
NAS446-1	. 500	.312	.022	4 Z	G + 1/4	.120	-95
NAS446-2	.515	.312	.025	6z	G + 1/4	.147	1.10
NAS446-4	.625	.437	.028	8z	G + 5/16	.173	1.95
NAS446-5	.875	. 500	.031	10Z	G + 5/16	.199	3.60

PROCUREMENT SPECIFICATION: MIL-N-3337, TYPE II

MATERIAL: STEEL, TEMPERED

FINISH: -1 PHOSPHATE AND ZINC CHROMATE PRIMER

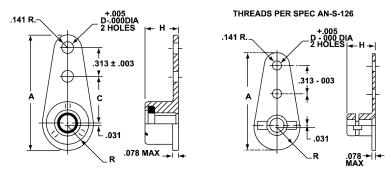
SPECIFICATION MIL-P-8585

-3 ZINC METAL SPRAY - SPECIFICATION MIL-M-6874

TOLERANCES: ±.010 UNLESS OTHERWISE NOTED

ALL DIMENSIONS IN INCHES

EXAMPLE OF PART NUMBER:


NAS446 - 4 - 1
BASIC PART NUMBER — FINISH

NOTES: (a) USE AN530 SCREW OR SIMILAR FOR INSTALLATION

(b) FOR USAGE LIMITATIONS SEE DRAWINGS MS33538 AND AND10087.

3 EDITORIALLY UPDATED

Figure 5-92. Drawing NAS-446

1 RIVET HOLES CSK, $\frac{\text{ELASTIC}}{100^\circ\text{X}.200}$ (1/4-28 & UNDER) RIVET HOLES CTPCH. $100^\circ\text{X}.180$ RIVET HOLES CSK, $100^\circ\text{X}.200$ (5/16-24)

	MFG. NO.	MFG.	NAS NUMBER	MATERIAL	RIVET HOLES	THREAD SIZE.	Α.	C.	D.	H MAX	В.	REPLACEABLE BY RIVETED NUT PLATES.
	68A17-62 22A17-62	ELASTIC	NAS-447-6DP -6SP	ALUM. STEEL	PLAIN	6-32 NC2	1.078	.344	.098	.291	.250	
1	68A17-62-BC100x.200 22A17-62-BS100x.200	ELASTIC	-6DC -6SC	ALUM. STEEL	CSK.	6-32 NC2	1.078	.344	.098	.291	.250	
Г	22A17P-62	ELASTIC	-6W	STEEL	WELD NIBS	6-32 NC2	1.078	.344	.098	.291	.250	NAS-447-6SPNAS-447-6SC
F	68A17-82 22A17-82	ELASTIC	-8DP -8DP	ALUM. STEEL	PLAIN	8-32 NC2	1.078	.344	.098	.291	.250	
1	68A17-82-BC100x.200 22A17-82-BS100x.200	ELASTIC	-8DC -8SC	ALUM. STEEL	сѕк.	8-32 NC2	1.078	.344	.098	.291	.250	
	22A17P-82	ELASTIC	-8W	STEEL	WELD NIBS	8-32 NC2	1.078	.344	.098	.291	.250	NAS-447-8SPNAS-447-8SC
	W12S1032	BOOTS	-10SP	STEEL	PLAIN							
	68A17-02	ELASTIC	-10DP	ALUM.	PLAIN	10-32 NF2	1.078	.344	.098	.322	.250	
L	22A17-02		-10SP	STEEL								
L	W12S1032-BC100 x .180	BOOTS	-10SC	STEEL	СТРСН	10-32 NF2	1.078	.344	.098	.322	.250	
1	68A17-02-BC100x.200 22A17-02-BS100x.200	ELASTIC	-10DC -10SC	ALUM. STEEL	CSK.	10-32 NF2	1.078	.344	.098	.291	.250	
_	W12S1032-PWB 22A17P-02	BOOTS ELASTIC	-10W	STEEL	WELD NIBS	10-32 NF2	1.078	.344	.098	.291	.250	NAS-447-10SP OR NAS-447-10SC
F	68A17-048 22A17-048	ELASTIC	-416DP -416SP	ALUM. STEEL	PLAIN	1/4 - 28 - NF3	1.078	.344	.098	.307	.250	
1	68A17-048-BC100x.200 22A17-048-BC100x.200	ELASTIC	-416DC -416SC	ALUM. STEEL	CSK.	1/4 - 28 NF3	1.078	.344	.098	.307	.250	
	68A17-054 22A17-054	ELASTIC	-516DP -516SP	ALUM STEEL	PLAIN	5-16 - 24 NF3	1.266	.500	.130	.369	.281	
1) 68A17-054-BC100x.230 22A17-054-BC100x.230	ELASTIC	-516DC -516SC	ALUM. STEEL	CSK.	5-16 - 24 NF3	1.266	.500	.130	.369	.281	

NOTE: DIMENSIONS NOT SPECIFIED ARE OPTIONAL

PROCUREMENT: ELASTIC STOP NUT CORP., UNION, NEW JERSEY
BOOTS AIRCRAFT NUT CORP., NEW CANAAN, CONN.
SIMILAR ITEMS OF COMPARABLE FUNCION MUST BE EQUIVALENT PRIOR TO USE ON AIRCRAFT
IN LIEU OF ITEMS SHOWN HEREON.

ENGINEERING INFORMATION:
FOR RESTRICTION ON USE, SEE AND10068.
WHEN USING PROJECTION WELD NUT PLATES, A NOTE ON DRAWING SHOULD STATE PART NO. OF RIVETED NUT PLATE WHICH CAN REPLACE THE WELDED NUT PLATE: A FLAG NEXT TO PART NUMBER OF WELDED NUT PLATE SHOULD REFER TO THE NOTE. THE NOTE SHOULD REFER TO ONE OF THE RIVETED NUT PLATES LISTED ABOVE SELECT NUT PLATE WITH RIVET HOLES PLAIN OR COUNTERSUNK AS REQUIRED.

MANUFACTURING SPECIFICATION: AN-N-5 (THICK NUTS).

1112 STEEL, FED SPEC QQ-S-671, FIBER INSERT, (ELASTIC); OR 1010 STEEL FED SPEC MATERIAL: RIVET TYPE -QQ-S-636 (BOOTS).

QQ-S-636 (BOOTS).

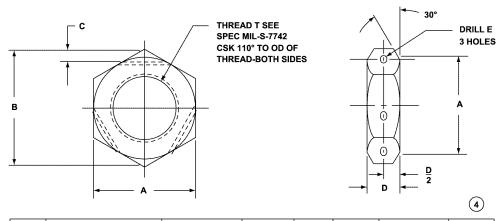
17ST ALUM. ALLOY, SPEC FED QQ-A-351, CONDITION T, FIBER INSERT, (ELASTIC); OR ALUM. ALLOY (BOOTS),

PROJECTION WELD TYPE -1010 STEEL, FED SPEC QQ-S-636 (BOOTS).

1112 STEEL, FED SPEC QQ-A-671. FIBER INSERT, (ELASTIC).

COMMERCIAL PART CODE: 22A17-62 = NUT PLATE, SELF-LOCKING, STEEL, ONE LUG, PLAIN RIVET HOLES, FOR NO. 6-32 SCREW.

NAS PART CODE: NAS-447-6SP = NUT PLATE, SELF-LOCKING, STEEL, ONE LUG, PLAIN RIVET HOLES, FOR NO. 6-32 SCREW.


FINISH: RIVET TYPE - STEEL - CADMIUM PLATE PER SPEC AN-P-61 (BOOTS).
- CADMIUM PLATE PER SPEC AN-P-61; OR ZINC PLATE PER SPEC AN-P-32 (ELASTIC).
ALUM. ALLOY - ANODIZE PER SPEC AN-QQ-A-696.
PROJECTION WELD TYPE - CADMIUM PLATE PER SPEC AN-P-61.

EXAMPLE OF CALL-OUT:

22A17-62	NUT PLATE - SELF LOCKING - ONE LUG NAS-447-6SP			ELASTIC STOP N NEW JERSEY, (C	IUT CORP., UNION, PR EQUIVALENT)
PART NUMBER (OPTIONAL)	NAME OF PART NAS PART NUMBER	ZONE CODE	SIZE - GAGE SEC NO.	MATERIAL	н.т.

F05-092

Figure 5-93. Drawing NAS-447

Dash No.	Thread T	A	B Approx	С	D	Drill E	Approx Wt/lbs Ea.
4	1/4 - 28UNF-3B	.438 +.002	.50	.093	.188	#56(.046)	.006
5	5/16-24UNF-3B	.500 ^{+.002} ₀₁₀	.58	.093	.219	#56(.046)	.009
6	3/8 - 24UNF-3B	.563 ^{+.002} ₀₁₀	.66	.093	.250	#56(.046)	.012
7	7/16-20UNF-3B	.625 +.002 010	.72	.093	.281	#56(.046)	.015
8	1/2 - 20UNF-3B	.750 +.002 010	.88	.093	.313	#56(.046)	.036
9	9/16-18UNF-3B	.875 ^{+.002} 012	1.02	.093	.375	#56(.046)	.044
10	5/8 - 18UNF	1.000 +.002 014	1.16	.093	.406	#56(.046)	.065
12	3/4 - 16UNF-3B	1.125 ^{+.002} ₀₁₆	1.30	.125	.469	#50(.070)	.087
14	7/8 - 14UNF-3B	1.313 +.002	1.52	.125	.500	#50(.070)	.127
-16-	1 - 14UNS-3B	1.500 +.002 019	1.73	.125	.500	#50(.070)	.166
17	1 - 12UNF-3B	1.500 +.002	1.73	.125	.500	#50(.070)	.166
18	1 1/8 - 12UNF-3B	1.625 +.002	1.88	.125	.531	#50(.070)	.204
20	1 1/4 - 12UNF-3B	1.750 ^{+.002} ₀₂₂	2.02	.125	.563	#50(.070)	.252
22	1 3/8 - 12UNF-3B	1.875 ^{+.002} ₀₂₄	2.16	.125	.594	#50(.070)	.276
24	1 1/2 - 12UNF-3B	2.000 +.002 025	2.31	.125	.625	#50(.070)	.300
26	1 5/8 - 17UN-3B	2.125 ^{+.002} 027	2.45	.125	.656	#50(.070)	.358
28	1 3/4 - 12UN-3B	2.250 +.002 028	2.60	.125	.688	#50(.070)	.421
30	1 7/8 - 12UN-3B	2.375 +.002 030	2.74	.125	.719	#50(.070)	.490
32	2 -12UN-3B	2.625 +.002 030	3.04	.125	.750	#50(.070)	.625
34	2 1/8 - 12UN-3B	2.750 +.002 031	3.18	.125	.781	#50(.070)	.715
36	2 1/4 - 12UN-3B	2.875 +.002	3.32	.125	.812	#50(.070)	.813

4 (6)

(4) SHEET 2 ADDED COMPLETELY REVISED

F05-093S01

Figure 5-94. Drawing NAS-509 (Sheet 1 of 2)

CODE:

Dash number designates thread size as noted in the above table.

Suffix "L" to basic part number for left hand thread.

EXAMPLE:

NAS509-4 = Jam Nut with 1/4-28UNF-3B Right Hand Thread. NAS509L4 = Jam Nut with 1/4-28UNF-3B Left Hand Thread.

PROCUREMENT SPECIFICATION:

MATERIAL: FINISH:

MIL-N-6034, as applicable. Steel, 4130, Spec MIL-S-6758, Cond. F-4.

Cadmium plate, Spec QQ-P-416, Type II, Class 3 (Type I parts already made, may be shipped until 1 July 1965).

HEAT-TREAT: TOLERANCES: NOTES:

(7) Rockwell C34-38 (150, 000 PSI MIN TS) Spec MIL-H-6875.

Unless otherwise specified, decimals, \$\pm\$.010; Angles, \$\pm\$1.

This nut is intended for use with the NAS513 keyed washer for positive locking of rod end terminals to hydraulic piston rode.

All machined surfaces 250/per spec MIL-STD-10.

Parts shall be magnetic particle inspected per spec MIL-1-6868. Parts shall not be marked as an indication of magnetic particle inspection.

Remove all burrs and sharp edges.

Surface to be square with thread within .003 inch per inch diameter. Inactive for design after 1 January 1965, see -17. 5.

6.

Parts already made to Rockwell C33-38 may be shipped until 1 December 1965.

F05-093S02

Figure 5-94. Drawing NAS-509 (Sheet 2)

	ART NO.			А	(a)	C	(b)
ALLOY STEEL	BRASS	THREAD T	MAX	MIN	B REF	DIA. MIN	MAX	MIN
NAS671-0 NAS671-1 NAS671-2 NAS671-3	NAS67180 NAS67181 NAS67182 NAS67183	NO. 0-80NF-2B NO. 1-64NC-2B NO. 2-56NC-2B NO. 3-48NC-2B	.125 .125 .156 .156	.121 .121 .150 .150	.140 .140 .180 .180	.112 .112 .140 .140	.050 .050 .066	.043 .043 .057 .057
NAS671-4 NAS671-6 NAS671-8 NAS671-10	NAS671B4 NAS671B6 NAS671B8 NAS671B10	NO. 4-40NC-2B NO. 6-32NC-2B NO. 8-32NC-2B NO. 10-32NF-2B	.188 .250 .313 .344	.180 .241 .302 .332	.217 .289 .361 .398	.167 .220 .282 .310	.066 .098 .114 .130	.057 .087 .102 .117

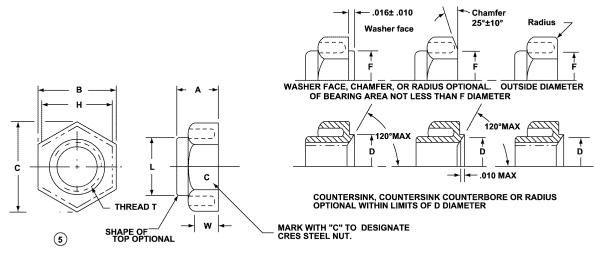
THESE NUTS ARE NON STRUCTURAL.

- (a) REFERENCE DIMENSIONS ARE FOR DESIGN PURPOSES ONLY AND ARE NOT AN INSPECTION REQUIREMENT.
- (b) THE H DIMENSION SHALL BE MEASURED AT A POINT APPROX. HALFWAY BETWEEN THE MINOR DIAMETER OF THE THREAD AND THE FLAT OF THE NUT.
 - MATL:

CORROSION, RESISTANT STEEL PER MIL-\$-7720 COMP. FM (303) STEEL, 50,000 PSI TENSILE STRENGTH, MINIMUM, COMMERCIAL GRADE BRASS, 55,000 PSI MINIMUM UTS, COMMERCIAL GRADE

FINISH:

CRES, PASSIVATE
STEEL, CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS C, POST PLATE CLEAR.
BRASS, CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS C, POST PLATE TREATMENT COLOR YELLOW IRIDESCENT.


ADD C BEFORE DASH NUMBER FOR CORROSION RESISTANT STEEL

PART NO. EXAMPLE: NAS671-3 = 3-48 CAD. PLATED STEEL NUT

NUTS SHALL BE FREE OF ALL BURRS OR SLIVERS. DIMENSIONS IN INCHES.

PROC. SPEC: MIL-S-933

Figure 5-95. Drawing NAS-671

A1	DASH NO. 50°F	800°F				3		Ĺ) IA		(c) (b)	(b)		WEIGHT LBS/100	
STEEL	CRES(d)	CRES(d)	(c) THREAD T	(a) A MAX	MAX	MIN	C REF	MAX	MIN	F DIA MIN	H +.002 006	L DIA MAX	W MIN	AVG (REF)	MAX
A04	C04M	C06	4-40 UNC-3B	.125	.252	.240	.289	.154	.112	.190	.195	.150	.081	.10	.13
A06	C06M	C06	6-32 UNC-3B	.141	.314	.302	.361	.178	.138	.252	.240	.179	.092	.13	.23
A08	C08M	C08	8-32 UNC-3B	.188	.346	.334	.390	.303	.173	.284	.272	.209	.122	.23	.28
A3	СЗМ	СЗ	10-32 UNF-3B	.188	.377	.365	.430	.230	.199	.315	.203	.235	.122	.28	.35
A4	C4M	C4	1/4-28 UNF-3B	.219	.439	.430	.506	.293	.259	.380	.355	.302	.142	.44	.53
A5	C5M	C5	5/16-24 UNF-3B	.266	.502	.492	.580	.356	.322	.452			.173	.71	.85
A6	C6M	C6	3/8-24 UNF-3B	.282	.564	.553	.650	.418	.385	.523			.183	.94	1.10
A7	С7М	C7	7/16-20 UNF-3B	.328	.690	.679	.790	.482	.448	.629			.213	1.64	1.95

- MINIMUM "A" LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
 DIMENSIONS "H" AND "L" APPLICABLE TO INTERNAL WRENCHING TYPE, CODE W, ONLY.
- THREADS PER MIL-S-7742 BEFORE LUBRICATION.

 MAGNETIC PERMEABILITY OF CRES NUTS SHALL BE LESS THAN 2.0 (AIR 1.0) FOR A FIELD STRENGTH H 200 OERSTEDS
 USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-1 17214 OR EQUIVALENT
- PLUS TOLERANCE ON DIMENSION "H" SHALL BE +.005 AND +.006 ON SIZES 04 AND 06 RESPECTIVELY
- **(5)** CODE: DASH NO. SUFFIXED BY "W" - INTERNAL WRENCHING (SIZES 04, 06, 08, 3 AND 4 ONLY). INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

EXAMPLES OF PART NOS:

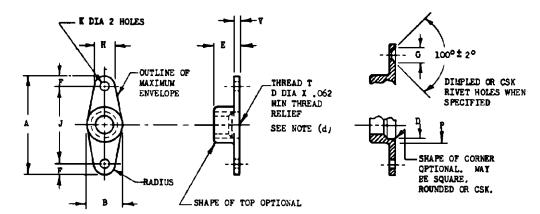
NAS679A4 = 114-28 NUT, ALL METAL CONSTRUCTION, INTERNAL WRENCHING NOT REQUIRED.
NAS679A4W = 14-28 NUT, ALL METAL CONSTRUCTION, WITH INTERNAL WRENCHING FEATURE.
NAS679C4 = 14-28 NUT, ALL METAL CONSTRUCTION OF A286 CRES, SILVER PLATED FOR 800°F USE, INTERNAL WRENCHING
FEATURE NOT REQUIRED.

- NAS679C4MW = 1/4-28 NUT, ALL METAL CONSTRUCTION OF A296 CRES, WITH AN APPROVED DRY FILM LUBRICANT. INTERNAL WRENCHING FEATURE, FOR 450° F USE.
 NAS679X4 = 1/4-28 NUT, ALL METAL CONSTRUCTION, INTERNAL WRENCHING NOT REQUIRED, WITHOUT LUBRICANT. (5)

MATERIAL: STEEL: SEE PROCUREMENT SPECIFICATION. CRES: A286 PER AMS5525, NON-MAGNETIC. (5)

- STEEL: CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT.

 CRES: SILVER PLATE FOR 800°F USED PER AMS2410 TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN BE TOUCHED


 BY A 3/4-INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE BUT THICKNESS REQUIREMENT ON THREADS (5)
 - CRES: APPROVED DRY FILM LUBRICANT FOR 450°F USE.

PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED. (5)

AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027. TABLE I VALUES FOR REGULAR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-96. Drawing NAS-679

	ASH NUMBE	ER .								н		ĸ				GHT
450°F	1500F	800°F	(c) THREAD	A	DIA	D DIA	E(a)	F	G DIA		J(b)	DIA +.005	P DIA	v	AVC	/100
STEEL	CRES(e)	CRES(•)	T	MAX	MAX	MIN	MAX	MIN	±. 010	MAX MIN	±.002	000	WAX	MAX	(REF)	МАХ
AOL	соим	COT	ц-цо имс-зв	.948	.260	-	.143	.100	,200	.260 .200	.688	.098	.166	.047	.09	.14
A06	CO6M	CO6	6-32 UNC-35	.948	.265	_	.171	.100	.200	.260 .200	.688	.098	.206	.047	.13	.18
80A	C08M	608	8-32 UNC-3B	.948	.297	.168	.250	.100	.200	.260 .200	.688	.098	. 2L8	.047	.22	.28
A3	СЗМ	С3	10-32 UNF-3B	.948	.328	.194	.250	.100	.200	.260 .200	.688	.098	.274	.047	.23	.29
Alı	СРМ	СЦ	1/4-28 UNF-3B	1,260	بلتباء	.254	.281	.100	.200	.260 .200	1,000	.098	.344	.055	-45	.53
A5	CSM	G5	5/16-24 UNF-3B	1.292	.505	.317	. 328	.125	.230	.290 .250	1,000	.130	71.ا	.065	.67	.80
16	CéM	C6	3/8-24 UNF-3B	1,292	.614	.379	. 344	.125		.290 .250	1,000	.130	.505	.075	1.00	1.31
A7	С7М	C7	7/16-20 UNF-3B	1.477	.726	. 11715	.390	.156		.352 .312	1.125	.161	.602	.085	1.64	1.84

- (a) MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES, BY MORE THAN .005.
- THREADS PER MIL-S-7742 BEFORE LUBRICATION
- (d) ON SIZES NO. 6 & SMALLER CSK TO D DIA.
- MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.
- CODE: DASH NO. SUFFIXED BY A BACK CSK OR DIMPLED RIVET HOLES. INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

NAS680A4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX.

(3) 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSK OR DIMPLED RIVET HOLES.

NAS680C4 = 1/4-28 PLATE NUT, ÁLL METAL, A286 CRES, 800°F MAX.

NAS680C4M = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX, WITH APPROVED DRY FILM LUBRICANT.

NAS680X4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX, WITHOUT LUBRICANT.

MATERIAL:

③

NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION. CRES. A286 PER AMS 5525, NON-MAGNETIC.

FINISH:

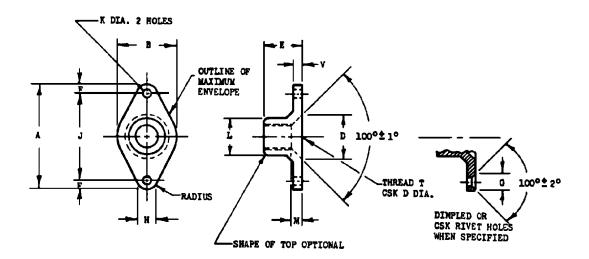
(3)

STEEL:

CADMIUM PLATE PER QQ.P-416 TYPE II CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT.
SILVER PLATE FOR 800°F USE PER AMS2410 TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A 3/4 INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENT ON THREADS CRES:

IS WAIVED.

APPROVED DRY FILM LUBRICANT FOR 450°F USE.


PROCUREMENT SPECIFICATION:

CRES:

MIL-N-25027 EXCEPT AS NOTED. ALL NOTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER (5) OR INDEPENDENT LABORATORY, PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

NOTE: AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027 TABLE I VALUES FOR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-97. Drawing NAS-680

,	
,	-

1	DASH NUM	BER	(c)		ь	ם							K DIA				WEIGH	
	L50°F CRES(d)	800°F CRES(d)	THREAD	A Max	DIA	DIA ±.005	E(a)	F MIN	DIA 1.010	MAX	MIN	∓*∞5 1(₽)	+.005	DIA DIA	M REF	RYX A	AVO (RSF)	XAK
80A	COSM	CO8	8-32 UNC-3B	• 948	.422	.365	.272	.100	.200	.260	.200	.688	.098	. 297	,064	.047	.30	.35
A3	СЗМ	C3	10-32 UNF-3B	. 9և8	.453	114.	.281	.100	.200	.260	.200	.688	.098	. 328	.093	.047	•31.	.37
Αlı	СГТЖ	Cļ	1/4-28 UNF-3B	1,260	.619	.540	0بالا .	,100	.200	.260	.200	1,000	.098	.424	.121	.055	.62	.80
A5	C5M	C5	5/16-24 UNF-38	1,292	.766	. 686	.422	.125	.230	.290	.250	1.000	.130	.505	.156	.065	.93	1.06

- (a) MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES. BY MORE THAN .005.
- (c) THREADS PER MIL-S-7742 BEFORE LUBRICATION.
- (d) MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.
- CODE: DASH NO. SUFFIXED BY K BACK CSK OR DIMPLED RIVET HOLES.

 INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

NAS681A4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX.
NAS681A4K = 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSX OR DIMPLED RIVET HOLES.
NAS681C4 = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 800°F MAX.
NAS681C4M = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX, WITH APPROVED DRY FILM LUBRICANT.
NAS681X4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX, WITHOUT LUBRICANT.

MATERIAL:

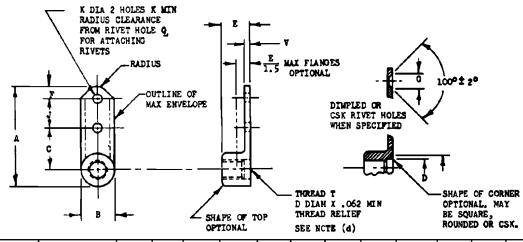
NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION
CRES. A286 PER AMS 5525, NON-MAGNETIC.

FINISH:

③

STEEL: CADMIUM PLATE PER QQ-P-416 TYPE II CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT.

CRES: SILVER PLATE FOR 800°F USE PER AMS2410 TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A 3/4 INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENT ON THREADS IS WAIVED.


CRES: APPROVED DRY FILM LUBRICANT FOR 450°F USE.

PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENT. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

NOTE: AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027 TABLE I VALUES FOR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-98. Drawing NAS-681

I	DASH NUMB	BER	(c)		В		מ			G		K DIA			WEIG LBS/	
150°F Steel	չ50°F CRES(e)	800°F CRES (e)	THREAD	A MAX	DIA MAX	С(b) ±.005	DIA MIN	E(a) WAX	P MIN	DIA 1,010	J ±,002	+.005	P WAX	AYX A	AVC (REF)	MAX
A06	собм	C06	6-32 UNC-3B	.935	.297	.3144	+	.171	.100	.200	.312	.098	.206	.047	.24	.28
A08	CO8M	CO8	8-32 UNC-3B	.935	.297	بلبا3.	.168	.250	.100	.200	.312	,098	.2Li8	.047	.25	.29
A3	СЭМ	C3	10-32 UNF-38	.95 0	.328	ىلىل3	.194	.250	.100	.200	.312	.098	.274	.047	.27	.33
۸Ĺ	СРМ	Cf	1/4-28 UNF-3B	. 993	.424	بلبا3 ـ	.254	.281	.100	.200	.312	.098	.314	.055	.49	.57
A5	С5И	C5	5/16-24 UNF-3B	1.210	. 505	.500	.317	. 328	.125	.230	.312	.130	.417	.065	.81	.96
A6	C6M	66	3/8-24 UNF-3B	1.264	.614	.500	.379	ىلبا3.	.125		. 312	.130	.505	.075	1.09	1.14
A7	C7M	C7	7/16-20 UNF-3B	1.146	.726	.562	2بليا.	.390	.156		.314	.161	.602	.005	1.77	2,02

- (a) MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES, BY MORE THAN .005.
- (c) THREADS PER MIL-S-7742 BEFORE LUBRICATION.
- (d) ON SIZES NO. 6 & SMALLER CSK TO D DIA.
- (e) MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC. PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.
- CODE: DASH NO. SUFFIXED BY K BACK CSK OR DIMPLED RIVET HOLES.
 INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

NAS682A4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX.
NAS682A4K = 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSK OR DIMPLED RIVET HOLES.
NAS682C4 = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 800°F MAX.
NAS682C4M = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX, WITH APPROVED DRY FILM LUBRICANT.
NAS682X4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX, WITHOUT LUBRICANT.

MATERIAL

(3)

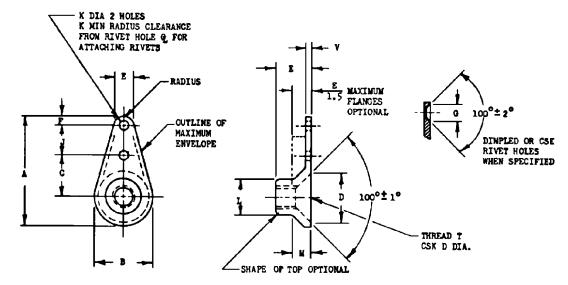
NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION.
CRES. A286 PER AMS 5525. NON-MAGNETIC.

FINISH:

STEEL: CADMIUM PLATE PER QQ-P-416 TYPE II CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT.

SILVER PLATE FOR 800°F USE PER AMS2410 TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A 3/4 INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENT ON THREADS IS WAIVED.

CRES: APPROVED DRY FILM LUBRICANT FOR 450°F USE.


PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

NOTE: AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027 TABLE I VALUES FOR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-99. Drawing NAS-682

(3)

Di	ASH NUMBE	er e	(0)		- B					a				K DIA	,				IOHT 5/100
450°F Steel	Liso y Cres (d)	800°F CRES(d)	THREAD	A MAX	DIA MAX	с(ъ) ±.005		E(m) MAX	F MIN	DIA ±.010	WAX .	MIN		+.005 000	DIA MAX	M Ref	V XAL	AVC (REF)	
BOA	сови	cos	8-32 UNC-3B	•997	.422	ىلباد.	.365	.272	.100	.200	.260	.200	.312	.098	.297	.084	.047	.33	.39
A3	СЗЖ	C3	10-32 UNF-3B	1.013	.453	. 3144	.411	.281	.100	.200	.260	.200	.312	.098	. 328	.093	.047	.34	.40
ALI	CPA	Cff	1/4-28 UNF-3B	1.252	.619	.500	.540	.340	.100	.200	.260	,200	, 312	.098	بلابا.	,121	.055	.63	. 78
A5	CSM	CS	5/16-24 UNF-38	1.340	.766	.500	.686	22يا ـ	.125	.230	.290	.250	.312	.130	.505	.156	.065	.93	1.06

- (a) MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BE STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES, BY MORE THAN +005.
- THREADS PER MIL-S-7742 BEFORE LUBRICATION.
- (d) MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL- I-17214 OR EQUIVALENT
- CODE: DASH NO. SUFFIXED BY K BACK CSK OR DIMPLED RIVET HOLES. (3) INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.
- EXAMPLES OF PART NUMBERS: (3)
 - NAS683A4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX. NAS683A4K =
 - 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSK OR DIMPLED RIVET HOLES.
 - NAS683C4 = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 800°F MAX.
 - NAS683C4K = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX, WITH APPROVED DRY FILM LUBRICANT.
 - NAS683X4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX, WITHOUT LUBRICANT.

MATERIAL:

NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION. CRES. A286 PER AMS 5525, NON-MAGNETIC.

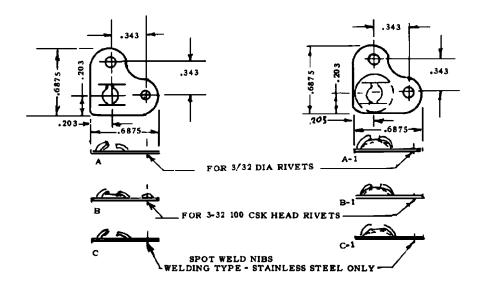
FINISH:

(3)

STEEL: CADMIUM PLATE PER QQ-P-416 TYPE II CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT.

SILVER PLATE FOR 800°F USE PER AMS2410 TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN CAN BE TOUCHED CRES: BY A 3/4 INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENTS ON THREADS

IS WAIVED APPROVED DRY FILM LUBRICANT FOR 450°F USE.


PROCUREMENT SPECIFICATION:

CRES:

 (\mathfrak{g}) MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS, MANUFAC-TURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED

NOTE: AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027 TABLE I VALUES FOR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-100. Drawing NAS-683

PREFIX "A" DESIGNATES AIRCRAFT PARTS

									$\underline{\hspace{1cm}}$
MFRS NEW NO.	0	NAS NO.	TYPE	MATERIAL, THICKNESS	MFRS NEW NO.	NAS NO.		AIRCRAFT SCREW NO	THICKNESS
A6200-6Z A6021-6Z A6202-6Z		NAS-449-1 NAS-449-2 NAS-449-3	A B C	.022 (,025 SS)	A6197-6Z A6198-6Z A6199-6Z	449-7 449-8 449-9	A-1 B-1 C-1	100° CSK HEAD 6Z S.N.S	.0 22 (.025 S8)
A6200-8Z A6201-8Z A6202-8Z		NAS-449-4 NAS-449-5 NAS-449-6	A B C	.025 (,028 SS)	A6197-82 A6198-82 A6199-82	449-10 449-11 449-12	A-1 B-1 C-1	100° CSK HEAD \$Z S.M.S	.025 (.028 SS)
A6 200-10 Z A6 20 1- 10 Z A6 202-10 Z		NAS-449-13 NAS-449-14 NAS-449-15	В	,032 (,031 SS)	l				

PROCUREMENT: TINNERMAN PRODUCTS, INC., CLEVELAND, OHIO.
SIMILAR ITEMS OF COMPARABLE FUNCTION MUST BE EQUIVALENT PRIOR TO USE ON AIRCRAFT IN LIEU OF

①

ITEMS SHOWN HEREON.

ENGINEERING INFORMATION: PROCUREMENT SPECIFICATION: AAF 25533.

THE CORNER ANCHOR TYPE SPEED NUT IS TO BE USED IN CORNERS WHEREVER POSSIBLE IN APPLICATIONS THAT ARE NOT STRUCTURAL SUBJECT TO EXCESSIVE VIBRATION.

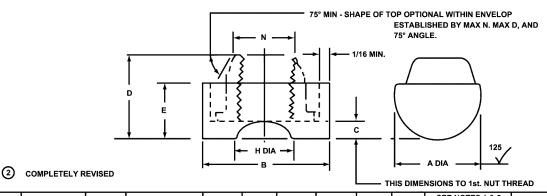
MATERIAL: SAE 1060 STEEL OR STAINLESS STEEL.

SUFFIXES: ADD SUFFIX "SS" FOR STAINLESS STEEL (EXAMPLE: A6200SS-6Z; NAS-449-1-SS).

ADD SUFFIX "C" FOR RIVET HOLES FOR L/8 INCH DIA RIVETS (EXAMPLE: A6200-6Z-C; NAS-449-1-C).

COMMERCIAL PART CODE: A6200-6Z CORNER ANCHOR TYPE A SPEED NUT FOR NO. 6 SIZE SCREW.

NAS PART CODE: NAS 449-1 CORNER ANCHOR TYPE A SPEED NUT FOR A NO. 6 SIZE SCREW.


FINISH: SAE 1060 STL - METALLIC SPRAY (ZINC). AN-M-8. STAINLESS STL - NONE.

EXAMPLE OF CALL-OUT.

(2) INACTIVE FOR NEW DESIGN.

A6 200-6 Z	NUT-CORNER ANCHOR TYPE (NAS-449-1)			TIMMERMAN PRODUCTS, I OHIO (OR EQUIVALENT	
(OPTIONAL) PART NUMBER	NAS PART NUMBER NAME OF PART	ZONE CODE	SIZE - GAGE SEC - NO.	MATERIAL	M.T.

Figure 5-101. Drawing NAS-449

											SEE NO	TES 1 & 2			
	THREAD UNF-3B	A DIA		LATION SIZE F)				_			AXIAL TEN- SILE STRE-	TEN- SILE LOAD- ING	MAX	MATE HARD RANG (RC)	NESS
DASH	UNLESS	+ .000			В	С	D	+.000	H +.010	N	NGTH	RATES LB/MIN	WEIGHT		CRA-
NO.	NOTED	003	MIN	MAX	±.010	±.005	MAX	010	000	MAX	LBS MIN	(±10%)(b)	LB/100	NUT	DLE
4	1/4-28	.528	.531	.535	.625	.125	.406	.320	.281	.375	7200	5000	1.50	34-41	36-43
5	5/16-24	.590	.594	.599	.688	.125	.468	.360	.344	.406	11400	7700	2.00	36-43	41-48
6	3/8-24	.684	.688	.693	.750	.156	.531	.420	.406	.500	17000	11000	3.00	41-48	41-48
7	7/16-20	.778	.781	.788	.875	.188	.625	.470	.469	.563	23000	15000	5.10	36-43	41-48
8	1/2-20	.872	.875	.882	1.000	.219	.703	.540	.531	.625	30700	19600	8.20	36-43	41-48
9	9/16-18	.965	.969	.976	1.094	.250	.765	.590	.594	.688	38900	24800	14.00	36-43	36-43
10	5/8-18	1.060	1.062	1.072	1.125	.281	.844	.650	.656	.750	48700	30600	18.00	36-43	36-43
12	3/4-16	1.278	1.281	1.291	1.500	.344	1.062	.750	.781	.875	70800	44000	23.00	34-41	36-43
14	7/8-14	1.433	1.438	1.448	1.531	.375	1.156	.850	.906	1.000	96600	60000	31.00	34-41	36-43
16	1-12	1.559	1.562	1.572	1.728	.375	1.281	.880	1.032	1.125	125900	78000	44.00	39-46	36-43
17	1-14 NS-3B	1.559	1.562	1.572	1.728	.375	1.281	.880	1.032	1.125	128250	78000	44.00	39-46	36-43
18	1 1/8-12	1.872	1.875	1.885	2.063	.438	1.562	1.230	1.156	1.250	161000	100000	78.00	39-46	36-43
20	1 1/4-12	2.122	2.125	2.135	2.352	.500	1.813	1.320	1.281	1.375	201000	122000	120.00	39-46	36-43
22	1 3/8-12	2.372	2.375	2.385	2.646	.562	2.000	1.460	1.406	1.500	246000	148000	165.00	39-46	36-43
24	1 1/2-12	2.622	2.625	2.635	3.000	.625	2.187	1.520	1.531	1.625	295000	176000	215.00	39-46	36-43

MATERIAL -	THE NUT AND BARREL SHALL BE FABRICATED FROM NON-CORROSION RESISTANT STEEL, EXCEPT
	TILLE III TILLO DE ILLO TALIA DE LIVIERE TUE DO CICATEL I DOUBLA DE LIVIERE ADOLESTADA DE ILLO CASA DE LA CASA

THAT IN THOSE INSTANCES WHERE THE ROCKWELL "C" RANGE IN THE ABOVE TABLE IN 39-46 OR 41-48, THE MATERIAL SHALL BE EITHER 4140 (MIL-S-5626), 8740 (MIL-S-6049), OR 4340 (MIL-S-5000)

STEEL BAR ONLY.

NUT AND BARREL: CADIUM PLATE PER SPECIFICATION NAS672 (ALTERNATIVE VACUUM DE-POSITED CADMIUM PLATE PER SPECIFICATION MIL-C-8837). FINISH ON "A", "K" OR NO CODE FINISH -

PARTS CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 3.

PER MIL-S-7742 BEFORE PLATING, PER MIL-S-8879 FOR "F" CODE NUTS. MINIMUM "GO" THREAD PENETRATION SHALL BE 3/4 OF ONE REVOLUTION. THREADS -

NOTED IN TABLE. IN NO CASE SHALL THE TEMPERING TEMPERATURE BE LESS THAN 725° F. HARDNESS-

TOTAL FLOAT -ACROSS BARREL .028 MIN

LENGTHWISE - PERMISSIBLE BUT NOT REQUIRED.

VERTICLE - .016 MAX.

CODE -NO CODE - NON METALLIC OR ALL METAL LOCKING DEVICE FOR USE TO 250° F. (SEE NOTE 5).

"A" CODE - ALL METAL LOCKING DEVICE ONLY, FOR USE TO 500°F. (CAD PLATE PER QQ-P-416)

"K" CODE - NON METALLIC LOCKING DEVICE ONLY, FOR USE TO 250°F. (SEE NOTE 5).

"F" CODE - ALL METAL LOCKING DEVICE ONLY FOR USE TO 500°F. (CAD PLATE PER NAS 672).

EXAMPLE-NAS577-8F ALL METAL FLOATING BARREL NUT FOR 1-2" DIA BOLT.

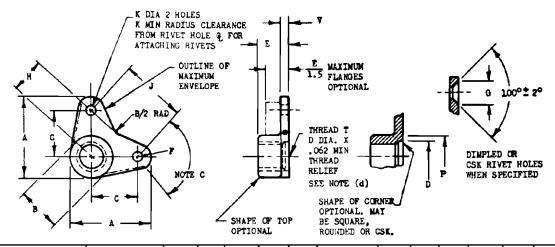
NOTES:

- MINIMUM AXIAL TENSILE STRETCH BASED ON SPECIFICATION MIL-B-8831.
- ALL REQUIREMENTS OF SPECIFICATION MIL-N-25027 MUST BE MET EXCEPT AS NOTED. AXIAL TENSILE STRENGTH VALUES SHALL BE MET WITH NUT INSTALLED IN A CLOSE PITTING STEEL JIG. (HARDNESS RC-41-43) WITH A HOLE NO LARGER THEN .003 OVER THE MAXIMUM "A" DIA AND TESTED WITH A BOLT

- RC-41-43) WITH A HOLE NO LARGER THEN .003 OVER THE MAXIMUM "A" DIA AND TESTED WITH A BOLT OF SUFFICIENT STRENGTH TO CAUSE STRIPPING OF NUT THREADS. STRENGTH VALUES LISTED ABOVE ARE FOR INSPECTION TEST PURPOSES ONLY: NOT FOR DESIGN.

 CONFIGURATION OF NUT ELEMENT AND BARREL WITHIN ENVELOPE IS OPTIONAL.

 NUTS FURNISHED UNDER THIS PART NUMBER MUST BE CAPABLE OF BEING RETAINED BY CORRESPONDING DASH NUMBER OF NAS578 RETAINER. (1-17 NUT MUST BE RETAINED BY -16 RETAINER.)


 (a) DASH NUMBERS 17 AND 18 THROUGH 24 ARE SUBJECT TO SATISFACTORY TEST BY A FIRST USER. THEIR DIMENSIONS ARE DESIRED BUT MUST BE PROVEN AS ADEQUATE.

 (b) TENSILE LOAD RATE IS BASED ON APPLICATION OF TENSILE LOAD AT A RATE OF 1000,000 PSI PER MINUTE IN THE NOMINAL SHANK AREA OF MATING BOLT.

 CODES CROSSED OUT INACTIVE FOR DESIGN AFTER 7-1-62. SUPERSEDED BY "A" OR "F" CODE.

 NUTS SHALL BE MAGNETICALLY INSPECTED 100% WITH THE MAGNETIZED FIELD NORMAL TO AXIS OF NUT THREAD. BARREL SHALL BE 100% MAGNETICALLY INSPECTED WITH THE MAGNETIZED FIELD NORMAL TO THE LONGITUDINAL AXIS OF THE BARREL. TO THE LONGITUDINAL AXIS OF THE BARREL.

Figure 5-102. Drawing NAS-577

I	ASH NUMBE	Я	(b)		В		D		RIVET	EDGE	G			K DIA			WEIG LBS	ŒĦŢ ∕100
150°F Steel	150°F CRES(e)	800°F CRES(e)	THREAD	MYX Y	DIA	.c ±.∞5	DIA MIN	E(a) MAX		ANCE	DIA ±,010	H MAX	J ±,002	+.005	P YAX	NAX V	AVG (REF)	MAX
A06	собм	co6	6-32 UNC-3B	.637	.265	.3144	+	.171	.145	.100	.200	.270	.486	.098	.206	.047	•20	.25
A08	COBM	CO8	8-32 UNC-38	.637	.297	. 344	.168	.250	.145	.100	,200	.270	.486	.098	.248	.OL7	.23	.28
A 3	СЗМ	СЗ	10-32 UNF-3B	.653	.328	. 34,4	.194	.250	.145	.100	.200	.270	.486	.098	.27կ	.OL7	.24	.29
4	C ri me	çi	1/4-28 UNF-3B	.852	بلتباء	.5∞	.254	.281	.145	.100	.200	.383	.707	.098	بلبا3.	.055	.47	.58
A5	C\$M	C5	5/16-24 UNF-3B	.914	.505	.500	.317	.328	.161	.125	.230	.383	.707	.130	.417	•065	.73	.85
A 6	C6M	66	3/8-24 UNF-3B	.968	.614	.500	.379	. 344	.161	.125		.383	.707	.130	.505	.075	1.08	1.31
A7	C7%	C7	7/16-20 UNF-3B	1,101	.726	. 562	2بلباء	.390	.176	.156		.427	.795	.161	.602	.085	1.61	1.84

- (a) MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY THE RIVET HOLES. BY MORE THAN .005
 - (c) THREADS PER MIL-S-7742 BEFORE LUBRICATION
 - (d) ON SIZES NO. 6 & SMALLER CSK TO D DIA.
 - (e) MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR=1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214
- ODE: DASH NO. SUFFIXED BY K BACK CSK OR DIMPLED RIVET HOLES.
 INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

NAS684A4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX.

NAS684A4K = 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSK OR DIMPLED RIVET HOLES.

NAS684C4 = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX.

NAS684C4M = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX, WITH APPROVED DRY FILM LUBRICANT.

NAS684X4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX, WITHOUT LUBRICANT.

MATERIAL

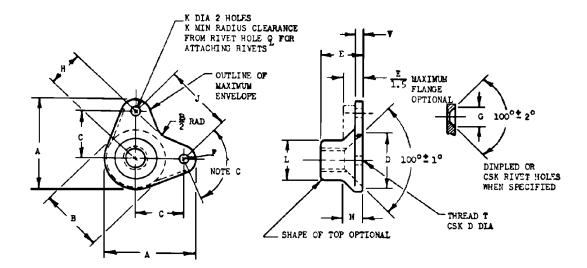
NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION. CRES. A286 FOR AMS 5525, NON-MAGNETIC.

(6) FINISH:

6

STEEL: CADMIUM PLATE PER QQ-P-416 TYPE II CLASS 3 PLUS ON APPROVED DRY FILM LUBRICANT.

CRES: SILVER PLATE FOR 800°F USE PER AMS2410 TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A 34 INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENT ON THREADS IS WAIVED.


CRES: APPROVED DRY FILM LUBRICANT FOR 450°F USE.

PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

NOTE: AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027 TABLE I VALUES FOR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-103. Drawing NAS-684

	_	`
•	۷	7
١	U	

מ	ash numb	ER	(b)		В		,		RIVET	FDCF	G			K DIA	•			WEIG LBS/	
	450°F CRES(d)	800°F CRES(d)	THREAD		BE	c ± 005	DIA ± 005	E(a) MAX	DISTA MAX(c)	NCE	DIA ± 010	H XAM		+.005 000	DIA KAX	M REF	V V	AVG (REF)	
80A	совм	C08	8-32 UNC-38	.700	22با.	.344	. 365	.272	.145	.100	.200	.270	.486	.098	.297	.084	.047	.28	.34
A3	СЭМ	С3	10-32 UNF-3B	.716	.453	.344	.411	.281	.145	.100	.200	.270	.486	.098	.328	.093	.047	.31	.38
al	CIM	5	1/4-28 UNF-3B	.955	.619	.500	. 540	.340	5با1.	.100	.200	. 383	.707	.098	.414	.121	.055	.60	.78
A 5	CZM	C2	5/16-24 UNT-38	ىلىل،1.0	.766	.500	.686	22با.	.161	.125	.230	. 383	.707	.130	.505	.156	.065	•93	1.06

- MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) THE CENTER OF THE TAPPED HOLE SHALL NOT DEVIATE IN ANY DIRECTION FROM THE CENTER OF THE PLATE NUT AS DETERMINED BY
 THE RIVET HOLES, BY MORE THAN .005.
 (c) THREADS PER MIL-S-7742 BEFORE LUBRICATION.

 - (d) MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR =1.0) FOR A FIELD STRENGTH H =200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-1-17214 OR EQUIVALENT.
- 6 CODE: DASH NO. SUFFIXED BY K BACK CSK OR DIMPLED RIVET HOLES.
 INSERT "X" IN LIEU OF "A" IN THE 150° F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

NAS685AL = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 150°F MAX.
NAS685ALK = 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSK OR DIMPLED RIVET HOLES.
NAS685CL = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 800°F MAX.
NAS685CL = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 150°F MAX, WITH APPROVED DRY FILM LUBRICANT.
NAS685XL = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 150°F MAX, WITHOUT LUBRICANT.

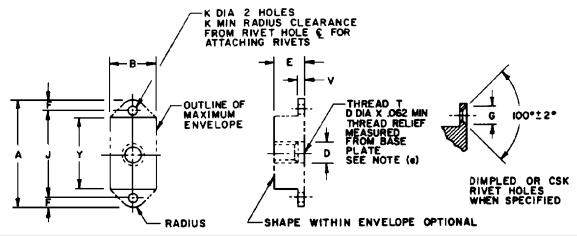
6

MATERIAL:
NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION.
CRES. A286 PER AMS 5525, NON-MAGNETIC.

FINISH:

STEEL: CADMIUM PLATE PER QQ-P-L16 TYPE II CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT.

CRES: SILVER PLATE FOR 800 F USE PER AMSZLIO TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A 3/L INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENT ON THREADS **6**) IS WAIVED.


CRES: APPROVED DRY FILM LUBRICANT FOR 150° F USE.

PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER (6) OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

NOTE: AXIAL STRENOTH REQUIREMENTS PER NIL-N-25027 TABLE I VALUES FOR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-104. Drawing NAS-685

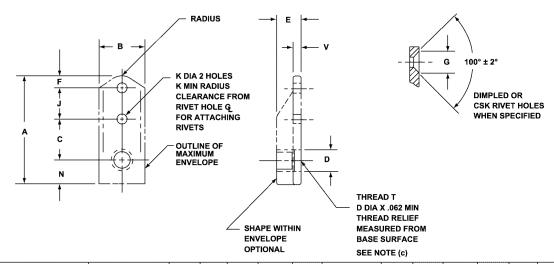
	5) Dash num	BER	(c)	A	В	D	E(a)	F	G	J(b)	к	ν	Y		GHT
	450°F CRES(f)	800°F CRES(f)	THREAD T	MAX	MAX	DIA	MAX	MIN	DIA ±.010	±.002	DIA +.005 000	MAX	MAX	AVG (REF)	MAX
A04	CO4M	CO4	4-40 UNC-3B	.948	.416		.175	.100	. 200		-	.032	.590	. 31	. 38
A06	CO6M	co6	6-32 UNC-3B	.948	.416		.203	.100	. 200	.688	.098	.032	.590	. 32	. 39
A08	CO8M	co8	8-32 UNC-3B	.948	.416	.168	. 250	.100	.200	.688	.098	.032	.590	-33	.40
A3	СЗМ	С3	10-32 UNF-3B	.948	.416	.194	. 250	.100	. 200	.688	.098	.032	.590	. 34	.41
A4	C4M	C4	1/4-28 UNF-3B	1.292	.516	.254	. 281	.100	. 200	1.000	.098	.032	.870	.69	.90
A5	C5M	C5	5/16-24 UNF-3B	1.292	.609	.317	. 328	.125	. 230	1.000	.130	.045	.870	1.02	1.26
A6	C6M	c 6	3/8-24 UNF-3B	1.292	.680	.379	. 344	.125		1.000	.130	.055	.870	1.37	1.55

- (a) MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
 (b) FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 INCHES LATERALLY AND LONGITUDINALLY FROM CENTERED POSITION. NUT BODY SHALL BE CAPABLE OR ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNED POSITION. MAXIMUM AXIAL FLOAT .020 INCHES.
 (c) THREADS PER MIL-S-7742 BEFORE LUBRICATION.
 (d) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT WITHIN THE HOUSING.
 NOTE: THE NUT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.
 (e) ON SIZE NUMBER 6 AND SMALLER CSK TO D DIAMETER.
 (f) MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR = 1.0) POR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-1-1721A OR BOUTWALERST

- USING A MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.
- CODE: DASH NUMBER SUFFIXED BY K = BACK CSK OR DIMPLED RIVET HOLES.
 INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.
- EXAMPLES OF PART NUMBERS:

 NAS68644 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAX.

 NAS6864K = 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSK OR DIMPLED RIVET HOLES.


 NAS686C4 = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 800°F MAX.

 NAS686C4M = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX, WITH APPROVED DRY FILM LUBRICANT.

 NAS686X4 = 1/4-28 PLATE NUT, ALL METAL, PLAIN RIVET HOLES, 450°F MAXIMUM WITHOUT LUBRICANT.
- MATERIAL: NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION. CRES. A286 PER AMS 5525, NON-MAGNETIC.
- STEEL CADMIUM PLATE PER QQ-P-416 TYPE I OR II CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT. CRES SILVER PLATE, 800°F USE.
 CRES APPROVED DRY FILM LUBRICANT FOR 450°F USE. FINISH:
- (5) PROCUREMENT SPECIFICATION:
 - MIL-N-25027, EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANU-PACTURER SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANU-FACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.
 - AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027 TABLE I VALUES FOR REQUIAR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-105. Drawing NAS-686

(6)

DASH NUMBER		(c)				D			F	G		K DIA			WEIG LBS/		
450°F	450°F	800°F	THREAD	A	В	C(b)	DIA	E(a)			DIA	J	+ .005	N	v	AVG	
STEEL	CRES(f)	CRES(f)	Т	MAX	MAX	±.005	MIN	MAX	MAX	MIN	±.010	±.002	000	MAX	MAX	(REF)	MAX
A04	C04M	C04	4-40 UNF-3B	1.051	.422	.344	_	.175	.130	.100	.200	.312	.098	.275	.032	.42	.52
A06	C06M	C06	6-32 UNF-3B	1.051	.422	.344	_	.203	.130	.100	.200	.312	.098	.275	.032	.43	.53
A08	C08M	C08	8-32 UNF-3B	1.051	.422	.344	.168	.250	.130	.100	.200	.312	.098	.275	.032	.44	.54
А3	СЗМ	СЗ	10-32 UNF-3B	1.051	.422	.344	.194	.250	.130	.100	.200	.312	.098	.275	.032	.45	.56
A4	C4M	C4	1/4-28 UNF-3B	1.306	.531	.500	.254	.281	.130	.100	.200	.312	.098	.364	.032	.80	.93
A5	C5M	C5	5/16-24 UNF-3B	1.396	.641	.500	.317	.328	.141	.125	.230	.312	.130	.440	.045	1.17	1.44

- (a) MINIUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION.
- (b) FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 INCHES LATERALLY AND LONGITUDINALLY FROM CENTERED POSITION. NUT BODY SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNED POSITION. MAXIMUM AXIAL FLOAT .020 INCHES.
- (c) THREADS PER MIL-S-7742 BEFORE LUBRICATION.
- (d) ON SIZES NO. 6 & SMALLER CSK TO D DIA.
- (e) MAGNETIC PERMEABILITY SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS USING A MAGNETIC. PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.
- 6 CODE: DASH NO. SUFFIXED BY K BACK CSK OR DIMPLED RIVET HOLES.
 INSERT "X" IN LIEU OF "A" IN THE 450°F STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.
- 6 EXAMPLES OF PART NUMBERS:

 ${\tt NAS687A4 = 1/4-28\ PLATE\ NUT,\ ALL\ METAL,\ PLAIN\ RIVET\ HOLES,\ 450^{\circ}F\ MAX.}$

NAS687A4K = 1/4-28 PLATE NUT, ALL METAL CONSTRUCTION WITH BACK CSK OR DIMPLED RIVET HOLES.

 ${\tt NAS687C4 = 1/4-28\ PLATE\ NUT,\ ALL\ METAL,\ A286\ CRES,\ 800°F\ MAX}.$

NAS687C4M = 1/4-28 PLATE NUT, ALL METAL, A286 CRES, 450°F MAX, WITH APPROVED DRY FILM LUBRICANT.

 ${\tt NAS687X4 = 1/4-28\ PLATE\ NUT,\ ALL\ METAL,\ PLAIN\ RIVET\ HOLES,\ 450°F\ MAX,\ WITHOUT\ LUBRICANT.}$

MATERIAL:

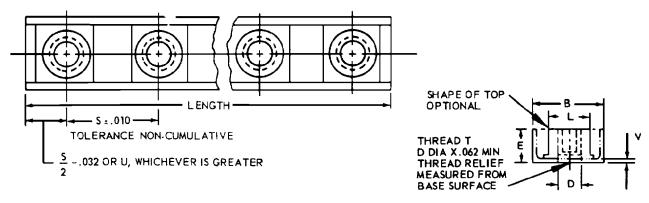
NUT AND BASE: STEEL. SEE PROCUREMENT SPECIFICATION. CRES. A286 PER AMS5525, NON-MAGNETIC.

FINISH:

(6)

STEEL: CADMIUM PLATE PER QQ-P-416 TYPE II CLASS 3 PLUS AN APPROVED DRY FILM LUBRICANT.

CRES: SILVER PLATE FOR 800°F USE PER AMS2410 TO A .0002 MIN. THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A 3/4 INCH BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENT ON THREADS


IS WAIVED. NUT RETAINING CAGE OPTIONAL.
CRES: APPROVED DRY FILM LUBRICANT FOR 450°F USE.

PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY, .PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

NOTE: AXIAL STRENGTH REQUIREMENTS PER MIL-N-25027 TABLE I VALUES FOR STEEL NUTS. DIMENSIONS IN INCHES.

Figure 5-106. Drawing NAS-687

	TYPE COD	E LETTER								
	250°	500°	(d)		_(Ъ)	(=)		MIN		
BASIC	AL ALLOY CHANNEL	CRES CHANNEL	THREAD "	В	D(")	E (a)	L	S	U	v
PART	ALL	ALL	т	MAX	DIA	MAY	DIA	NUT	ME	
NUMBER	METAL	METAL	1	MAA	MIN	MAX	MAX	SPACING	MIN	MAX
	NUT	NUT								
NAS688			8-32 UNC-3B	.416	. 168	.250	.297	.625	.343	.035
NAS689			10-32 UNF-3B	.416	. 194	.250	.328	.625	.343	.035
NAS690	P	A	1/4-28 UNF-3B	.516	.254	.281	.414	.750	.406	.045
NAS691			5/16-24 UNF-3B	.609	.317	.328	.505	.750	.469	.045
NAS692			3/8-24 UNF-3B	.726	.379	.344	.614	1.000	.562	.055

- (a) "E MAX" APPLIES TO NUT AND CHANNEL, MIN "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION.
- (b) FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED POSITION. NUT BODY SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNMENT POSITION. MAXIMUM AXIAL FLOAT .020 INCHES FOR NAS688 AND NAS689; .030 FOR LARGER SIZES.
- (c) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT WITHIN THE HOUSING.
- (d) THREADS PER MIL-S-7742 BEFORE LUBRICATION.
- (e) THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES.

NOTE: THE NUT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.

CODE: PART NUMBER = NUT THREAD SIZE

1st DASH NO. PREFIXED BY: P = ALL METAL NUT, ALUMINUM ALLOY CHANNEL,

MAXIMUM TEMPERATURE 250°F

A = ALL METAL NUT, CRES CHANNEL, MAXIMUM TEMPERATURE 500°F

ADD "X" TO CODE LETTER TO SPECIFY PARTS

WITHOUT LUBRICANT.

1st DASH NO. = NUT SPACING (SEE TABLE).

2ad DASH NO. = NO. OF NUTS IN STRIP (NOT TO EXCEED MAX SHOWN IN TABLE). OMISSION OF 2ad DASH NO. INDICATES STOCK LENGTH STRIP APPROX 72 INCHES LONG.

EXAMPLES OF PART NUMBERS:

NAS689P6-10 = 10-32 GANG CHANNEL NUT, ALL METAL, ALUMINUM ALLOY CHANNEL.

3/4 NUT SPACING, 10 NUTS.

NAS690A7-12 = 1/4-28 GANG CHANNEL NUT, ALL METAL NUT, CRES CHANNEL,

7/8 NUT SPACING, 12 NUTS. =1/4-28 GANG CHANNEL NUT, ALL METAL NUT, CRES CHANNEL, N AS690 A7

7/8 NUT SPACING, APPROX 72 INCHES LONG.

MATERIALS: SEE PROCUREMENT SPECIFICATION.

NUT-STEEL

CHANNEL - ALUMINUM ALLOY

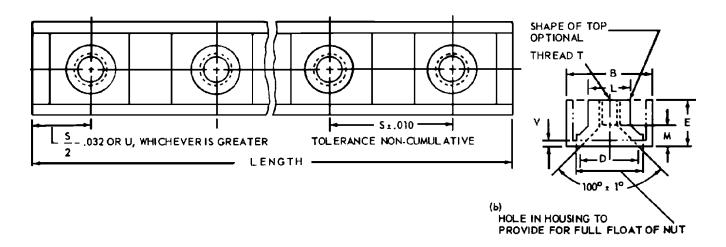
- CORROSION RESISTANT STEEL

FINISH: SEE PROCUREMENT SPECIFICATION.

LUBRICANT: MOLYBDENUM DISULFIDE ON NUT ELEMENTS.

PROCUREMENT SPECIFICATION:

MIL-N-25027


AXIAL STRENGTH REQUIREMENTS PER TABLE 1 VALUES FOR REGULAR STEEL NUTS.

DIMENSIONS IN INCHES

(4) EDITORIALLY UPDATED

s	FIRST	MAX
NUT	DASH	NO.
SPACING	NO.	NUTS
.625	5	115
.750	6	96
.875	7	82
1.000	8	72
1.125	9	64
1.250	10	57
1.375	11	52
1.500	12	48
1.625	13	44
1.750	14	41
1.875	15	38
2.000	16	36
2.250	18	32
2.500	20	28
3.000	24	24

Figure 5-107. Drawing NAS-688 thru 692

	TYPE COD	E LETTER									
BASIC PART NUMBER	250° AL ALLOY CHANNEL ALL METAL NUT	500° CRES CHANNEL ALL METAL NUT	THREAD ^(d) T	B MAX	D DIA ±.005	E ^(a) MAX	L DIA MAX	M REF	MIN S NUT SPACING	U MIN	V MAX
NAS693			8-32 UNC-3B	.593	.365	.272	.297	.084	.625	.406	.035
NAS694	₽	A	10-32 UNF-3B	.593	.411	.281	.328	.093	.625	.406	.035
NAS695			1/4-28 UNF-3B	.874	.540	.340	.414	.121	1.000	.562	.045

- (a) MINIMUM "E" NOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION
- (a) MINIMOM B ENOT SPECIFIED, LIMITED ONLY BY STRENGTH REQUIREMENTS OF SPECIFICATION
 (b) FLOAT OF NUT PORTION OF ASSEMBLY SHALL NOT BE LESS THAN .030 NOR MORE THAN .040
 LONGITUDINALLY AND NOT LESS THAN .010 NOR MORE THAN .030 LATERALLY FROM CENTERED
 POSITION. NUT BODY SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAX MISALIGNMENT POSITION. MIN HOLE IN HOUSING = D + FULL FLOAT OF NUT MAX AXIAL FLOAT .020 INCHES
 FOR NAS603 AND NAS694 .030 FOR LARGER SIZES.
- (c) THE ASSEMBLY SHALL PROVIDE A BEARING SURFACE FOR THE NUT WITHIN THE HOUSING.
- (d) THREADS PER MIL-S-7742 BEFORE LUBRICATION
- (e) THE CENTERLINE OF THE CHANNEL SHALL NOT DEVIATE FROM A STRAIGHT LINE BY MORE THAN .015 IN ANY 12 INCHES.

NOTE: THE NUT AND BASE PORTION OF THE ASSEMBLY SHALL FORM ONE INTEGRAL UNIT.

CODE: PART NUMBER = NUT THREAD SIZE

1ST DASH NO. PREFIXED BY: P = ALL METAL NUT, ALUMINUM ALLOY CHANNEL

MAXIMUM TEMPERATURE 250°F. A = ALL METAL NUT, CRES CHANNEL, MAXIMUM TEMPERATURE 500°F. ADD "X" TO CODE LETTER TO SPECIFY PARTS WITHOUT LUBRICANT.

1ST DASH NO. = NUT SPACING (SEE TABLE)

2ND DASH NO. = NO. OF NUTS IN STRIP (NOT TO EXCEED MAX SHOWN IN TABLE) OMISSION OF 2ND DASH NO. INDICATES STOCK LENGTH STRIP APPROX 72 INCHES LONG.

EXAMPLES OF PART NUMBERS:

NAS694P6-10 = 10-32 GANG CHANNEL NUT, ALL METAL, ALUMINUM ALLOY CHANNEL,

3/4 NUT SPACING, 10 NUTS. NAS695A7-12 = 1/4-28 GANG CHANNEL NUT, ALL METAL NUT, CRES CHANNEL,

7/8 NUT SPACING, 12 NUTS.

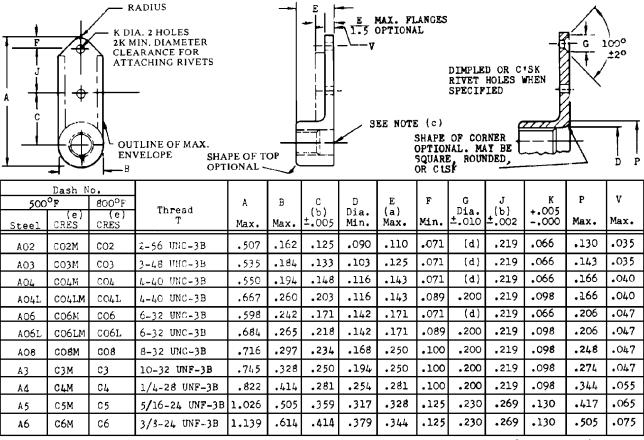
7/8 NUT SPACING, APPROX. 72 INCHES LONG. NAS695A7

MATERIALS: SEE PROCUREMENT SPECIFICATION.
NUT - STEEL

CHANNEL - ALUMINUM ALLOY
- CORROSION RESISTANT STEEL.

FRESH: SEE PROCUREMENT SPECIFICATION LUBRICANT: MOLYBDENUM DISULFIDE ON NUT ELEMENTS.

PROCUREMENT SPECIFICATION:


R REGULAR STEEL NUTS.

DIM **@**

WIE-14-25027
AXIAL STRENGTH REQUIREMENTS PER TABLE I VALUES FOR
MENSIONS IN INCHES
EDITORIALLY UPDATED

S	FIRST	MAX
NUT	DASH	NO.
SPACING	NO.	NUTS
.625	5	115
.750	6	96
.875	7	82
1.000	8	72
1.125	9	64
1.250	10	57
1.375	11	52
1.500	12	48
1.625	13	44
1.750	14	41
1.875	15	38
2.000	16	36
2.250	18	32
2.500	20	28
3.000	24	24

Figure 5-108. Drawing NAS-693 thru 695

Minimum "E" not specified, limited only by strength requirement of specification. (a)

The center of the tapped hole shall not deviate in any direction from the center line of the plate nut as determined by the rivet holes by more than .005. On size No. 8 and larger, counter bore thread D dia. x .062 deep min. thread relief; on size No. 6 and smaller c'sink to D dia. Threads per MIL-S-7742 before lubrication. (c)

(a)

Space will not permit countersink.

Magnetic permeability shall be less than 2.0 (Air=1.0) for a field strength of H=200 oersteds using a magnetic permeability indicator per MIL-I-17214 or equivalent.

CODE:

Dash no. suffixed by K = All metal construction, back countersunk or dimpled rivet holes. The CRES dash number suffixed by M designates an approved dry film lubricant finish. Insert X in lieu of A in the 500°F steel code for cadmium plated steel

nuts without molybdenum disulfide or any other lubricant.

EXAMPLES OF PART NUMBERS: NAS696A4 = 1/4-28 plate nut, all metal construction, plain rivet holes. NAS696A4K = 1/4-28 plate nut, all metal construction, countersunk or dimpled rivet holes.

rivet noises. NAS696C4 = 1/4-28 plate nut, all metal construction of A286 CRES. silver plated for 800°F use. NAS696C4M = 1/4-28 plate nut, all metal construction of A286 CRES with an approved dry film lubricant for 500°F use.

NAS696X4 = 1/4-28 plate nut, all metal construction, plain rivet holes without

lubricant.

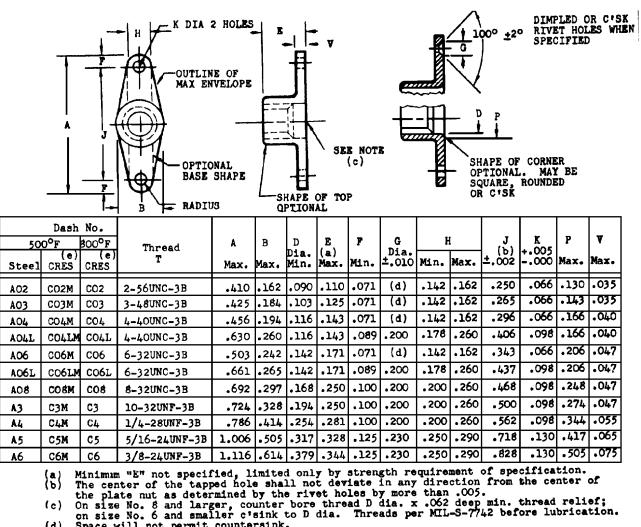
MATERIAL:

Steel. See Performance Specification. CRES. A286 per AMS 5525.

FINISH:

Steel - See Performance Specification, plus an approved dry film lubricant.

(5) CRES - Silver Plate per AMS2410 for 800° use.


CRES - Approved dry film lubricant for 500° use.

NOTE:

Axial strength requirements per MIL-N-25027 Table I values for regular steel nuts.

Dimensions in inches.

Figure 5-109. Drawing NAS-696

(c)

Space will not permit countersink.

Magnetic permeability shall be less than 2.0 (Air=1.0) for a field strength of H=200 dersteds using a magnetic permeability indicator per MIL-I-17214 or equivalent.

CODE:

Dash no. suffixed by K = All metal construction, back countersunk or dimpled rivet holes.

The CRES dash number suffixed by M designates an approved dry film lubricant finish.

Insert X in lieu of A in the 500°F steel code for cadmium plated steel

nuts without molybdenum disulfide or any other lubricant.

EXAMPLES OF PART NUMBERS: NAS697A4 = 1/4-28 plate nut, all metal construction, plain rivet holes. NAS697A4K = 1/4-28 plate nut, all metal construction, back countersunk or dimpled

rivet holes. NAS697C4 = 1/4-28 plate nut, all metal construction of A286 CRES, silver plated for

800°F use.

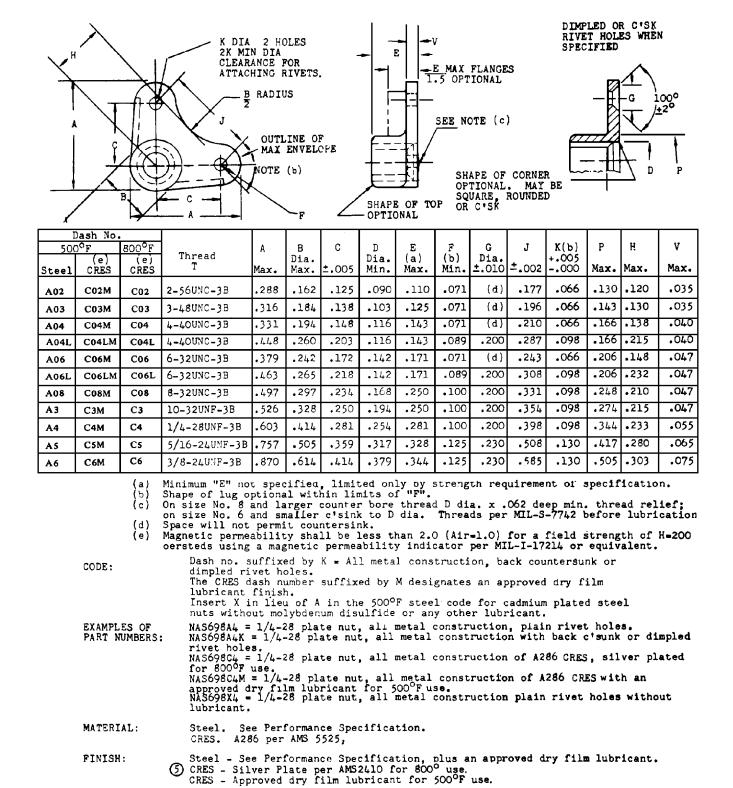
NAS697C4M = 1/4-28 plate nut, all metal construction of A286 CRES, with an approved dry film lubricant for 500°F use.

NAS697X4 = 1/4-28 plate nut, all metal construction, plain rivet holes without lubricant.

MATERIAL:

Steel. See Performance Specification. CRES. A286 per AMS 5525.

FINISH:

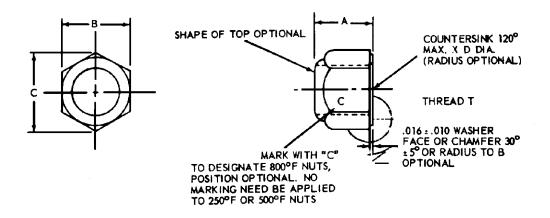

Steel - See Performance Specification, plus an approved dry film lubricant. CRES - Silver Plate per AMS2410 for $800^{\circ}F$ use. CRES - Approved dry film lubricant for $500^{\circ}F$ use.

NOTE:

Axial strength requirements per MIL-N-25027 per Table I values for regular steel nuts.

Dimensions in inches.

Figure 5-110. Drawing NAS-697


Dimensions in inches.

Axial strength requirements per MIL-N-25027 Table I values for

Figure 5-111. Drawing NAS-698

regular steel nuts.

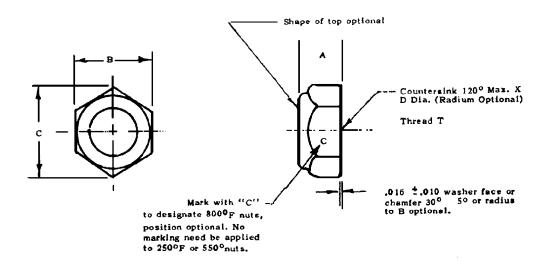
MOTE:

		DASH	NUM	BERS								
NYL	ON INS	SERT		ALL M	ETAL							
AL ALLOY	STEEL	COPPER BASE ALLOY	AL ALLOY	COPPER BASE ALLOY	STEEL	CRES	THREAD T	E	3	(a) A	С	D + 020
250°F	250°F	250°F	250°F	250°F	500°F	800°F		MAX.	MIN.	MAX.	(REF)	+ .020 010
DO4	NO4	BO4	HO4	E04	AO4	CO4	No. 4-40 UNC-3B	.252	.240	.157	.290	.131
DO6	NO6	BO6	406	E06	A06	CO6	No. 6-32 UNC-3B	.314	.302	.188	.350	.156
DO8	NO8	BO8	HO8	E08	A06	CO8	No. 8-32 UNC-3B	.346	.334	(b) .250	.390	.183
D3	N3	B3	Н3	E3	A3	C3	No. 10-32 UNF-3B	.377	.365	(b) .250	.430	.210
D4	N4	B4	H4	E4	A.4	C4	1/4-28 UNF-3B	.439	.430	(b) .328	.505	.273
D5	N 5	B5	H5	E5	A 5	C5	5/16-24 UNF-3B	.502	.492	.360	.580	.336
D6	N6	B6	Н6	E6	A 6	C6	3/8-24 UNF-3B	.564	.553	.469	.650	.398
D7	N7	B7	H7	Ę7	A7	C7	7/16-20 UNF-3B	.690	.679	.489	.790	.458
D8	N8	B8	Н8	E8	A8	C8	1/2-20 UNF-3B	.752	.741	.610	.870	.534
D9	N9	В9	Н9	E9	A9	C9	9/16-18 UNF-3B	.877	.865	.704	1.010	.594
D10	N10	B10	H10	E10	A10	C10	5/8-18 UNF-3B	.940	.928	.786	1.080	.656
012	N12	B12	H12	E12	A12	C12	3/4-16 UNF-3B	1.064	1.052	.891	1.230	.787
D14	N14	B14	H14	E14	A14	C14	7/8-14 UNF-3B	1.252	1.239	1.016	1.440	.913
D16	N16	B16	H16	E16	A16	C16	1 - 12 UNF-3B	1.440	1.427	1.141	1.660	1.039
D18	N18	B18	H18	E18	A18	C18	1 1/8-12 UNF-3B	1.627	1.614	1.266	1.880	1.166
D20	N20	B20	H20	E20	A20	C20	1 1/4-12 UNF-3B	1.815	1.801	1.454	2.090	1.290
D17	N17	B17	H17	E17	A17	C17	1-14 UNS-3B	1.440	1.427	1.141	1.660	1.039
(2)												

⁽a) MINIMUM A LIMITED ONLY BY STRENGTH REQUIREMENT OF SPECIFICATION

MATERIAL AND FINISH: SEE PROCUREMENT SPECIFICATION

EXAMPLE OF PART NUMBER:


NAS1021A3 = NUT - STEEL WITH 10-32 UNF-3B THREAD FOR USE UP TO $500^\circ F$ - ALL METAL NAS1021N3 = NUT - STEEL WITH 10-32 UNF-3B THREAD FOR USE UP TO $250^\circ F$ - NYLON INSERT

DIMENSIONS IN INCHES

② F05-111

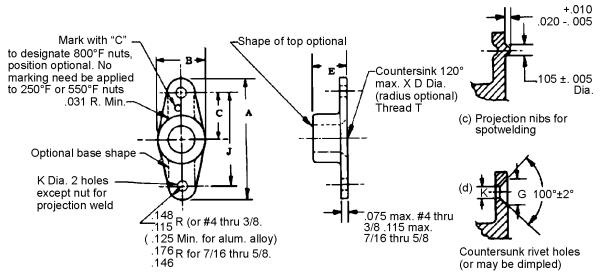
Figure 5-112. Drawing NAS-1021

⁽b) MAXIMUM A MAY BE .280 FOR HIGH STRENGTH ALUMINUM ALLOY NUTS SIZES 8-32 AND 10-32 MAXIMUM A MAY BE .360 FOR HIGH STRENGTH ALUMINUM ALLOY NUTS SIZE 1/4-28

		DASI	INUME	ERS								
	Nylor	n Insert		A	ii Metal							
Alum. Alloy,	Steel	Copper Base	Alum. Alloy	Copper Base	Steel	Corr. Reses.	Thread	,	В	(a) A	С	.020
250°F	250°F	Alloy 250°F.	250°F.	Alloy 250°F	550°F	Stee! 800°F.	т	Mex	Min	Max	(Ref)	.0 10
DO6	NO6	B06	но6	E06	A06	C06	No. 6-22 NC-3B	.314	.302	.141	.360	.156
DOS	NO8	BO8	HO8	EO8	AO8	COS	NO. 6-32 NC-3B	.346	.334	.186	.380	.183
D3	N3	B3	Н3	E3	A3	C3	No. 10-32 NF-3B	.377	.365	.186	.430	.210
D4	N4	B4	H4	E4	A4	C4	1/4-28 UNF-3B	,430	.430	,216	.506	.273
D5	N5	B5	H5	E5	A 5	C5	5/16-24 UNF-3B	.502	.492	.266	.580	.334
D6	N6	B6	H6	E6	A6	C6	3/8-24 UNF-3B	.564	.553	. 282	.650	.398
D7	N7	B7	H7	E7	A7	C7	7/16-20 UNF-3B	,690	.679	.328	,780	,465
D8	N8	B8	H8	E8	A8	C8	1/2-20 UNF-3B	.752	.741	.326	.870	.831
D9	N9	B9	H9	E9	A9	C9	9/16-18 UNF-3B	.877	.865	.875	1,010	894
D 10	N10	B10	H10	E10	A10	C10	5/8-18 UNF-3B	,940	.928	.407	1,090	.656
D12	N12	B12	H12	112	A12	C12	3/4-16 UNF-3B	1,064	1.052	.422	1.230	.787
D14	N14	B14	H14	E14	A14	C14	7/8-14 UNF-3B	1.252	1.239	.485	1.440	.913
D16	N16	B16	H16	E16	A16	C16	1-12 UNF-3B	1.440	1.427	.578	1.660	1.030
D18	N 18	B18	H18	E 18	A18	C18	1 1/8-12 UNF-3B	1.627	1.614	.672	1.880	1.166
D20	N 30	R20	H20	E 20	A20	C20	1 1/4-12 UNF-3B	1.815				
D17	N 17	B17	H17	E17	A17	C17	1-14 NF-3B	1,440	1.437	.876	1,680	1,636

(a) Minimum A limited only by strength requirements of specification.

Material and Finish: See Specification MIL-N-25027 (ASG).


Performance Specification MIL-N-25027 (ASG).

Example of Part Number:

NAS1022 A3 - Nut - Steel with 10-32 thread for use up to $550^{\circ}\mathrm{F}$ - all metal. NAS1022 N3 - Nut - Steel with 10-32 thread for use up to $250^{\circ}\mathrm{F}$ - nylon insert.

Dimensions in inches.

Figure 5-113. Drawing NAS-1022

	DASH	NUMB	ERS										
Nylon	Insert		All Metal				m/ -	(a) C	(P) E	l _			ا ۾ ا
Alum. Alloy 250° F	Steel 250° F	Alum Alloy 250° F	Steel 550°F	Corr. Resis. Steel 800°F	Thread T	A Max.	(b) B	Nom.	Max.	D Dia. \$.020 010	±. 002	K Dia. ≠. 005 000	G Dia. ±.010
DO4 DO6	NO4 NO6	HO4 HO6	A04 A06	CO4 CO6	No. 4-40 NC-3B No. 5-32 NC-3B	. 984 . 984	. 406	. 344	. 218	. 131	. 688	. 098 . 098	. 200
DOS D3	NO8	HO8	AO8	CO8	No. 8-32 NC-3B No. 10-32 NF-3B	. 984	. 406	. 344	. 297	. 183	883. 88 3 .	.098	. 200
D4 D5	N4 N5	H4 H5	A4 A5	C4 C5	1/4-28 UNF-3B 5/18-24 UNF-3B	1.296 1.296	. 516 . 531	, 500 , 500	. 375 . 375	. 273 . 336	1.000	. 098	. 200
D6 D7	N6 N7	H6 H7	A6 A7	C6 C7	3/8-24 UNF-3B 7/16-20 UNF-3B	1,296 1,477	. 641 . 719	. 500 . 562	. 453 . 469	. 398	1.000	.130	. 230
D8 D9 D10	N8 N9 N10	H8 H9 H10	A8 A9 A10	C8 C9 C10	1/2-20 UNF-3B 9/16-18 UNF-3B 5/6-18 UNF-3B	1.602 1.727 1.852	.859 .953 1.016	. 625 . 688 . 750	. 609 . 656 . 765	. 531 . 594 . 656	1.250 1.375 1.500	.161 .161 .161	-

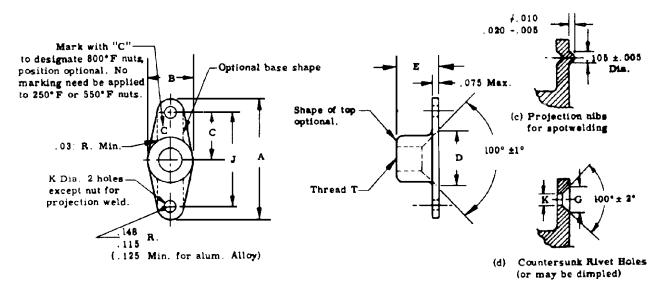
- (a) The center of the tapped hole shall not deviate in any direction from the center of the plate mnt as determined by the rivet holes by more than .005.
- (b) Minimum B and E limited only by strength requirement of specification.
- (c) Nuts for use by welding to have welding projections with nominal spacing equal to dimension J ±.005.
- (d) For dimpled rivet type only, tolerance may be K \$\delta\$.015 max. after forming

Material and Finish: See Specification MIL-N-25027(ASG).

Performance Specification MIL-N-25027(ASG).

Add W to end of part number to obtain nuts with welding projection (C code only). Add K to end of part number to obtain nuts with countersunk rivet holes.

Example of Part Number:


```
NAS1023 A3 = Nut - Steel with 10-32 thread for use up to 550° F - all metal.

NAS1023 N3 = Nut - Steel with 10-32 thread for use up to 250° F - nylon insert.

NAS1023 C3W = Nut - Steel with 10-32 thread for use up to 800° F - all metal with welding projections.

NAS1023 N3K = Nut - Steel with 10-32 thread for use up to 250° F - nylon insert and countersunk rivet holes.
```

Figure 5-114. Drawing NAS-1023

DAS	H NUI	MBER	S]								
Nylon I	nsert	All M	etal			۳,	103	~ \				_
Alum. Alloy	Steel	Steel	Corr. Resis. Steel	Thread T	A	(6) B	(a.) C	(p) E	Dia.	1	K Dia. ∤.005	G Dia.
250 ^O F	250° F	550° F	800° F	_	Max.	Max.	Nom.	Max.	±.005	±.002	000	±.010
D06	NO6	AO6	CO6	No. 6-32 NC-3B	, 984	. 453	. 344	. 359	. 304	. 688	. 098	. 200
D08	NO8	AO8	CO8	No. 8-32 NC-3B	. 984	. 453	. 344	. 359	. 365	. 688	.098	. 200
D3	N3	A3	C3	No. 10-32 NF-3B	. 984	. 453	. 344	. 378	. 411	. 688	. 098	. 200
D4	N4	A4	C4	1/4-28 UNF-3B	1, 296	. 671	. 500	. 453	. 540	1.000	.098	, 200
D5	N5	A5	C5	5/16-24 UNF-3B	1.296	, 765	. 500	. 531	. 686	1.000	. 130	. 230
D6	N6	A6	C6	3/8-24 UNF-3B	1.546	. 953	. 625	. 671	. 809	1.250	.130	. 230

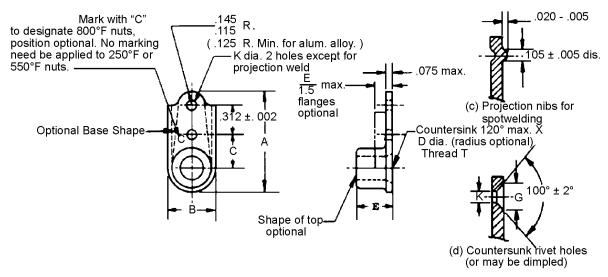
- (a) The center of the tapped hole shall not deviate in any direction from the center of the plate nut as determined by the rivet holes by more than .005.
- (b) Minimum B and E limited only by strength requirement of the specification.
- (c) Nuts for use by welding to have welding projections with nominal spacing equal to dimension J ±.005.
- (d) For dimpled rivet type only, tolerance may be K f. 015 max. after forming.

Material and Finish: See Specification MIL-N-25027(ASG).

Performance Specification MIL-N-25027(ASG).

Add W to end of part number to obtain nuts with welding projection (C code only). Add K to end of part number to obtain nuts with countersunk rivet holes.

Example of Part Number:


```
NAS1024 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1024 N3 = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert.

NAS1024 C3W = Nut - Steel with 10-32 thread for use up to 800°F - all metal with welding projections.

NAS1024 N3K = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert and countersunk rivet holes.
```

Figure 5-115. Drawing NAS-1024

	DASH 1	I U M B E	RS									
Nylon	Insert	,	All Metal				(h)	(0)	(h)			
Alum. Alloy 250°F	Steel 250°F	Alum. Alloy 250°F	Steel 550°F	Corr. Resis. Steel 800°F	Thread T	A Max.	(b) B Max.	(a) C ±.005	(b) E Max.	D Dia. +.020 010	K Dia. +.005 000	G Dia. ±.010
D06 D08 D3 D4 D5	N06 N08 N3 N4 N5	H06 H08 H3 H4 H5	A06 A08 A3 A4 A5	C06 C08 C3 C4 C5	No. 6-32 NC-3B- No. 8-32 NC-3B No. 10-32 NF-3B 1/4-28 UNF-3B 5/16-24 UNF-3B	1.031 1.031 1.031 1.062 1.250	.406 .406 .406 .516 .531	.344 .344 .344 .344 .500	.234 .297 .312 .375 .375	.156 .183 .210 .273 .336	.098 .098 .098 .098 .130	.200 .200 .200 .200 .230
l D6	l N6	I н6	A6	C6	3/8-24 UNF-3B	1.344	.641	.500	.453	.398	.130	1.23

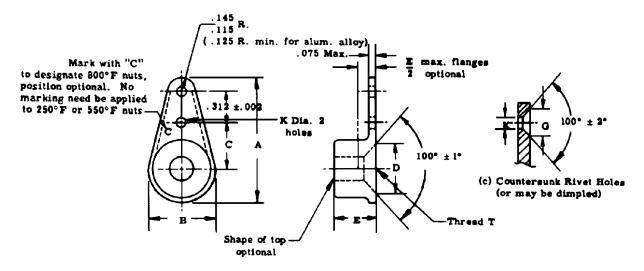
- (a) The center of the tapped hole shall not deviate from the center of the plate nut as determined by the rivet holes by more than .005.
- (b) Minimum B and E limited only by strength requirement of specification.
- (c) Nuts for use by welding to have welding projections with spacing equal to rivet spacing ± .005.
- (d) For dimpled rivet type only, tolerance may be K + .015 max. after forming.

Material and Finish: See Specification MIL-N-25027 (ASG).

Performance Specification MIL-N-25027 (ASG),

Add W to end of part number to obtain nuts with welding projection (C code only). Add K to end of part number to obtain nuts with countersunk rivet holes.

Example of Part Number:


```
NAS1025 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1025 N3 = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert.

NAS1025 C3W= Nut - Steel with 10-32 thread for use up to 800°F - all metal with welding projections.

NAS1025 N3K = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert and countersunk rivet holes.
```

Figure 5-116. Drawing NAS-1025

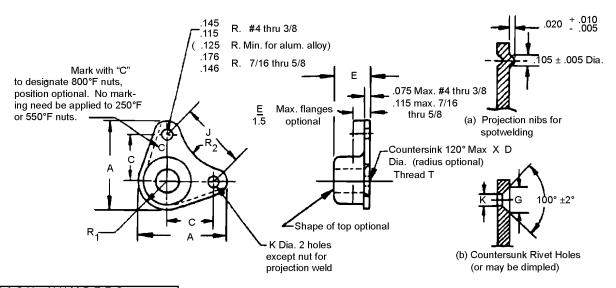
DASH NUMBERS											
Nylo	n Insert	Ali	Metal			Δ.	(-)	۸.			
Alum. Alloy	Steel	Steel	Corr. Resis. Steel	Thread T	A	(P) IB		(b) E	Dia.	K Dia. ∤. 005	G Dia.
250° F	250° F	550° F	800°F		Max.	Max.	±. 005	Max.	±. 005	000	±.010
DO6	NO6	AO6	CO6	No. 6-32 NC-3B	1.093	. 530	. 344	. 359	. 304	.098	. 200
DO8	NO6	AO8	CO8	No. 8-32 NC-3B	1.093	. 530	. 344	. 359	. 365	.098	. 200
D3	N3	A3	C3	No. 10-32 NF-3B	1.093	. 530	. 344	. 378	. 411	.098	. 200
D4	N4	A4	C4	1/4-28 UNF-3B	1.343	. 718	. 500	. 453	. 540	. 098	. 200
D5	N5	A5	C5	5/16-24 UNF-3B	1.406	. 830	. 500	. 531	. 686	.130	. 230
D6	N6	A6	C6	3/8-24 UNF-3B	1.593	1.062	. 500	. 671	. 809	. 130	-

- (a) The center of the tapped hole shall not deviate from the center of the plate nut as determined by the rivet holes by more than .005.
- (b) Minimum B and E limited only by strength requirement of the specification.
- (c) For dimpled rivet type only, tolerance may be K + .015 max. after forming.

Material and Finish: See Specification MIL-N-25027(ASG).

Performance Specification MIL-N-25027(ASG).

Add K to end of part number to obtain nuts with countersunk rivet holes.


Example of Part Number:

```
NAS1026 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1026 N3 = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert.

NAS1026 N3K = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert and countersunk rivet holes.
```

Figure 5-117. Drawing NAS-1026

DASH NUMBERS														
Nylon	Nylon Insert All Metal													
Alum. Alloy 250°F	Steel 250°F	Alum. Alloy 250°F	Steel 550°F	Corr. Resis. Steel 800°F	Thread T	A Max.	R ₁ Max.	R ₂ Max.	C ±.005	E Max.	D Dia. + .020 010	J ±.002	K Dia. + .005 000	G Dia. ± .010
D04	N04	H04	A04	C04	No. 4-40 NC-3B	.650	.172	.240	.344	.216	.131	.486	.098	.200
D06	N06	H06	A06	C06	No. 6-32 NC-3B	.703	.203	.215	.344	.234	.156	.486	.098	.200
D08	N08	H08	A08	C08	No. 8-32 NC-3B	.703	.203	.215	.344	.297	.183	.486	.098	.200
D3	N3	H3	А3	C3	No. 10-32 NF-3B	.703	.203	.215	.344	.312	.240	.486	.098	.200
D4	N4	H4	A4	C4	1/4-28 UNF-3B	.906	.257	.257	.500	.375	.273	.707	.098	.200
D5	N5	H5	A5	C5	5/16-24 UNF-3B	.937	.281	.296	.500	.375	.336	.707	.130	.230
D6	N6	H6	A6	C6	3/8-24 UNF-3B	1.008	.359	.375	.500	.453	.395	.707	.130	.230
D7	N7	H7	A7	C7	7/16-20 UNF-3B	1.125	.391	.406	.562	.469	.458	.795	.161	-
D8	N8	H8	A8	C8	1/2-20 UNF-3B	1.234	.437	.500	.625	.609	.531	.885	.161	-
D10	N10	H10	A10	C10	5/8-18 UNF-3B	1.437	.505	.500	.750	.765	.656	1.060	.161	-

- (a) Nuts for use by welding to have welding projections with nominal spacing equal to dimension J ± .005.
- (a) For dimpled rivet type only, tolerance may be K + .015 max. after forming.

Minimum base area and height limited only by strength requirement of specification.

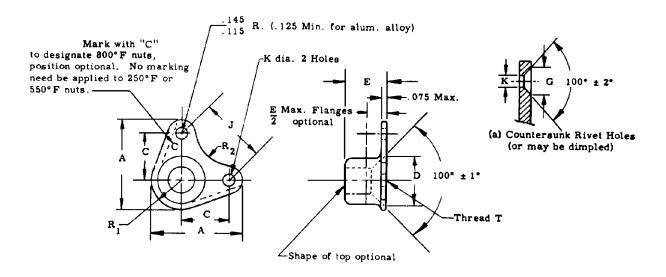
Material and Finish: See Specification MIL-N-25027(ASG).

Performance Specification MIL-N-25027(ASG)

Add W to end of part number to obtain nuts with welding projection (C code only). Add K to end of part number to obtain nuts with countersunk rivet holes.

Example of Part Number:

```
NAS1027 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.


NAS1027 N3 = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert.
```

NAS1027 C3W = Nut - Steel with 10-32 thread for use up to 500°F - all metal with welding projections.

NAS1027 N3K = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert and countersunk rivet holes.

Dimensions in inches. F05-117

Figure 5-118. Drawing NAS-1027

DAS	SH NU	MBER	S										
Nylon Insert		All M	etal										
Alum. Alloy	Steel	Steel	Corr. Resis. Steel	Thread T	A	R	R ₂	С	E	D Dia.	1	K Dia. ∮.005	G Dia.
250° F	250°F	550° F	800°F		Max.	Max.	Max.	±,005	Max.	±.005	±.002	000	±.010
DO6	NO6	AO6	CO6	No. 6-32 NC-3B	. 765	. 270	. 215	. 344	. 359	. 304	. 486	.098	. 200
DO8	NO8	AO8	CO8	No. 8-32 NC-3B	. 765	. 280	. 215	. 344	. 359	. 365	. 486	.098	. 200
D3	N3	A3	C3	No. 10-32 NF-3B	. 765	. 280	. 215	. 344	. 378	. 411	. 486	.09B	. 200
D4	N4	A4	C4	1/4-28 UNF-3B	. 984	. 343	. 343	. 500	. 453	.540	. 707	.098	. 200
D5	N5	A5	C5	5/16-24 UNF-3B	1.062	. 421	. 641	. 500	. 531	. 686	. 707	. 130	. 230
D6	N6	A6	C6	3/8-24 UNF-3B	1.250	. 484	. 843	. 500	. 671	.809	. 707	. 130	-

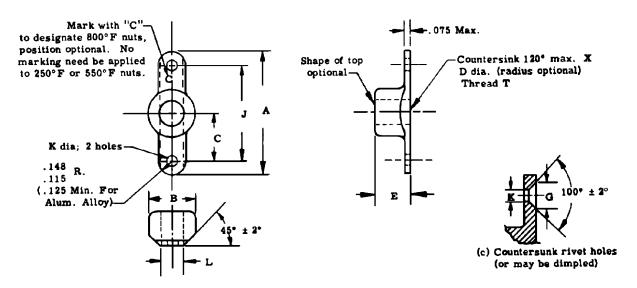
(a) For dimpled rivet type only, tolerance may be K \$\delta\$.015 max. after forming.

Minimum base area and height limited only by strength requirement of specification.

Material and Finish: See Specification MIL-N-25027(ASG).

Performance Specification MIL-N-25027(ASG).

Add K to end of part number to obtain nuts with countersunk rivet holes.


Example of Part Number:

NAS1028 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1028 N3 = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert.

NAS1028 N3K = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert and countersunk rivet holes.

Figure 5-119. Drawing NAS-1028

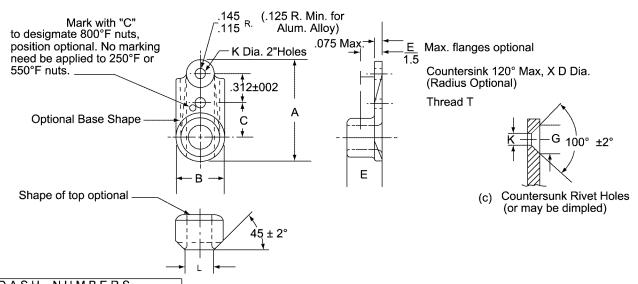
DAS	SH NU	MBER	S										
Nylon Insert		All Metal					(a)	(A)			_		_
Alum.			Corr.		A	В	(a) C	(p) E	מ	J	L	K	G
Alloy	Steel	Steel	Resis.	Thread					Dia.			Dia.	Dia
			Steel	T					f. 020			f. 005	
250°F	250° F	550° F	800°F		Max.	Max.	Nom.	Max.	010	±.002	±.015	000	±.010
DO6	NO6	AO6	CO6	No. 6-32 NC-3B	. 984	. 379	. 344	. 234	. 156	. 688	. 188	.098	. 200
DO6	NO8	AO8	COS	No. 8-32 NC-3B	. 984	. 388	. 344	. 297	. 183	. 688	. 188	. 098	`. 20 0
D3	N3	A3	C3	No. 10-32 NF-3B	. 984	. 388	. 344	. 312	. 210	. 688	. 188	. 098	, 200
D4	N4	A4	C4	1/4-28 UNF-3B	1.296	. 468	. 500	. 375	. 275	1.000	. 266	.098	. 200
D5	N5	A5	C5	5/16-24 UNF-3B	1.296	. 516	. 500	. 375	. 336	1.000	. 328	. 130	, 230

- (a) The center of the tapped hole shall not deviate from the center of the plate nut as determined by the rivet holes by more than .005.
- (b) Minimum height limited only by strength requirement of the specification.
- (c) For dimpled rivet type only, tolerance may be K \$\frac{1}{2}\$.015 max. after forming.

Material and Finish: See Specification MIL-N-25027(ASG).

Performance Specification MIL-N-25027(ASG).

Add K to end of part number to obtain nuts with countersunk rivet holes.


Example of Part Number:

NAS1029 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1029 N3 = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert.

NAS1029 N3K = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert and countersunk rivet holes.

Figure 5-120. Drawing NAS-1029

DASH NUMBERS			S									
Nylon Insert		All N	∕letal				(-)	/L\				
Alum Alloy 250°F	Steel 250°F	Steel 550°F	Corr. Steel Steel 550°F	Thread T	A Max.	B Max.	(a) C ±.005	(b) E Max.	D Dia. +.020 010	L +.015	K Dia. +.005 000	G Dia. ±.010
D06 D08	N06 N08	A06 A08	C06 C08	No. 6-32 NC-3B No. 8-32 NC-3B	1.006 1.006	.406 .406	.344	.234	.156 .183	.188 .188	.098	.200
D3 D4	N3 N4	A3 A4	C3 C4	No. 10-32 NF-3B 1/4-28 UNF-3B	1.006 1.038	.406 .516	.344	.312 .375	.210 .273	.188 .313	.098	.200 .200
D5	N5	A5	Č5	5/16-24 UNF-3B	1.225	.531	.500	.375	.336	.375	.130	.230

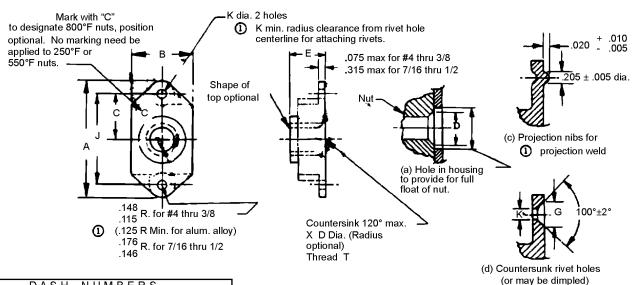
- (a) The center of the tapped hole shall not deviate from the center of the plate nut as determined by the rivet holes by more than .005.
- (b) Minimum E limited only by strength requirement of the specification.
- (c) For dimpled rivet type only, tolerance may be K +.015 max. after forming.

Material and Finish: See specification MIL-N-25027 (ASG).

Performance Specification MIL-N-25027(ASG).

Add K to end of part number to obtain nuts with countersunk rivet holes.

Example of Part Number:


```
NAS1030 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1030 N3 = Nut - Steel with 10-32 thread for use up to 250°F - nylon insert.

NAS1030 N3K = Nut - Steel with 10-32 thread for use up to 550°F - nylon insert and countersunk rivet holes.
```

Dimensions in inches.

Figure 5-121. Drawing NAS-1030

DASH NUMBERS										(Or ma)	, be diripi	eu)	
Nylon	Insert	Al	l Metal										
Alum Alloy Nut Alum. A 250°F	Steel Nut lloy or Steel 250°F	Steel Nut Housing 250°F	Steel Assy 550°F	Corr. Resis. Steel Assy 800°F	Thread T	A Max.	(b) B Max.	(a) C Nom.	(b) E Max.	D Dia. + .020 010	J ± .002	K Dia. + .005 000	G Dia. ± .010
D04 D06 D08 D3 D4 D5 D6 D7 D8	N04 N06 N08 N3 N4 N5 N6 N7	P04 P06 P08 P3 P4 P5 P6 P7	A04 A06 A08 A3 A4 A5 A6 A7	C04 C06 C08 C3 C4 C5 C6 C7	No. 4-40 NC-3B No. 6-32 NC-3B No. 8-32 NF-3B No. 10-32 NF-3B 1/4-28 UNF-3B 5/16-24 UNF-3B 3/8-24 UNF-3B 7/16-20 UNF-3B 1/2-20 UNF-3B	.984 .984 .984 .984 1.296 1.296 1.477 1.802	.416 .416 .416 .416 .516 .609 .641 .719 .859	.344 .344 .344 .500 .500 .500 .562 .645	.218 .234 .312 .312 .387 .387 .479 .504	.131 .156 .183 .210 .273 .336 .398 .458	.688 .688 .688 .688 1.000 1.000 1.000 1.125 1.250	.098 .098 .098 .098 .098 .130 .130 .161	.200 .200 .200 .200 .200 .230 .230

- (a) Float of nut portion of assembly shall not be less than .030 inches, or more than .040 inches laterally and longitudinally from the centered position. Nut body shall be capable of engagement with a bolt in the maximum misaligned position. Maximum vertical float within the housing .020 for #10 and smaller, .030 for 1/4 and larger.
- (b) Minimum B and E limited only by strength requirement of specification.
- (c) Nuts for use by welding to have welding projections with nominal spacing equal to dimension J ± .005.
- (d) For dimpled rivet type only, tolerance may be K + .015 max. after forming.
 Nut misalignment shall not exceed dimension B nor clearance for rivet attachment.
 Shape of nut and housing optional within limits specified, and shall form one integral unit to prevent seperation during handling. The assembly shall provide a bearing surface for the nut within the housing.

Material and Finish: See Specification MIL-N-25027(ASG).

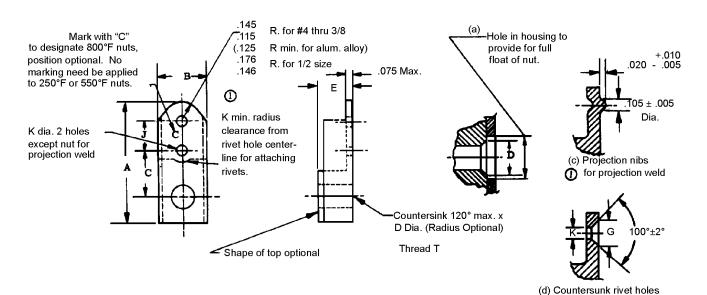
Performance Specification MIL-N-25027(ASG).

Add W to end of part number to obtain nuts with welding projection (C code only). Add K to end of part number to obtain nuts with countersunk rivet holes.

Example of Part Number:

NAS1031 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1031 N3 = Nut - Steel with 10-32 thread for use up to 250°F - aluminum or steel housing -


nylon insert.

NAS1031 C3W= Nut - Steel with 10-32 thread for use up to 800°F - all metal with welding projections.

NAS1031 N3K = Nut - Steel with 10-32 thread for use up to 250°F - aluminum alloy or steel housing -

nylon insert and countersunk rivet holes.

Figure 5-122. Drawing NAS-1031

D	ASH N	UMBER	S		(or may be dimpled)									
Nylon Insert All Metal														
Alum Alloy Nut	Steel Nut	Steel Nut	Steel	Corr. Resis. Steel			(b)	(a)	(b)	D Dia.		K Dia.	G	
Alum. Alloy or Steel Housing		Assy	Assy	Thread	Α	В	С	Е	+ .020	J	+ .005	Dia.		
250°F	250°F	250°F	550°F	800°F	Т	Max.	Max.	±.005	Max.	010	± .002	000	± .010	
D04 D06 D08 D3 D4	N04 N06 N08 N3 N4	P04 P06 P08 P3 P4	A04 A06 A08 A3 A4	C04 C06 C08 C3 C4	No. 4-40 NC-3B No. 6-32 NC-3B No. 8-32 NC-3B No. 10-32 NF-3B 1/4-28 UNF-3B	1.094 1.094 1.094 1.094 1.316	.422 .422 .422 .422 .531	.344 .344 .344 .344 .500	.218 .234 .312 .312 .387	.131 .156 .183 .210 .273	.312 .312 .312 .312 .312	.098 .098 .098 .098	.200 .200 .200 .200 .200	
D5 D6	N5 N6	P5 P6	A5 A6	C5 C6	5/16-24 UNF-3B 3/8-24 UNF-3B	1.378 1.422	.641 .703	.500 .500	.387 .479	.336 .398	.312 .312	.130 .130	.230 .230	
D8	N8	P8	A8	C8	1/2-20 UNF-3B	1.800	.859	.625	.630	.531	.500	.161	I — I	

- (a) Float of nut portion of assembly shall not be less than .030 inches, or more than .040 inches laterally and longitudinally from the centered position. Nut body shall be capable of engagement with a bolt in the maximum misaligned position. Maximum vertical float within the housing .020 for #10 and smaller, .030 for 1/4 and larger.
- (b) Minimum B and E limited only by strength requirement of specification.
- (c) Nuts for use by welding to have welding projections with nominal spacing equal to dimension J ± .005.
- (d) For dimpled rivet type only, tolerance may be K + .015 max. after forming.

 Nut misalignment shall not exceed dimension B nor clearance for rivet attachment.

 Shape of nut and housing optional within limits specified, and shall form one integral unit to prevent separation during handling. The assembly shall provide a bearing surface for the nut within the housing.

Material and Finish: See Specification MIL-N-25027(ASG).

Performance Specification MIL-N-25027(ASG).

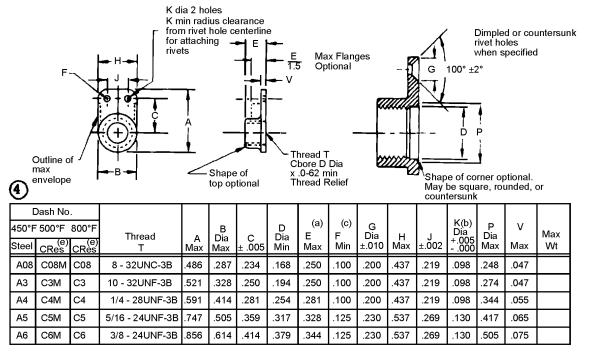
Add W to end of part number to obtain nuts with welding projection (C code only).

Add K to end of part number to obtain nuts with countersunk rivet holes.

Example of Part Number:

NAS1032 A3 = Nut - Steel with 10-32 thread for use up to 550°F - all metal.

NAS1032 N3 = Nut - Steel with 10-32 thread for use up to 250°F - aluminum or steel housing -


nylon insert.

NAS1032 C3W= Nut - Steel with 10-32 thread for use up to 800°F - all metal with welding projections.

NAS1032 N3K = Nut - Steel with 10-32 thread for use up to 250°F - aluminum alloy or steel housing - nylon insert and countersunk rivet holes.

Dimensions in inches. F05-122

Figure 5-123. Drawing NAS-1032

- Minimum "E" not specified. Limited only by strength requirements of specification. (a)
- For dimpled rivet type, "K" tolerance may be + .015, .000 after forming.
- The center of the tapped hole shall not deviate from the longitudinal center line of the plate (c) nut as determined by the rivet holes by more than .005.

 Magnetic Permeability shall be less than 2.0 (Air=1.0) for a field strength H=200 oersteds
- using a magnetic permeability indicator per MIL-I-17214 or equivalent

CODE:

Dash numbers suffixed by K = back countersunk or dimpled rivet holes. The CRes Dash Number suffixed by M designates an approved dry film lubricant

(4)

Insert "X" in lieu of "A" in the 450°F steel code for cadmium plated steel nuts without molybdenum disulfide coating or any other lubricant

EXAMPLE OF PART NUMBERS: NAS1067A4 = 1/4-28 plate nut, all metal construction plain rivet holes. NAS1067A4K = 1/4-28 plate nut, all metal construction countersunk or dimpled rivet holes.

NAS1067C4 = 1/4-28 plate nut, all all metal construction of A286 CRes, silver plated for 800°F use.

NAS1067C4M = 1/4-28 plate nut, all metal construction of A286 CRes with an approved dry film lubricant for 500°F use.

NAS1067X4 = 1/4-28 plate nut, all metal construction plain rivet holes without lubricant.

MATERIAL:

See Procurement Specification

A286 per AMS 5525.

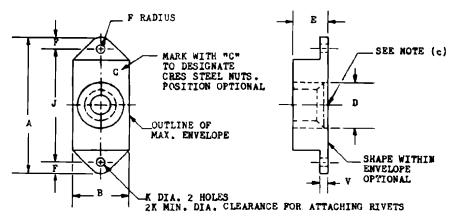
FINISH:

Steel - Cadmium plate per QQ-P-416 plus an approved dry film lubricant. Type and class of plating optional if lubricated nuts will meet salt spray requirements of QQ-P-416, Type II.

CRes - Silver plate, for 800°F use, per AMS2410 to a .0002 minimum of silver plate on nut surfaces which can be touched by a .75 inch ball. Threads shall show complete coverage but thickness requirements on threads is waved. Plating on

CRes - Approved dry film lubricant for 500°F use.

PROCUREMENT SPECIFICATION:


MIL-N-25027, except as noted. All nuts shall meet qualification and inspection requirement. Manufacturer shall provide evidence of qualification when required Testing shall be performed by manufacturer or independent laboratory. Procuring agency may conduct confirming qualification tests. No QPL shall be established.

NOTES:

- Axial strength requirements per MIL-N-25027 Table I values for regular steel
- 2. Dimensions in inches.

CHECK PRINT F05-123

Figure 5-124. Drawing NAS-1067

5 Das	sh Number										
450° F	500° F	800°F	Thread T	A Max	B Max	D Dia	E (a)	F Min	J (b)	+. 005	v
Steel	CRes ^(d)	CRes ^(d)	1	Max	WAX	Min	Max	MILII	1.002	000	Мах
A04	C04M	C04	4-40UNC-3B	. 498	.315	, 116	. 153	. 075	. 296	. 066	. 140
A04L	Ç04LM	C04L	4-40UNC-3B	. 651	. 315	. 116	. 153	.089	. 406	. 098	. 140
A06	Ç06M	Ç06	6-32UNC-3B	. 545	. 357	. 142	. 171	. 075	. 343	.066	, 140
A06L	C06LM	C06L	6-32UNC-3B	. 682	. 357	. 142	. 171	. 089	. 437	. 098	. 140
A08	C08M	C08	8-32UNC-3B	. 707	. 367	. 168	. 250	. 100	. 468	. 098	. 140
A3	C3M	C3	10-32UNF-3B	739	. 416	. 194	. 250	. 100	. 500	. 098	. 140
A4	C4M	C4	1/4-28UNF-3B	, 801	. 500	. 254	. 281	. 100	. 562	. 098	. 140
A5	C5M	C5	5/16-24UNF-3B	1.010	. 581	. 317	. 328	. 117	.718	, 130	. 140

- (a) Minimum "E" not specified, limited only by strength requirement of specifications.
 (b) Float of nut portion of assembly shall not be less than .020 inches laterally and longitudinally from centered

- (b) Float of nut portion of assembly shall not be less than . 020 inches laterally and longitudinally from centered position. Nut body shall be capable of engagement with a bolt in the maximum misaligned position.
 (c) On size no. 8 and larger, counter bore thread D dia. x . 062 deep min. thread relief; on size no. 6 and smaller c'sink to D dia. Threads per MIL-S-7742 before lubrication.
 (d) Magnetic permeability of CRes nuts shall be less than 2. 0 (Air=1.0) for a field strength of H=200 oersteds using a magnetic permeability indicator per MIL-I-17214 or equivalent.
 (e) The assembly shall provide a bearing surface for the nut within the housing and the nut and base portion of the assembly shall form one integral unit.

CODE:

The CRes dash number suffixed by M designates an approved dry film lubricant finish. Insert X in lieu of A in the 450°F steel code for cadmium plated steel nuts without molybdenum disulfide or any other lubricant.

EXAMPLES OF PART NUMBERS:

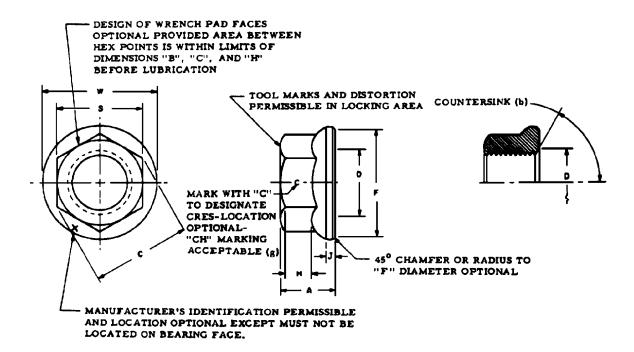
- NAS1068A3 = 10-32 floating all metal construction plate nut.
 NAS1068C3 = 10-32 floating all metal construction plate nut of A286 CRes. Silver plate for 800°F use. NAS1068C3M = 10-32 floating all metal construction plate nut of A286 CRes plus an approved dry film lubricant for 500°F use.
- NAS1068X3 = 10-32 floating all metal construction plate nut for 450°F use, without lubricant.

MATERIAL:

Steel - See Procurement Specification. CRes - A286 per AMS5525

FINISH:

- Steel Cadmium plate per QQ-P-416 plus an approved dry film lubricant. Type and class of plating optional if lubricated nuts will meet salt spray requirements of QQ-P-416, Type II.
 CRes Silver plate, for 800°F use, per AMS2410 to a .0002 minimum of silver plate on nut surfaces which can be touched by a .75 inch ball. Threads shall show complete coverage but thickness requirements on threads is waived. Plating on retaining cage CRes - Approved dry film lubricant for 500°F use.
- (5) PROCUREMENT
- PROCUREMENT MIL-N-25027, except as noted. All nuts shall meet qualification and inspection SPECIFICATION: requirements. Manufacturer shall provide evidence of qualification when required. Testing shall be performed by manufacturer or independent laboratory. Procuring agency may conduct confirming qualification tests. No QPL shall be established.


NOTES:

Axial strangth requirements per MIL-N-25027 Table I values for regular steel nuts. Dimensions in inches.

CHECK PRINT

F05-124

Figure 5-125. Drawing NAS-1068

		Das	sh Numb			(c)				(b)				(f)			(a)	(a)
Steel	450°F Steel	(d) A286 CRes	(d) A286 CRes	450°F (d) A286 CRes	(d) A28	= <u> </u>	A	В	C (Min)	D	F (Min)	H (Min)	J (Min)	s	W (Min)	Max Wt. Lbs. Per 100	Axial Tensile Strength Lbs. (Min) Steel	Axial Tensile Strength Lbs. (Min) A286 CRes
02	X02	C02M	C02	A02N	02	2-56 UNC-3B	.100 .080	.127 .122	.138	.106 .086	.137	.045	.008	.0025	.167	.02	660	463
04	X04	C04M	C04	A04M	A04	4-40 UNC-3B	.125 .105	.158 .150	.171	.142 .112	.176	.050	.010	.003	.206	.05	1,110	760
06	X06	C06M	C06	Ар6М	A06	6-32 UNC-3B	.141 .115	.190 .181	.207	.168 .138	.214	.055	.010	.003	.244	.08	1,670	1,150
08	X08	C08M	C08	AQM8	BDA	8-32 UNC-3B	.188 .125	.221 .213	.244	.194 .164	.260	.060	.015	.003	.290	.15	2,490	1,720
3	Х3	СЗМ	C3	ASM	АЗ	10-32 UNF-3B	. 28 .154	.252 .243	.277	.220 .150	.290	.065	.015	.003	.330	.18	3,470	2,460
4	X4	C4M	C4	A4M	A4	1/4-28 UNF-3B	.219 .204	.316 .304	.347	.280 .250	.386	.090	.019	.003	.420	.35	6,200	4,580
5	X5	C5M	C5	ABN	ΑĎ	5-16-24 UNF-3B	.264 .251	.378 .367	.419	.342 .312	.482	.120	.023	.004	.520	.60	9,820	7,390
6	X6	C6M	C6	A6M	A6	3/8-14 UNF-3B	.282 .267	.440 .430	.491	.405 .375	.575	.125	.030	.004	.620	.80	15,200	11,450
7	X7	С7М	C7	47M	A 7	7/16-20 UINF-3B	.328 .313	.304 .494	.562	.467 .437	.680	.160	.035	.005	.708	1.3	20,600	15,450
8	X8	C8M	C8	A8M	A8	1/2-20 UNF-3B	.410 .350	.566 .556	.633	.530 .500	.786	.225	.040	.005	.814	2.1	27,500	21,110
9	Х9	C9M	C9	А9М	А9	9/16-18 UNF-3B	.480 .420	.692 .680	.773	.592 .562	.874	.320	.045	.006	.912	3.6	34,800	26,810
10	X10	C10M	C10	A10M	A10	5/8-18 UNF-3D	.550 .490	.755 .743	.846	.655 .625	.976	.365	.050	.007	1.014	4.5	43,600	34,130

	LIST OF	ACTIVE SHEETS
	Sheet	Revision
(3) Completely Revised - Sheet 2 Added	1	3
O Completely Mexista - Sheet & Moded	2	1

F05-125S01

Figure 5-126. Drawing NAS-1291 (Sheet 1 of 2)

- (a) Minimum tensile strength for steel (450°F) nut per table is based on 160,000 psi and on areas calculated by using 98% of the basic pitch diameter as shown in Tables III-3 and III-4, Screw Thread Standards for Federal Services 1957 (National Bureau of Standards Handbook H-28) Part I, except 3/8 and larger sizes which are based on 100%. Test bolts shall be 180,000 psi min. Tensile values for A286 are based on 125,000 psi per MIL-N-25027.
- (b) Countersink, countersink-counterbore or radius relief to thread within limits of "D" diameter and 120° max. angle.
- (c) Threads per MIL-S-7742 or MIL-S-8879 before lubrication.
- (d) Magnetic permeability of A286 nuts shall be less than 2.0 (Air = 1.0) for a field strength H = 200 Oersteds using a magnetic permeability indicator per MIL-I-17214 or equivalent.
- (e) Minimum "Go" thread gage penetration shall be 3/4 revolution before dry film lubricant.
- (f) Bearing surface must be square with pitch diameter "S" when measured in accordance with MIL-N-25027.
- (g) Individual marking on size number 3 (10-32) and smaller at manufacturer's option.
- (h) -8(1/2-20), -9(9/16-18) and -10(5/8-18) nuts not intended for use with short thread screws or bolts.

EXAMPLES OF

PART NUMBERS: NAS121-4 = 1/4-28 nut, all metal construction of steel, cadmium with an approved dry film lubricant for 450°F use.

NAS1291X4 = 1/4-28 nut, all metal construction, cadmium plated, without dry film coating or any

other lubricant for 450°F use.

NAS1291C4M = 1/4-28 nut, all metal construction of A286, with an approved dry film lubricant for

450°F use.

NAS1291C4 = 1/4-28 nut, all metal construction of A286, silver plated for 800°F use.

NOTE: "A" material code call-out to designate A286 CRes, as in NAS 1291A4, is inactive for new design. Use "C"

material code call-out to designate A286 CRes, as in NAS 1291C4, for new design.

MATERIAL: Steel. See procurement specification.

A286 CRes per AMS5735, AMS5737, or AMS5525.

FINISH: Steel: Plain Cadmium Plated Nuts in accordance with QQ-P-416, Type II, Class 3

Dry film lubricated Nuts, the Cadmium Plate in accordance with QQ-P-416, Type and Class optional provided Nuts meet Salt Spray Requirements of QQ-P-416, Type II. Dry Film Lubricant in accordance with MIL-N-25027. Other lubricants shall be soluble in the cleaners specified in the procurement specification.

A286: Silver plate, for 800°F use, in accordance with AMS 2410. Silver plate thickness shall be .0002 minimum on all visible surfaces that can be touched by a 0.75 inch diameter ball. All other surfaces, including threads, shall show complete coverage.

Dry Film Lubricant, for 450°F use, in accordance with MIL-N-25027. Other lubricants shall be soluble in the cleaners specified in the procurement specification.


NOTE: Wrench torque per MIL-N-25027 Table II for regular nuts; box or socket wrench required only for test purposes. Minimum break-away torque shall be 0.2 inch pound for size 2-56 and 0.5 inch pound for

size 4-40. For larger sizes see MIL-N-25027.

PROCUREMENT SPECIFICATION: MIL-N-25027, except as noted. All nuts shall meet qualification and inspection

requirements. Manufacturer shall provided evidence of qualification when required. Testing shall be performed by manufacturer or independent laboratory. Procuring agency may conduct confirming qualification tests. No QPL shall be established.

F05-125S02

	DASH	NO			_			_
THR EAD T	NUT STEEL 225°F	NUT CRES 450°F	A KAM	E MAX	c ±.005	MIN	E MAX	P MAX
.1640-32UNJC-3B	80A 8A	co8	.989	1	. 344	. 229		. 31 3
.2500-28UNJF-3B	A4 A5	C4 C5	1.296	.668 .762	.500	. 289 . 351		.372 .410
THREAD T	G MAX	BOLT END	J ±.002	к +.005	N MIN	R	WEIGH'	
_		H MAX		000			225°F	450°F
16 ha 200000 00								
.1640-32UNJC-3E		.568 .687	.688	.098	.125	.098	.92	1.00

CODE: "A" DESIGNATES NON-CORROSION RESISTANT STEEL CADMIUM PLATE NUT AND SHELL WITH ALUMINUM OR STEEL WASHER, (AVAILABLE ONLY WITH MIL-R-6855 SEAL).
"C" DESIGNATES CORROSION RESISTANT STEEL NUT, SHELL AND WASHER WITH AMS3304 SILICONE RUBBER SEAL, NON-FUEL RESISTANT.
INSERT "X" IN LIEU OF "A" IN THE STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

TITLE

NUT, SELF-LOCKING, PLATE-TWO LUG, CAP, FLOATING

F05-126S01

Figure 5-127. Drawing NAS-1473 (Sheet 1 of 3)

EXAMPLES: NAS1473A08 = STEEL NUT AND SHELL WITH ALUMINUM ALLOY OR STEEL WASHER,

.1640-32UNJC-3B THREAD AND MIL-R-6855 FUEL RESISTANT RUBBER SEAL FOR USE UP

TO +225°F.

NAS1473C08 = CRES NUT, SHELL AND WASHER WITH .1640=32UNJC-3B THREAD AND AMS3304 NON-FUEL RESISTANT SILICONE RUBBER SEAL FOR USE UP TO +450°F.

MATERIALS: NUT - STEEL, SEE PROCUREMENT SPECIFICATION.

CRES, AMS5525 OR AMS5735, A-286, NON-MAGNETIC

SHELL - STEEL, SEE PROCUREMENT SPECIFICATION. CRES, AMS5525, A-286, NON-MAGNETIC

WASHER - (225°F) ALUMINUM ALLOY OR STEEL, SEE PROCUREMENT SPECIFICATION.

(450°F) CRES, AMS5525 OR AMS5735, A-286, NON-MAGNETIC

SEAL - (225°F) RUBBER, MIL-R-6855. CLASS I, GRADE 60, DUROMETER A60,

COLOR BLACK.

(450°F) SILICONE RUBBER, AMS3304, DUROMETER A70, COLOR RED.

FINISH: STEEL SHELL AND WASHER - CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 2.

STEEL NUT - CADMIUM PLATE PER QQ-P-416. TYPE II. CLASS 2. PLUS AN

APPROVED DRY FILM LUBRICANT. EXISTING NUTS WITH AN OPTIONAL TYPE AND CLASS OF CADMIUM PLATE PER QQ-P-416, AS PREVIOUSLY PERMITTED, MAY BE FURNISHED UNTIL 16 DEC. 1976.

UNTIL 16 DEC. 1976.

CRES: SHELL AND WASHER - CLEAN AND PASSIVATE PER MIL-S-5002. NUT-SILVER

PLATE FOR 450°F USE PER MIL-N-25027 TO A .0002 MINIMUM THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A .7500 (3/4-INCH) BALL. THREADS SHALL SHOW COMPLETE COVERAGE, BUT THICKNESS REQUIREMENT ON THREADS IS WAIVED.

ALUMINUM ALLOY: ANODIZE OR CHEMICAL FILM PER MIL-N-25027, EXCEPT ANODIZE SHALL BE

LIMITED TO TYPE I OR TYPE II.

FLOAT: MINIMUM RADIAL FLOAT .020.

MAXIMUM AXIAL FLOAT .030.

PRESSURE RANGE: 0 TO 50 PSIG

TEMPERATURE RANGE: MIL-R-6855 RUBBER (-65°F TO 225°F).

AMS3304 RUBBER (-65°F TO 450°F)

THREADS: THREADS IN ACCORDANCE WITH MIL-S-8879 BEFORE LUBRICATION.

MARKING: THE SMALLEST CONTAINER USED TO PACKAGE "A" CODED PARTS SHALL BE MARKED WITH

THE CURE DATE (QUARTER AND YEAR) OF THE OLDEST RUBBER SEAL CONTAINED THEREIN. THE AGE OF RUBBER SEALS SHALL NOT EXCEED 6 QUARTERS AT THE TIME OF DELIVERY

TO THE CONTRACTOR.

NOTES: 1. THREAD ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNED POSITION.

2. NUT AND SHELL SHAPE OPTIONAL, WITHIN SPECIFIED MAXIMUM DIMENSIONS.

3. MAGNETIC PERMEABILITY OF CRES NUTS SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR A FIELD STRENGTH H = 200 OERSTEDS. MAGNETIC PERMEABILITY INDICATOR PER MIL-I-17214 OR EQUIVALENT.

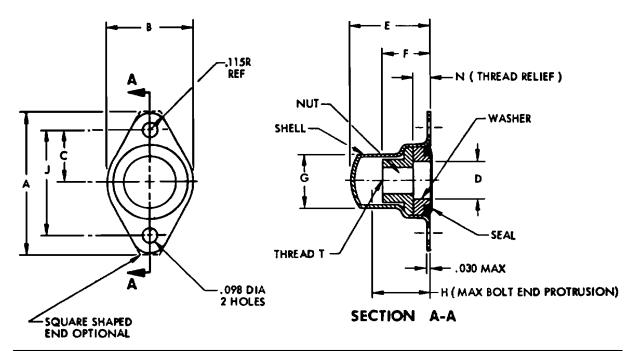
PERFORMANCE: QUALIFICATION TEST

I . 0 ALL REQUIREMENTS OF MIL-N-25027 PERTAINING TO STEEL FLOATING PLATE NUTS INCLUDING AXIAL STRENGTH REQUIREMENTS OF TABLE I FOR REGULAR STEEL NUTS, SHALL APPLY TO THIS PART EXCEPT THE MAXIMUM TEMPERATURE SHALL BE 450°F. A POSITIVE SEAL SHALL BE REQUIRED AFTER TESTING PER PARAGRAPH 3.10 (PUSHOUT) AND 3.9.3 (TORQUE OUT) OF MIL-N-25027. THE PUSH OUT AND TORQUE OUT TESTS SHALL BE CARRIED TO A PROOF LOAD. EQUAL TO THE REQUIREMENTS FOR THE APPLICABLE SIZE. ALL TESTS SHALL BE PERFORMED ON A SINGLE SHEET OF 2024-T3 OR 7075-T6 ALUMINUM ALLOY, NOMINAL THICKNESS OF .312 INCHES, AND HAVING A MINIMUM OF TEN (10) INCHES SQUARE (100 SQUARE INCHES) UNSUPPORTED AREA.

F05-126S02

Figure 5-127. Drawing NAS-1473 (Sheet 2)

(continued)


SIX (6) NUTS SHALL BE EQUALLY SPACED ON A CIRCLE HAVING A DIAMETER OF SEVEN AND ONE HALF (7-1/2) INCHES, THE NUTS SHALL BE ATTACHED TO THE PLATE BY SOCKET HEAD CAP SCREWS THREADED INTO BLIND HOLES TAPPED TO A DEPTH OF APPROXIMATELY .218 INCHES. #3-48 SCREWS SHALL BE USED FOR PARTS WITH .098 INCH DIAMETER RIVET HOLES AND #5-40 SOCKET HEAD CAP SCREWS SHALL BE USED FOR PARTS WITH .130 INCH DIAMETER RIVET HOLES. THE #3-48 SCREWS SHALL BE SEATED TO FOURTEEN (14) INCH-POUNDS AND THE #5-40 SCREWS TO EIGHTEEN (18) INCH-POUNDS. INSTALL BOLTS IN NUTS USING A SEATING TORQUE THREE (3) TIMES THE MAXIMUM LOCKING TORQUE OF MIL-N-25027. THREE (3) NUTS SHALL BE TESTED WITH BOLTS INSTALLED AND THREE (3) NUTS WITH BOLTS REMOVED.

- 2.0 A POSITIVE SEAL SHALL BE CONSIDERED TO MEAN NO LEAKAGE BY VISUAL EXAMINATION, USING DYED LIQUID, WHEN SUBJECTED TO A STATIC DIFFERENTIAL PRESSURE OF 50 PSI+2 -0 PSI FOR A PERIOD OF FIVE (5) MINUTES MINIMUM. THE LIQUIDS USED SHALL BE FUELS CONFORMING TO MIL-J-5624 OR TT-S-735, TYPE III, FOR 225°F SEALS AND METHYL ALCOHOL FOR 450°F SEALS. IN ADDITION, A CYCLING TEST SHALL BE-PERFORMED CONSISTING OF A CYCLING PRESSURE OF BETWEEN 0 AND 50 PSI FOR 1000 CYCLES, A CYCLE BEING COMPLETED APPROXIMATELY EVERY TWELVE (12) SECONDS.
- 2.1 A POSITIVE SEAL SHALL BE PROVIDED AFTER AGING AN EMPTY TEST FIXTURE WITH NUTS MOUNTED IN A HOT AIR FURNACE AT 450°F ±10°F 225°F ±10°F, AS APPLICABLE FOR A PERIOD OF 4 HOURS ±10 MINUTES, A CYCLING TEST SHALL BE PERFORMED AT TEMPERATURE WITHOUT LIQUID USING AIR PRESSURE ALONE. THE TEST PRESSURES AND PROCEDURES OF PARAGRAPH 2.0 SHALL APPLY EXCEPT THE NUMBER OF PRESSURE CYCLES SHALL BE LIMITED TO 100. DURING THIS PERIOD, SINCE THERE IS NO LIQUID IN THE TANK, THERE IS NO CHECK FOR LEAKAGE.
- 2.2 IMMEDIATELY AFTER ELEVATED TEMPERATURE TEST CYCLES, THE FIXTURE SHALL BE REMOVED FROM THE FURNACE AND ALLOWED TO COOL TO ROOM TEMPERATURE. AT ROOM TEMPERATURE, LIQUID SHALL BE ADDED AND POSITIVE SEAL SHALL BE PROVIDED IN LIQUIDS WHEN TESTED IN ACCORDANCE WITH TEST PRESSURES AND PROCEDURES OUTLINED IN PARAGRAPH 2.0.
- 2.3 IN ADDITION, THE SAMPLES TESTED IN 2.1 SHALL PROVIDE A POSITIVE SEAL AFTER A CYCLING TEST HAS BEEN PERFORMED AS FOLLOWS: PLACE TEST FIXTURE IN A COLD BOX AT -65°F ±10°F AND ALLOW TO SOAK FOR A PERIOD OF 4 HOURS ±10 MINUTES. AFTER SOAKING AT THIS TEMPERATURE, APPLY A STATIC PRESSURE OF 50 PSI ±5 PSI FOR A PERIOD OF ONE (1) HOUR, A CYCLING TEST SHALL THEN BE PERFORMED BY HOLDING A PRESSURE OF 50 PSI ±5 PSI ON THE TEST FLUID FOR A PERIOD OF TWENTY (20) SECONDS AND RELEASING PRESSURE FOR TEN (10) SECONDS. REPEAT THIS THIRTY (30) SECOND CYCLE FOR 120 CYCLES. ALL TESTING UNDER THIS PARAGRAPH SHALL BE PERFORMED AT -65°F ±F°.

PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED, ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

F05-126S03

	DASH N	UMBERS								BOLT	
THREAD T	NUT STEEL 225°F	NUT CRES 450°F	A MAX	B MAX	c ±.005	D MIN	E MAX	F MAX	G MAX	END H MAX	±.002
.1120-40UNJC-3B	A04	Ç04				.142		, 204			
.1380-32UNJC-3B	A06	co6	.840	.443	. 295	.173	.405	.221	. 352	. 340	.590
.1640-32UNJC-3B	80A	co8] .040		روع.	,194	,	-60	. 550	• • • • • • • • • • • • • • • • • • •	'','
.1900-32UNJF-3B	A3	C3				. 550		. 268			
.2500-28UNJF-3B	A4	C4	1.000	.635	. 376	. 280	.560	. 350	.419	.490	.752

THREAD T	N MIN		iT/100 PROX
		225°F	450°F
,1120-40UNJC-3B		.41	. 50
.1380-32UNJC-3B	.070	.42	.51
.1640-32UNJC-3B	.070	.43	.52
.1900-32UNJF-3B		.45	.54
.2500-28UNJF-3B	.105	1.00	1.10

CODE: "A" DESIGNATES NON-CORROSION RESISTANT STEEL CADMIUM PLATE NUT AND SHELL WITH ALUMINUM OR STEEL WASHER, (AVAILABLE ONLY WITH MIL-R-6855 SEAL).
"C" DESIGNATES CORROSION RESISTANT STEEL NUT, SHELL AND WASHER WITH AMS3304 SILICONE RUBBER SEAL, NON-FUEL RESISTANT.

INSERT "X" IN LIEU OF "A" IN THE STEEL CODE FOR CADMIUM PLATED STEEL NUTS WITHOUT LUBRICANT.

NUT, SELF-LOCKING, PLATE-TWO LUG, CAP, FLOATING, REDUCED RIVET SPACING

F05-127S01

Figure 5-128. Drawing NAS-1474 (Sheet 1 of 3)

EXAMPLES: NAS1474A08 = STEEL NUT AND SHELL WITH ALUMINUM ALLOY OR STEEL WASHER.

.1640-32UNJC-3B THREAD WITH MIL-R-6855 FUEL RESISTANT RUBBER

SEAL FOR USE UP TO +225°F.

NAS1474C08 = CRES NUT, SHELL AND WASHER WITH .1640-32UNJC-3B THREAD AND

AMS3304 NON-FUEL RESISTANT SILICONE RUBBER SEAL FOR USE UP

TO +450°F.

MATERIALS: NUT - STEEL, SEE PROCUREMENT SPECIFICATION.

CRES, AMS5525, OR AMS5735, A-286, NON-MAGNETIC.

SHELL - STEEL, SEE PROCUREMENT SPECIFICATION. CRES, AMS5525, A-286 NON-MAGNETIC.

WASHER - (225°F) ALUMINUM ALLOY OR STEEL. SEE PROCUREMENT SPECIFICATION.

(450°F) CRES, AMS5525 OR AMS5735, A-286, NON-MAGNETIC.

SEAL - (225°F) RUBBER, MIL-R-6855, CLASS I, GRADE 60, DUROMETER A60,

COLOR BLACK.

(450°F) SILICONE RUBBER, AMS 3304, DUROMETER A70, COLOR RED.

FINISH: STEEL SHELL AND WASHER - CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 2.

STEEL NUT: CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 2, PLUS AND APPROVED

DRY FILM LUBRICANT. EXISTING NUTS WITH AN OPTIONAL TYPE AND CLASS

OF CADMIUM PLATE PER QQ-P-416, AS PREVIOUSLY PERMITTED,

FURNISHED UNTIL 16 DEC. 1976.

CRES - SHELL AND WASHER - CLEAN AND PASSIVATE PER MIL-S-5002.

NUT - SILVER PLATE FOR 450°F USE PER MIL-N-25027 TO A .0002 MINIMUM THICKNESS ON SURFACES WHICH CAN BE TOUCHED BY A .7500 (3/4-INCH) BALL. THREADS SHALL SHOW COMPLETE COVERAGE. BUT THICKNESS REQUIREMENT ON THREADS IS WAIVED.

ALUMINUM ALLOY - ANODIZE OR CHEMICAL FILM PER MIL-N-25027, EXCEPT ANODIZE SHALL BE LIMITED TO TYPE I OR TYPE II.

FLOAT: MINIMUM RADIAL FLOAT .015.
MAXIMUM AXIAL FLOAT .030

PRESSURE RANGE: 0 TO 50 PSIG.

TEMPERATURE RANGE: MIL-R-6855 RUBBER (-65°F TO 225°F).

THREADS: THREADS IN ACCORDANCE WITH MIL-S-8879 BEFORE LUBRICATION.

MARKING: THE SMALLEST CONTAINER USED TO PACKAGE "A" CODED PARTS SHALL BE MARKED WITH

THE CURE DATE (QUARTER AND YEAR) OF THE OLDEST RUBBER SEAL CONTAINED THEREIN. THE AGE OF RUBBER SEALS SHALL NOT EXCEED 6 QUARTERS AT THE TIME OF DELIVERY

TO THE CONTRACTOR.

NOTES:

1. THREAD ELEMENT SHALL BE CAPABLE OF ENGAGEMENT WITH A BOLT IN THE MAXIMUM MISALIGNED POSITION.

2. NUT AND SHELL SHAPE OPTIONAL, WITHIN SPECIFIED MAXIMUM DIMENSIONS.

MAGNETIC PERMEABILITY OF CRES NUTS SHALL BE LESS THAN 2.0 (AIR = 1.0) FOR
 A FIELD STRENGTH H = 200 OERSTEDS. MAGNETIC PERMEABILITY INDICATOR PERMEABILITY PER
 MIL-I-17214 OR EQUIVALENT.

4. NACA RIVETING METHOD FOR ATTACHMENT NOT TO BE USED.

F05-127S02

Figure 5-128. Drawing NAS-1474 (Sheet 2)

PERFORMANCE: QUALIFICATION TEST

- 1.0 ALL REQUIREMENTS OF MIL-N-25027 PERTAINING TO STEEL FLOATING PLATE NUTS INCLUDING AXIAL STRENGTH REQUIREMENTS OF TABLE I FOR REGULAR STEEL NUTS, SHALL APPLY TO THIS PART EXCEPT THE MAXIMUM TEMPERATURE SHALL BE 450°F. A POSITIVE SEAL SHALL BE REQUIRED AFTER TESTING PER PARAGRAPH 3.10 (PUSHOUT) AND 3.9.3 (TORQUE OUT) OF MIL-N-25027 THE PUSH OUT AND TORQUE OUT TESTS SHALL BE CARRIED TO A PROOF LOAD EQUAL TO THE REQUIREMENT FOR THE APPLICABLE SIZE. ALL TESTS SHALL BE PERFORMED ON A SINGLE SHEET OF 2024-T3 OR 7075-T6 ALUMINUM ALLOY, NOMINAL THICKNESS OF .312 INCHES, AND HAVING A MINIMUM OF TEN (10) INCHES SQUARE (100 SQUARE INCHES) UNSUPPORTED AREA. SIX (6) NUTS SHALL BE EQUALLY SPACED ON A CIRCLE HAVING A DIAMETER OF SEVEN AND ONE HALF (7-1/2) INCHES. THE NUTS SHALL BE ATTACHED TO THE PLATE BY SOCKET HEAD CAP SCREWS THREADED INTO BLIND HOLES TAPPED TO A DEPTH OF APPROXIMATELY .218 INCHES WITH #3-48 SCREWS. THE #3-48 SCREWS SHALL BE SEATED TO FOURTEEN (14) INCH-POUNDS. INSTALL BOLTS IN NUTS USING A SEATING TORQUE THREE (3) TIMES THE MAXIMUM LOCKING TORQUE OF MIL-N-25027. THREE (3) NUTS SHALL BE TESTED WITH BOLTS INSTALLED AND THREE (3) NUTS WITH BOLTS REMOVED.
- 2.0 A POSITIVE SEAL SHALL BE CONSIDERED TO MEAN NO LEAKAGE BY VISUAL EXAMINATION, USING DYED LIQUID, WHEN SUBJECTED TO A STATIC DIFFERENTIAL PRESSURE OF 50 PSI +2 -0 PSI FOR A PERIOD OF FIVE (5) MINUTES MINIMUM. THE LIQUIDS USED SHALL BE FUELS CONFORMING TO MIL-J-5624 OR TT-S-735, TYPE III, FOR 225°F SEALS AND METHYL ALCOHOL FOR 450°F SEALS. IN ADDITION, A CYCLING TEST SHALL BE PERFORMED CONSISTING OF A CYCLING PRESSURE OF BETWEEN 0 AND 50 PSI FOR 1000 CYCLES, A CYCLE BEING COMPLETED APPROXIMATELY EVERY TWELVE (12) SECONDS.
- 2.1 A POSITIVE SEAL SHALL BE PROVIDED AFTER AGING AN EMPTY TEST FIXTURE WITH NUTS MOUNTED IN A HOT AIR FURNACE AT 450°F ±10°F OR 225°F ±10°F, AS APPLICABLE FOR A PERIOD OF 4 HOURS ±10 MINUTES. A CYCLING TEST SHALL BE PERFORMED AT TEMPERATURE WITHOUT LIQUID USING AIR PRESSURE ALONE. THE TEST PRESSURES AND PROCEDURES OF PARAGRAPH 2.0 SHALL APPLY EXCEPT THE NUMBER OF PRESSURE CYCLES SHALL BE LIMITED TO 100. DURING THIS PERIOD, SINCE THERE IS NO LIQUID IN THE TANK, THERE IS NO CHECK FOR LEAKAGE.
- 2.2 IMMEDIATELY AFTER ELEVATED TEMPERATURE TEST CYCLES, THE FIXTURE SHALL BE REMOVED FROM THE FURNACE AND ALLOWED TO COOL TO ROOM TEMPERATURE. AT ROOM TEMPERATURE, LIQUID SHALL BE ADDED AND POSITIVE SEAL SHALL BE PROVIDED IN LIQUIDS WHEN TESTED IN ACCORDANCE WITH TEST PRESSURES AND PROCEDURES OUTLINED IN PARAGRAPH 2.0.
- 2.3 IN ADDITION, THE SAMPLES TESTED IN 2.1 SHALL PROVIDE A POSITIVE SEAL AFTER A CYCLING TEST HAS BEEN PERFORMED AS FOLLOWS: PLACE TEST FIXTURE IN A COLD BOX AT -65°F ±10°F AND ALLOW TO SOAK FOR A PERIOD OF 4 HOURS ±10 MINUTES. AFTER SOAKING AT THIS TEMPERATURE, APPLY A STATIC PRESSURE OF 50 PSI ±5 PSI FOR A PERIOD OF ONE (1) HOUR. A CYCLING TEST SHALL THEN BE PERFOMED BY HOLDING A PRESSURE OF 50 PSI ±5 PSI ON THE TEST FLUID FOR A PERIOD OF TWENTY (20) SECONDS AND RELEASING PRESSURE FOR TEN (10) SECONDS. REPEAT THIS THIRTY (30) SECOND CYCLE FOR 120 CYCLES. ALL TESTING UNDER THIS PARAGRAPH SHALL BE PERFORMED AT -65°F ±10°F.

PROCUREMENT SPECIFICATION:

MIL-N-25027 EXCEPT AS NOTED. ALL NUTS SHALL MEET QUALIFICATION AND INSPECTION REQUIREMENTS. MANUFACTURERS SHALL PROVIDE EVIDENCE OF QUALIFICATION WHEN REQUIRED. TESTING SHALL BE PERFORMED BY MANUFACTURER OR INDEPENDENT LABORATORY. PROCURING AGENCY MAY CONDUCT CONFIRMING QUALIFICATION TESTS. NO QPL SHALL BE ESTABLISHED.

F05-127S03

CHAPTER 6 WASHERS

6.1 WASHERS.

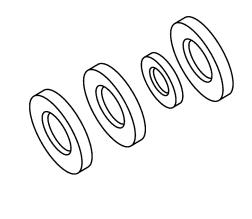
The types of washers used in aircraft structure are plain washers, lockwashers, and special washers.

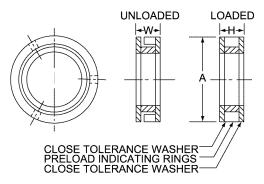
- 6.1.1 <u>Plain Washers</u>. (Refer to <u>Table 6-1</u> through <u>Table 6-9</u>.) Plain washers are used under nuts to provide a smooth bearing surface, to act as shims in obtaining the correct relationship between the threads of the bolt and the nut, and in adjusting the position of castellated nuts with respect to drilled cotter pin holes in bolts. Plain washers are used under lockwashers to prevent damage to surfaces of soft material.
- 6.1.2 Aluminum or aluminum alloy washers are used under bolt heads or nuts on aluminum alloy or magnesium structures where corrosion is a factor. In this application, the resulting galvanic coupling will not involve the surface material. General practice, however, is to use a cadmiumplated steel washer under the nut, with the washer bearing directly against the structure. The washer is kept from rotating by friction against the surface of the structure, and will resist the cutting action of the nut better than the aluminum washer.
- 6.1.3 The AN970 steel washer (Table 6-7) provides a greater bearing area than the plain type, and is used in wooden structures under both bolt head and nut to prevent local crushing of the surface.
- 6.1.4 <u>Lockwashers</u>. (Refer to <u>Table 6-10</u> through <u>Table 6-19</u>.) Lockwashers are used with plain nuts when self-locking or castellated type nuts are not applicable. The spring action of the washer prevents the nut from becoming loose. Lockwashers may be used to prevent loosening of threaded fasteners in airframe construction under the following conditions:
 - a. When a self-locking feature cannot be provided in externally or internally threaded part, or
 - b. When a cotter pin cannot be used to prevent rotation of an internally threaded part with respect to an externally threaded part, or
 - c. When lock wire cannot be used to prevent loosening of threaded parts,
 - d. When fastening is not used for fabrication of primary structure,
 - e. When loosening of threaded parts would not endanger the safety of the airplane or personnel,

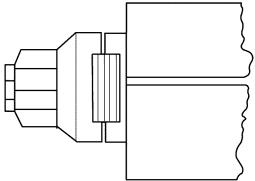
f. When corrosion, encouraged by gouging of aluminum or magnesium alloys by edges of teeth on AN936, would not cause malfunctioning of parts being fastened together. Corrosion of dissimilar metals may be reduced by installing AN936 washers with wet primer.

6.2 SPECIAL WASHERS.

Lockwashers are not to be used on primary structures, secondary structures, superstructures, or accessories where failure might result in damage or danger to aircraft or personnel.

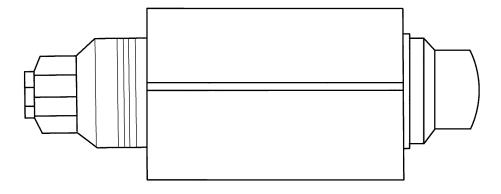

CAUTION


Do not use lockwashers on soft metal, such as aluminum or magnesium, without a plain washer underneath to prevent damage to the soft metal surface. Lockwashers are not to be used where their failure would permit leakage, or on exposed surfaces subject to airflow. Neither should they be installed in places where they will be subjected to corrosive conditions, nor in places where they must be removed frequently.

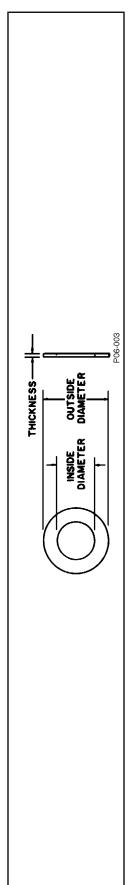

(Refer to Table 6-20 through Table 6-42.) There are many types and varieties of special washers, used in a multiplicity of applications. Table 6-20 through Table 6-42 give data on many of these washers.

- 6.2.1 Ball Socket and Ball Seat Washers. Ball socket and ball seat washers are used in applications where the bolt is installed at an angle to the surface, or where perfect alignment with the surface is required at all times. Ball socket and ball seat washers are used together.
- 6.2.2 <u>Taper Pin Washers</u>. Taper pin washers are used in conjunction with threaded taper pins, and are installed under the nut to effect adjustment where a plain washer would distort.
- 6.2.3 <u>Preload-Indicating Washers</u>. (See Figure 6-1.) Preload-indicating washers are used under nuts and provide a means of measuring the torque applied to a tightened nut. The preload-indicating washer consists of two concentric steel rings between two close-tolerance washers. The inner ring is attached to the two washers, and is smaller in

diameter and thicker than the outer ring. As a nut is tightened against the preload-indicating washer, the inner ring is compressed until the loose outer ring is bound between the two washers. The inner ring has a constant resistance to deformation; therefore, the force necessary to compress the inner ring is predetermined, and is equal to the torque applied to the nut. The exact predetermined torque has been reached when binding of the outer ring occurs. The preload-indicating washer can be used only one time for measuring torque.



PRELOAD INDICATING WASHER ASSEMBLY IN READY-TO-USE POSITION ON HIGH STRENGTH BOLT. NOTICE THE CLEARANCE BETWEEN THE OUTER PRELOAD INDICATING RING AND THE CLOSE TOLERANCE WASHER UNDER THE NUT.


BELOW-SAME ASSEMBLY AFTER PRELOAD HAS BEEN APPLIED. THE INNER RING HAS BEEN DEFORMED, ELIMINATING THE CLEARANCE BETWEEN THE OUTER PRELOAD INDICATING RING AND THE WASHER UNDER THE NUT.

F06-001

Figure 6-1. Preload-Indicating Washer

Table 6-1. NAS70 Plain Washer

	SAE 1010 Steel	SAE 1010	Steel Is	Specified By Using	No Material	Symbol After Part	Number															_
	Phenolic Fiber		P						P				Ь				P					
Washer Material	Vulcanized Fiber		Λ						Λ				Λ				Λ					
Washe	Brass		В		В		В		В				В				В					
	Corrosion- Resistant	$C\Gamma$	C	$C\Gamma$	C	$C\Gamma$	С	$C\Gamma$	C	CI	C	CL	C	$C\Gamma$	C	$C\Gamma$	С	$C\Gamma$	C	$C\Gamma$	C	CT
	Clad Aluminum Alloy	AL	A	AL	A	AL	A	AL	A	AL	A	AL	A	AL	A	AL	A	AL	A	AL	A	AL
ns	Thickness	.016	.031	.016	.031	.016	.031	.016	.031	.016	.031	.016	.031	.016	.031	.016	.031	.016	.031	.016	.063	.016
Washer Dimensions	Outside Diameter ±.010	.250		.250		.313		.375		.438		.375		.500		.438		.500		.750		1.000
Wa	Inside Diameter +.010005	660:		.113		.128		.144		.161		.177		.177		.209		.261		.261		.261
	Bolt Size	No. 2		No. 3		No. 4		No. 6		No. 6		No. 8		No. 8		No. 10		1/4		1/4		1/4

Table 6-1. NAS70 Plain Washer - Continued

	SAE 1010 Steel																						
	Phenolic Fiber			P			P		Ь		P		P										
Washer Material	Vulcanized Fiber			Λ			Λ		Λ		Λ		Λ										
Washe	Brass			BT	В		В		В				В				В		В		В		В
	Corrosion- Resistant	Э	$C\Gamma$	С		$^{\mathrm{C}\Gamma}$	С	$C\Gamma$	Э	$C\Gamma$	С	$C\Gamma$	С	$C\Gamma$	Э	$C\Gamma$	С	$C\Gamma$	С	$^{\mathrm{C}\Gamma}$	С	$^{\mathrm{C}\Gamma}$	C
	Clad Aluminum Alloy	A	AL	A		AL	A	AL	A	AL	A	AL	A	AL	A	AL	A	AL	А	AL	А	AL	А
ins	Thickness	690.	.016	.031	.063	.016	.031	.016	690.	.016	.063	.016	.063	.016	690.	.016	.063	.031	.093	.031	.093	.031	.093
Washer Dimensions	Outside Diameter ±.010		1.500			.563		.625		0 <i>5L</i> :		878.		1.062		1.188		1.313		1.500		1.750	
Wa	Inside Diameter +.010005		.261			.328		.390		.453		.515		.578		.640		.765		068.		1.015	
	Bolt Size		1/4			5/16		3/8		7/16		1/2		9/16		2/8		3/4		8/L		1	

Material-designating letter or letters after basic part number are specified above under washer material.

First dash number is the inside diameter.

Second dash number is the outside diameter.

Example of part number: NAS-70AL-.113-.250 = washer, .016-inch thick clad aluminum alloy, .113-inch inside diameter, .250-inch outside diameter.

Table 6-1. NAS70 Plain Washer - Continued

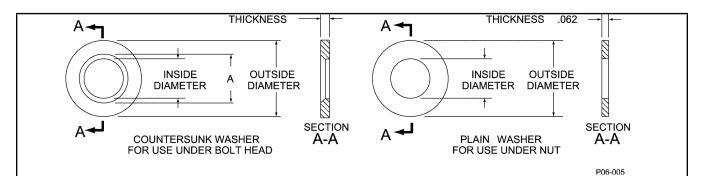
Material

Clad aluminum alloy, Federal Specification QQ-A-362.

Steel.

Corrosion-resistant steel, Military Specification MIL-S-5059.

Brass Federal Specification QQ-B-613.


Vulcanized fiber, Military Specification MIL-F-10336.

Phenolic fiber.

Finish:

Cadmium plating, Federal Specification QQ-P-416. Brass, black oxide.

Table 6-2. NAS143 Countersunk and Plain Washers

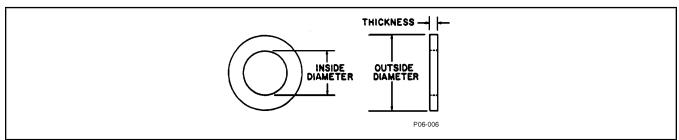
Dash Num	ber			ide neter		A Dia	meter	
Countersunk	Plain	Bolt Size	Max	Min	Outside Diameter ±.010	Max	Min	Thickness Countersunk Washers Only ±.010
-4C	-4	1/4	.260	.252	.531	.344	.334	.078
-5C	-5	5/16	.324	.315	.593	.406	.396	
-6C	-6	3/8	.388	.378	.687	.495	.483	
-7C	-7	7/16	.451	.441	.781	.557	.543	
-8C	-8	1/2	.515	.504	.875	.620	.604	
-9C	-9	9/16	.579	.568	.968	.687	.667	
-10C	-10	5/8	.643	.631	1.062	.785	.765	
-12C	-12	3/4	.770	.757	1.250	.910	.890	
-14C	-14	7/8	.897	.884	1.437	1.035	1.015	
-16C	-16	1	1.025	1.010	1.750	1.160	1.140	
-18C	-18	1-1/8	1.150	1.135	1.875	1.285	1.265	
-20C	-20	1-1/4	1.275	1.260	2.125	1.447	1.427	.094
-22C	-22	1-3/8	1.400	1.385	2.313	1.572	1.552	
-24C	-24	1-1/2	1.525	1.510	2.500	1.697	1.677	

Dash number indicates bolt diameter in 1/16 inch.

C after dash number indicates countersunk washer.

Example of part number:

NAS143-8C = washer, countersunk, cadmium-plated chrome-molybdenum steel, for 1/2-inch diameter bolt.


NAS143-8 = washer, cadmium-plated chrome-molybdenum steel, for 1/2-inch diameter bolt.

Material:

Steel, Military Specification MIL-S-18729.

Finish:

Table 6-3. NAS620 Washer

Dash Number	Bolt Size	Inside Diameter +.010 000	Outside Diameter +.015005	Thickness
-0	No. 0	.063	.099	.016
-2	No. 2	.089	.149	.016
-3L	No. 3	.102	.180	.016
-3				.032
-4L	No. 4	.115	.209	.016
-4				.032
-5L	No. 5	.128	.238	.016
-5				.032
-6L	No. 6	.143	.267	.016
-6				.032
-8L	No. 8	.169	.304	.016
-8				.032
-10L	No. 10	.195	.354	.032
-10				.063
-416L	1/4	.255	.468	.032
-416				.063

A before dash number indicates aluminum alloy washer.

B before dash number indicates brass washer.

Dash number from 0 to 10 is bolt size. Dash number 416 indicates bolt diameter in 1/16 inch.

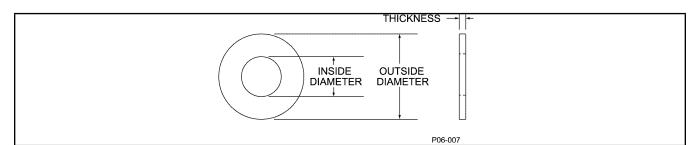
Example of part number:

NAS620-10 = washer, cadmium-plated low carbon steel, for number 10 bolt.

NAS620A10L = washer, light series, 52S aluminum alloy, for number 10 bolt.

NAS620B10 = washer, cadmium-plated brass, for number 10 bolt.

Material:


Low carbon steel, Federal Specification QQ-S-636.

52S aluminum alloy, Federal Specification QQ-A-318.

Brass, Federal Specification QQ-B-613

Finish:

Table 6-4. 945 Washer

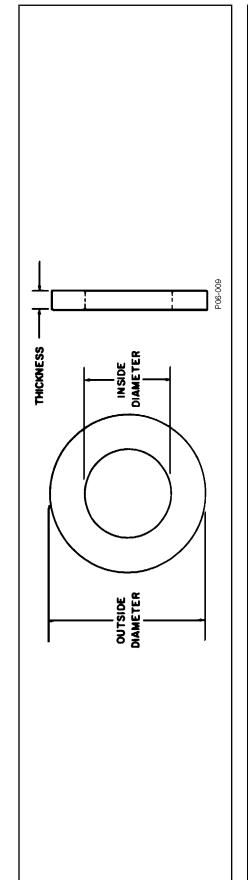
Dash Nu	mber				
Unplated	Plated	Bolt Size	Inside Diameter	Outside Diameter	Thickness
-3	-3P	No. 10	.203	.375	.0468
-4	-4P	1/4	.313	.750	.0625
-5	-5P	5/16	.375	.875	.0625
-6	-6P	3/8	.438	1.000	.0781
-7	-7P	7/16	.500	1.250	.0781
-8	-8P	1/2	.563	1.375	.0937
-9	-9P	9/16	.625	1.500	.0937
-10	-10P	5/8	.688	1.750	.1250
-12	-12P	3/4	.813	2.000	.1562
-14	-14P	7/8	.938	2.250	.1718
-16	-16P	1	1.063	2.500	.1718
-18	-18P	1-1/8	1.250	2.750	.1718
-20	-20P	1-1/4	1.375	3.000	.1718
-22	-22 -22P		1.500	3.250	.1875
-24	-24 -24P		1.625	3.500	.1875

Dash number indicates bolt diameter in 1/16 inch.

P after dash number indicates plated washer.

Example of part number:

945-4 = washer, unplaced wrought iron or steel, for 1/4-inch bolt.


945-4P = washer, plated wrought iron or steel, for 1/4-inch bolt.

Material:

Wrought iron or steel.

Finish:

Table 6-5. AN960 Washer

ı		Dash N	Number							
	Clad Alı All	Clad Aluminum Alloy	Aluminum	inum						
Corro- sion- Resis-		Untreat-		Untreat-				Inside	Outside	Thick-
tant Steel	Treated Surface	ed Sur- face	Treated Surface	ed Sur- face	Brass	Copper	Bolt Size	Diameter ±.010	Diameter +.020005	ness +.010*
-C3T	-PD3L	-D3L	-PA3L	-A3L			No. 3	.105	.250	.016
	-PD3	-D3	-PA3	-A3	-B3					.032
-C4L	-PD4L	-D4L	-PA4L	-A4L						.016
	-PD4	-D4	PA4	-A4	-B4		No. 4	.125	.312	.032
						-CU12				.035
						-CU11	No. 5	.140	.438	.042
T90-	Т9ОД-	79Q-	-PA6L	-A6L			9 .oN	.149	.375	.016
	-PD6	-D6	-PA6	-A6	-B6					.032
-C8T	-PD8L	-D8L	-PA8L	-A8L			No. 8	.174	.375	.016
	-PD8	-D8	-PA8	-A8	-B8					.032
						-CU7		.188	.500	.049
	-PD10L	-D10L	-PA10L	-A10L						.016
-C10L							No. 10	.203		.032
						-CU316				.049

Table 6-5. AN960 Washer - Continued

			Dash N	Number							
		Clad Alı All	Clad Aluminum Alloy	Alum	Aluminum						
Carbon	Corrosion- Sion- Resis- tant	Treated	Untreat- ed Sur-	Treated	Untreat- ed Sur-			Bolt	Inside Diameter	Outside Diameter	Thick- ness
Steel	Steel	Surface	face	Surface	face	Brass	Copper	Size	+.010	+.020005	±.010*
-10	-C10	-PD10	-D10	-PA10	-A10	-B10				.438	.063
							-CU5		.234	.625	.065
		-PD416L	-D416L	-PA416L	-A416L						.016
-416L	-C416L							1/4	.265	.500	.032
-416	-C416	-PD416	-D416	-PA416	-A416	-B416					.063
		-PD516L	-D516L	-PA516L	-A516L						.016
-516L	-C516L							5/16	.328	.562	.032
-516	-C516	-PD516	-D516	-PA516	-A516	-B516					.063
		-PD616L	-D616L	-PA616L	-A616L						.016
-616L	-C616L							3/8	.390	.625	.032
-616	-C616	-PD616	-D616	-PA616	-A616	-B616					.063
		-PD716L	-D716L	-PA716L	-A716L						.016
-716L	-C716L							7/16	.453	.750	.032
-716	-C716	-PD716	-D716	-PA716	-A716	-B716					.063
		-PD816L	-D816L	-PA816L	-A816L						.016
-816L	-C816L							1/2	.515	.875	.032
-816	-C816	-PD816	-D816	-PA816	-A816	-B816					.063
		-PD916L	-D916L	-PA916L	-A916L						.016
-916L	-C916L							9/16	.578	1.062	.032
-916	-C916	-PD916	-D916	-PA916	-A916	-B916					.063
		-PD1016L	-D1016L	-PA1016L	-A1016L						.016
-1016L	-C1016L							2/8	.640	1.188	.032
-1016	-C1016	-PD1016	-D1016	-PA1016	-A1016	-B1016					.063
		-PD1216L	-D1216L	-PA1216L	-A1216L	-B1216					.016
-1216L	-C1216L							3/4	.765	1.312	.032
-1216	-C1216	-PD1216	-D1216	-PA1216	-A1216	_			_		060:

Table 6-5. AN960 Washer - Continued

		Thick- ness	±.010*	.016	.032	060:	.016	.032	060.	.016	.032	060.	.016	.032	060.	910	.032	060.	910.	.032	060.	.016	.032	060:	.016	.032	060.	910.	.032
		Outside Diameter	+.020005		1.500			1.750			1.812			1.875			2.000			2.062			2.375			2.625		,	3.000
		Inside	±.010		.890			1.015			1.078			1.140			1.265			1.328			1.640			1.890		,	2.265
		Bolt	Size		2//8			1			1-1/16			1-1/8			1-1/4			1 5/16			1-5/8			1-7/8		;	2-1/4
			Copper																										
			Brass			-B1416			-B1616			-B1716			-B1816			-B2016			-B2416			-B2616			-B3016		
	Aluminum	Untreat- ed Sur-	face	-A1416L	,	-A1416	-A1616L		-A1616	-A1716L		-A1716							-A2116L		-A2116	-A2616L		-A2616	-A3016L		-A3016	-A3616L	
Number	Alum	Treated	Surface	-PA1416L		-PA1416	-PA1616L		-PA1616	-PA1716L		-PA1716							-PA2116L		-PA2116	-PA2616L		-PA2616	-PA3016L		-PA3016	-PA3616L	
Dash I	Clad Aluminum Alloy	Untreat- ed Sur-	face	-D1416L	,	-D1416	-D1616L		-D1616	-D1716L		-D1716	-D1816L		-D1816	-D2016L		-D2016	-D2116L		-D2116	-D2616L		-D2616	-D3016L		-D3016	-D3616L	
	Clad Alı Al	Treated	Surface	-PD1416L	:	-PD1416	-PD1616L		-PD1616	-PD1716L		-PD1716	-PD1816L		-PD1816	-PD2016L		-PD2016	-PD2116L		-PD2116	-PD2616L		-PD2616	-PD3016L		-PD3016	-PD3616L	
		Corro- sion- Resis- tant	Steel		-C1416L	-C1416		-C1616L	-C1616			-C1716			-C1816			-C2016			-C2116			-C2616			-C3016		
		Carbon	Steel		-1416L	-1416		-1616L	-1616		-1716L	-1716		-1816L	-1816		-2016L	-2016		-2116L	-2116		-2616L	-2616		-3016L	-3016		-3616L

Table 6-5. AN960 Washer - Continued

	-	Dash I	Vumber							
Clad A	3 2	Clad Aluminum Alloy	Alum	Aluminum						
		Untreat-		Untreat-				Inside	Outside	Thick-
Treated Surface		ed Sur- face	Treated Surface	ed Sur- face	Brass	Copper	Bolt Size	Diameter ±.010	Diameter +.020005	ness ±.010*
-C3616 -PD3616	l	-D3616	-PA3616	-A3616	-B3616					060.
-PD4016L	د ا	-D4016L	-PA4016L	-A4016L						.016
							2-1/4	2.515	3.250	.032
-C4016 -PD4016		-D4016	-PA4016	-A4016	-B4016					060.

Material-designating letter or letters before dash number are as specified above under dash numbers.

Dash number from 3 to 10 is bolt size.

Dash number from 416 to 4016 indicates bolt diameter in 1/16 inch.

Example of part number:

AN960-716 = washer, cadmium-plated carbon steel, for 7/16-inch diameter bolt.

AN960PD10L = washer, light series, treated surface clad aluminum alloy, for number 10 bolt.

Material:

Carbon steel, Military Specification MIL-S-7952 or Federal Specification QQ-S-636.

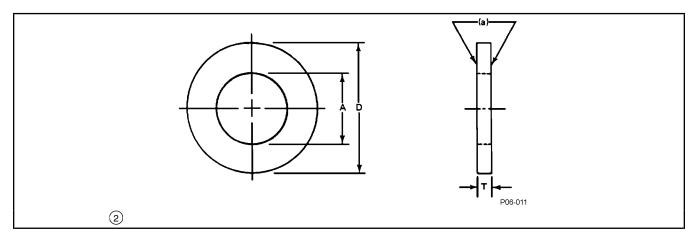
Corrosion-resistant steel, Military Specification MIL-S-5059 or MIL-S-6721.

Aluminum, Federal Specification QQ-A-561.

Clad aluminum alloy, Federal Specification QQ-A-362.

Copper, Federal Specification QQ-C-576.

inish:


Anodize, Military Specification MIL-A-8625 or chemical treatment, Military Specification MIL-C-5541.

(For clad aluminum alloy and aluminum washers when specified.)

Cadmium plating, Federal Specification QQ-P-416. (For carbon steel washers only.)

*Unless otherwise specified, tolerances are as follows: Decimals $\pm .010$, on thickness for aluminum or aluminum alloy washers; 0.016 ± 0.003 ; 0.032 ± 0.004 ; 0.064 ± 0.006 ; 0.090 ± 0.007 .

Table 6-6. AN961 Washer

AN961 Dash No.	Thread Size	A Diameter	D Diameter +0.020 -0.005	Т
-4S -4T	No. 4	0.125	0.312	
-6S -6T	No. 6	0.149		
-8S -8T	No. 8	0.174	0.375	0.032
-10S -10T	No. 10	0.203	0.438	
-416S -416T	1/4	0.265	0.500	
-516S -516T	5/16	0.328	0.562	
-616S -616T	3/8	0.390	0.625	0.064
-816S -816T	1/2	0.515	0.875	
-1016S -1016T	5/8	0.640	1.188	

(a) Washer shall be flat within 0.005 for 0.875 o.d. and under, within 0.010 for o.d. over 0.875.

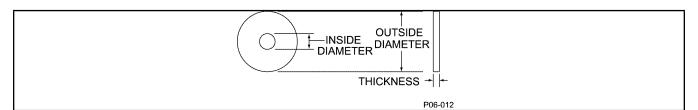
Material:

Brass, specification QQ-W-321 (flat wire) comp. 7, temper 1/2 hard, or QQ-B-626, comp. 1, temper 1/2 hard. Finish:

Tin plate, MIL-T-10727, type 1.

Silver plate, QQ-S-365, grade b.

Remove all burrs and sharp edges.


All dimensions in inches, unless otherwise specified. Decimals + 0.010.

Example part numbers:

AN961-4T =washer for no. 4 thread size, tin plated.

AN961-4S = washer for no. 4 thread size, silver plated.

Table 6-7. AN970 Washer

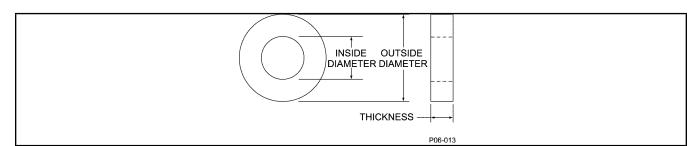
Dash Number	Bolt Size	Inside Diameter ±.010	Outside Diameter ±.010	Thick- ness ±.010
-3	No. 10	.203	.875	.063
-4	1/4	.265	1.125	.063
-5	5/16	.328	1.375	.063
-6	3/8	.390	1.625	.063
-7	7/16	.453	1.812	.109
-8	1/2	.515	2.000	.109
-9	9/16	.578	2.188	.125
-10	5/8	.640	2.375	.125

Dash number indicates bolt diameter in 1/16 inch.

Example of part number:

AN970-4 = washer for 1/4-inch diameter bolt.

Material:


Steel.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

The AN970 washer is used in wooden structures under both bolt head and nut to prevent crushing of the surface.

Table 6-8. AN122576 through AN122600, Washer

Inside Diameter +.010005	Outside Diameter ±.010	Thickness ±.005	Part Number
.119	.250	.031	AN122576
.135	.312	.031	AN122577
.150	.312	.043	AN122578
.159	.375	.043	AN122579
.184	.375	.050	AN122580
.213	.438	.062	AN122581
.276	.500	.062	AN122582
.338	.625	.062	AN122583
.401	.750	.078	AN122584
.463	.875	.094	AN122585
.526	1.000	.109	AN122586
.588	1.125	.125	AN122587
.651	1.250	.141	AN122588
.776	1.500	.172	AN122589
.901	1.750	.203	AN122590
1.026	2.000	.234	AN122591

Material:

Steel, Aeronautical Material Specification AMS5045 or AMS6350.

Finish:

THICKNESS THICKNESS .062 -OUTSIDE DIAMETER INSIDE OUTSIDE INSIDE DIAMETER DIAMETER DIAMETER DIAMETER COUNTERSUNK WASHER FOR USE UNDER BOLT HEAD A → PLAIN WASHER FOR USE UNDER NUT SECTION SECTION A-A A-A P06-014

Table 6-9. MS20002 Countersunk and Plain, High Strength Washer

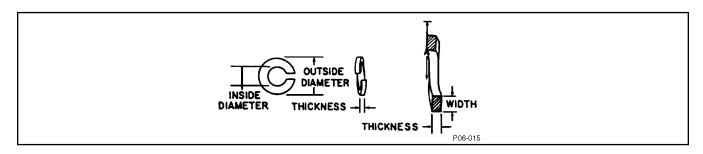
Dash Numb	per		Dian	ide neter)10		A Dia	meter 110	
Countersunk	Plain	Bolt Size	Max	Min	Outside Diameter ±.010	Max	Min	Thickness ±.010 Countersunk Washers Only
-C4	-4	1/4	.260	.252	.531	.344	.334	.078
-C5	-5	5/16	.324	.315	.593	.406	.396	
-C6	-6	3/8	.388	.378	.687	.495	.483	
-C7	-7	7/16	.451	.441	.781	.557	.543	.078
-C8	-8	1/2	.515	.504	.875	.620	.604	
-C9	-9	9/16	.579	.568	.968	.687	.667	
-C10	-10	5/8	.643	.631	1.062	.785	.765	.078
-C12	-12	3/4	.770	.757	1.250	.910	.890	
-C14	-14	7/8	.897	.884	1.437	1.035	1.015	
-C16	-16	1	1.025	1.010	1.625	1.160	1.140	.078
-C18	-18	1-1/8	1.150	1.135	1.875	1.285	1.265	.078
-C20	-20	1-1/4	1.275	1.260	2.125	1.447	1.427	.094
-C22	-22	1-3/8	1.400	1.385	2.313	1.572	1.552	.094
-C24	-24	1-1/2	1.525	1.510	2.500	1.697	1.677	

Dash number indicates bolt diameter in 1/16 inch.

C before dash number indicates countersunk washer.

Example of part number:

MS20002 = washer, plain, for 1/4-inch diameter bolt.


MS20002-C4 = washer, countersunk, for 1/4-inch diameter bolt.

Material:

Steel, Military Specification MIL-S-18729.

Finish:

Table 6-10. AN935 Lockwasher

Dash Number	Bolt Size	Inside Diameter 000	Outside Diameter Max	Width Min	Thickness
-2	No. 2	.088 +.009	.175	.035	.020 +.006
-2L			.165	.030	.015 +.006
-3	No. 3	.102 +.009	.212	.040	.025 +.006
-3L			.202	.035	.020 +.006
-4	No. 4	.115 +.009	.212	.040	.025 +.006
-4L			.202	.035	.020 +.006
-5	No. 5	.128 +.009	.239	.047	.031 +.006
-5L			.225	.040	.025 +.006
-6	No. 6	.141 +.010	.253	.047	.031 +.006
-6L			.239	.040	.025 +.006
-8	No. 8	.168 +.010	.296	.055	.040 +.006
-8L			.280	.047	.031 +.006
-10	No. 10	.194 +.011	.337	.062	.047 +.006
-10L			.323	.055	.040 +.006
-12	No. 12	.221 +.011	.380	.070	.056 +.006
-12L			.364	.062	.047 +.006
-416	1/4	.255 +.012	.493	.109	.062 +.010
-416L			.489	.107	.047 +.010
-516	5/16	.319 +.014	.591	.125	.078 +.010
-516L			.575	.117	.056 +.010
-616	3/8	.382 +.016	.688	.141	.094 +.010
-616L			.678	.136	.070 +.010
-716	7/16	.446 +.018	.784	.156	.109 +.010
-716L			.780	.154	.085 +.010
-816	1/2	.509 +.020	.879	.171	.125 +.010
-816L			.877	.170	.099 +.010
-916	9/16	.573 +.022	.979	.188	.141 +.010
-916L			.975	.186	.113 +.010
-1016	5/8	.636 +.024	1.086	.203	.156 +.010
-1016L			1.082	.201	.126 +.010
-1216	3/4	.763 +.028	1.279	.234	.188 +.010

Table 6-10. AN935 Lockwasher - Continued

Dash Number	Bolt Size	Inside Diameter 000	Outside Diameter Max	Width Min	Thickness 000
-1216L			1.277	.233	.153 +.010

Dash number from 2 to 12 is bolt size.

Dash number from 416 to 1216 indicates bolt diameter in 1/16 inch.

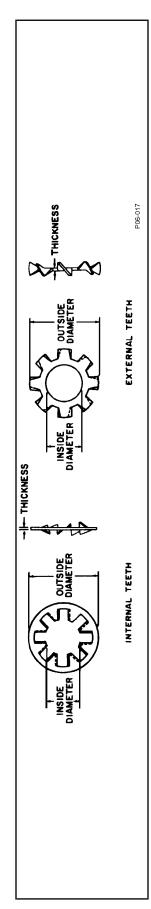
B before dash number indicates phosphor bronze or copper-silicon alloy washer.

Example of part number:

AN935-10 = lockwasher, cadmium-plated carbon steel, for number 10 bolt.

AN935B10L = lockwasher, light series, cadmium-plated phosphor bronze or copper-silicon alloy, for number 10 bolt.

Material:


Carbon steel, Federal Specification FF-W-84

Phosphor bronze, Federal Specification QQ-P-330.

Copper-silicon alloy, Federal Specification QQ-C-591.

Finish:

Table 6-11. AN936 Lockwasher

					Dash I	Dash Number				
	Bolt	Inside Diameter	Outside Diameter	Thickness		ſ	Bolt	Inside Diameter	Outside Diameter	Thickness
Bronze	No. 2	900:+ 680:	+.000	± .002 .012	oleel	Bronze	Size	000:-	+.000	700 ₹
	No. 3	.102 +.007	.232017	.016	-B3	-B3B	No. 3	.102 +.007	.230010	.014
-A4B	No. 4	.116 +.007	.270015	.016	-B4	-B4B	No. 4	.116 +.007	.255010	.016
-A6B	No. 6	.142 +.008	.288010	.018	-B6	-B6B	No. 6	.142 +.008	.317011	.020
-A8B	No. 8	.168 +.008	.336011	.020	-B8	-B8B	No. 8	.168 +.008	.381011	.020
-A10B	No. 10	.195 +.009	.381011	.022	-B10	-B10B	No. 10	.195 +.009	.406011	.022
-A416B	1/4	.256 +.011	.478012	.025	-B416	-B416B	1/4	.256 +.011	.506012	.025
		.256 +.011	.536012	.038						
-A516B	5/16	.320 +.012	.607013	.030	-B516	-B516B	5/16	.320 +.012	.601013	.030
-A616B	3/8	.384 +.014	.692014	980.	-B616	-B616B	3/8	.384 +.014	510:- 569:	980.
-A716B	7/16	.448 +.015	.789042	860.	-B716	-B716B	7/16	.448 +.016	.760020	860.
-A716BS*		.472 +.008	.607014	.018						
	1/2	.512 +.017	.883016	.040	-B816		1/2	.512 +.017	900 - 006	.040
	9/16	.576 +.018	1.000043	.040	-B916		9/16	.576 +.018	.985020	.040
	2/8	.640 +.019	1.071018	.045	- 21010		2/8	.641 +.022	1.070025	.045
	3/4	.769 +.026	1.245025	.050	- B1216		3/4	.768 +.022	1.260045	.050
	2/8	.894 +.024	1.386022	950.	- B1416		2/8	.879 +.030	1.410030	.056
	П	1.019	1.637024	.063	- B1616			1.025	1.620030	.063

Table 6-11. AN936 Lockwasher - Continued

*This washer has alternate teeth twisted in a direction opposite to that of the other washer's teeth.

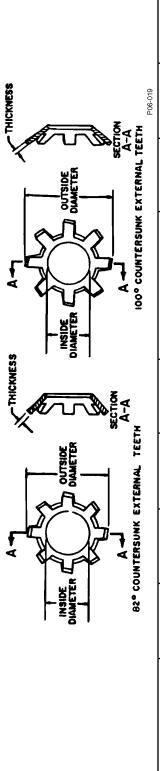
Dash number from 2 to 10 is bolt size.

Dash number from 416 to 1616 indicates bolt diameter in 1/16 inch.

B after dash number indicates bronze washer.

B before dash number indicates external teeth.

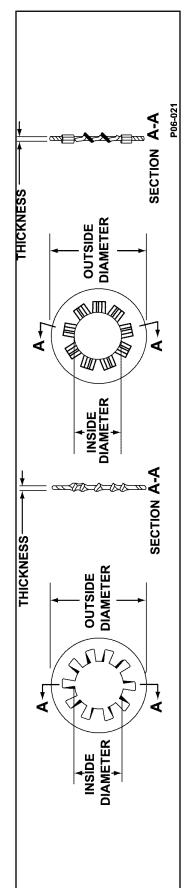
Example of part number:


AN936B416B = washer with external teeth, cadmium-plated bronze, for use with 1/4-inch diameter bolt.

Material:

Steel.

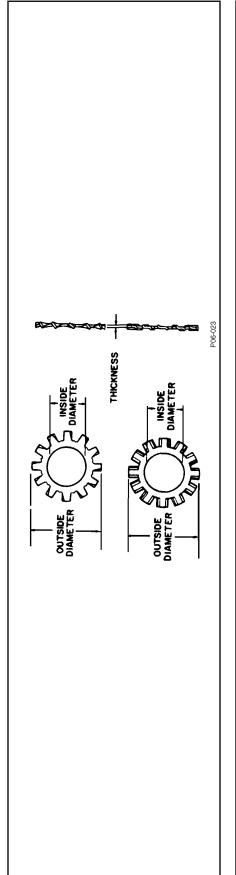
Bronze.


Cadmium plating, Federal Specification QQ-P-416. (Type I, class C for steel, Type II, class C with supplementary chromate treatment for bronze.)

Dash	Dash Number					Dash Number				
Ctool	Bronze	Bolt Cize	Inside Diameter	Outside Diameter	Thick- ness	lootS	ario Hoa	Inside Diameter	Outside	Thick ness
-C2	-C2B	No. 2	980.	.183013	800.	-D2	No. 2	9		÷ 800.
			+.006							
-C4	-C4B	No. 4	.116	.232014	910.	7 О-	No. 4	.116 +.007	.241014	.016
			+.007							
9O-	-C6B	No. 6	.142	.300015	.018	9О-	No. 6	.142 +.008	.287016	.012
			+.008							
-C8	-C8B	No. 8	.168	.353016	.018	8Q-	No. 8	.168 +.008	.340016	.016
			+.008	_						

				Table 6-11 .		AN936 Lockwasher - Continued				
-C10	-C10B	No. 10	.195	.370017	.022	-D10	No. 10	.195 +.009	.394017	.018
-C416	-C416B	1/4	.256	.478020	.022					
-C516	-C516B	5/16	.320	.625022	.025					
-C616	-C616B	3/8	.384 +.014	.801025	.030					
-C716	-C716B	7/16	.448 +.015	.890027	.036					
Code:										
Dash numbe	Dash number from 2 to 10 is bolt size.	0 is bolt size.								
Dash numbe	r from 416 to	716 indicate	Dash number from 416 to 716 indicates bolt diameter	r in 1/16 inch.						
C before das	sh number ind	licates 82° co	C before dash number indicates 82° countersunk washer.	her.						
D before da	sh number ind	licates 100° c	D before dash number indicates 100° countersunk washer.	ısher.						
B after dash	B after dash number indicates bronze washer.	ates bronze v	vasher.							
Example of	Example of part number:									
AN936-C2B	= washer, 82	?° countersuni	AN936-C2B = washer, 82° countersunk, cadmium-plated bronze, for number 2 bolt.	ated bronze, f	or number 2	bolt.				
Material:										
Steel.										
Bronze.										
Finish:										
Cadmium pl	Cadmium plating, Federal Specification QQ-P-416.	Specification	n QQ-P-416.							

Table 6-12. MS35333 Lockwasher

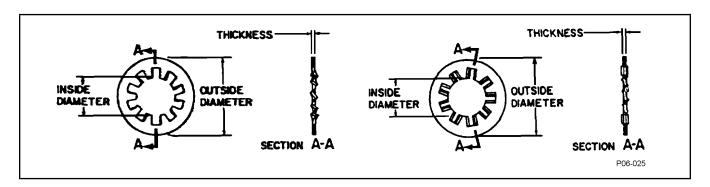


Thickness		Δi	.010	.015	.017	.018	.020	.023	.028	.032	.032	.037	.037	.042	.047	.052	650.	650.
Thick		Max	.015	.019	.021	.023	.025	.028	.034	.040	.040	.045	.045	.050	.055	090	.067	290.
side ieter		Ξ	.175	.255	.275	.325	.365	.460	.594	029.	.740	<i>L</i> 98.	756.	1.045	1.220	1.364	1.590	1.799
Outside Diameter		Max	.200	.270	.295	.340	.381	.478	.610	769.	682.	006	586.	1.071	1.245	1.410	1.637	1.830
de leter		Ā	680.	.115	.141	.168	.195	.256	.320	.384	.448	.512	.576	.640	692.	.894	1.019	1.144
Inside Diameter		Max	360.	.123	.150	.176	.204	.267	.332	398	.464	.530	.596	.663	.795	.927	1.060	1.192
		Bolt Size	No. 2	No. 4	No. 6	No. 8	No. 10	1/4	5/16	3/8	7/16	1/2	9/16	2/8	3/4	2//8	1	1-1/8
	Phosphor Bronze	Tinned	98-	-87	88-	68-	06-	-91	-92	-93	-94	-95	96-	<i>-</i> 97	86-	66-	-100	-101
	Corrosion Resistant	Passivated	69-	-70	-71	-72	-73	-74	-75	92-	<i>LL</i> -	-78	-79	-80	-81	-82	-83	-84
Number		Phosphate	-52	-53	-54	-55	-56	-57	-58	-59	09-	-61	-62	-63	-64	-65	99-	L9-
Dash Num	Steel	Cadmium	-35	-36	-37	-38	68-	-40	-41	-42	-43	-44	-45	-46	-47	-48	-49	-50
	St	Cadmium or Zinc Optional	-18	-19	-20	-21	-22	-23	-24	-25	-26	-27	-28	-29	-30	-31	-32	-33
		Plain (Uncoat- ed)	-1	-2	-3	4-	S-	9-	L-	8-	6-	-10	-11	-12	-13	-14	-15	-16

Table 6-12. MS35333 Lockwasher - Continued

		Dash	Dash Number				Ins	Inside Diameter	Outside Diameter	side ieter	Thick	Thickness
	Şŧ	Steel		Corrosion Resistant	Phosphor Bronze							
Plain (Uncoat- ed)	Cadmium or Zinc Optional	Cadmium	Phosphate	Passivated	Tinned	Bolt Size	Мах	Min	Мах	Min	Мах	Min
-17	-34	-51	89-	-85	-102	1-1/4	1.325	1.275	1.975	1.921	.067	650.
Material:												
Carbon steel,	Carbon steel, Federal Specification QQ-S-633.	ation QQ-S-63.	3.									
Corrosion-res	Corrosion-resistant steel, Federal Standard Number	ral Standard N	umber 66.									
Phosphor bro	Phosphor bronze, Federal Specification QQ-P-330.	cification QQ-1	9-330.									
Finish:												
Cadmium pla	Cadmium plating, Federal Specification QQ-P-416.	ecification QQ-	P-416.									
Zinc plating,	Zinc plating, Federal Specification QQ-Z-325.	ation QQ-Z-32;	5.									
Phosphate coa	Phosphate coating, Military Specification MIL-C-16232.	pecification MI	L-C-16232.									
Tin plating.	Tin plating Military Specification MIL-T-10727.	ition MIL-T-10	727.									

Table 6-13. MS35335 Lockwasher



		Dash Num	Number				Inside Diameter	ide neter	Outside Diameter	side neter	Thick	Thickness
	St	Steel		Corrosion Resistant	Phosphor Bronze							
Plain (Uncoat- ed)	Cadmium or Zinc Optional	Cadmium	Phosphate	Passivated	Tinned	Bolt Size	Max	Min	Max	Μi	Max	Ā
-1	-15	-29	-43	-57	-71	No. 4	.123	.115	.260	.245	610.	.015
-2	-16	-30	44-	-58	-72	No. 6	.150	.141	.320	305	.022	.016
-3	-17	-31	-45	-59	-73	No. 8	.176	.168	.381	.365	.023	.018
4	-18	-32	-46	09-	-74	No. 10	.204	361.	.410	.395	.025	.020
-5	-19	-33	-47	-61	-75	1/4	197	.256	.510	464	.028	.023
9-	-20	-34	-48	-62	92-	5/16	332	.320	.610	.588	.034	.028
<i>L</i> -	-21	-35	-49	-63	-77	3/8	398	.384	.694	029.	.040	.032
-8	-22	-36	-50	-64	-78	7/16	494	.448	.760	.740	.040	.032
6-	-23	-37	-51	-65	-79	1/2	985.	.513	006.	088.	.045	.037
-10	-24	-38	-52	99-	-80	9/16	965.	925.	586.	096	.045	.037
-11	-25	-39	-53	-67	-81	2/8	£99 [.]	.641	1.070	1.045	.050	.042
-12	-26	-40	-54	-68	-82	3/4	56L	892.	1.260	1.220	.055	.047
-13	-27	-41	-55	69-	-83	8//	L 26.	768.	1.410	1.380	090	.052

Table 6-13. MS35335 Lockwasher - Continued

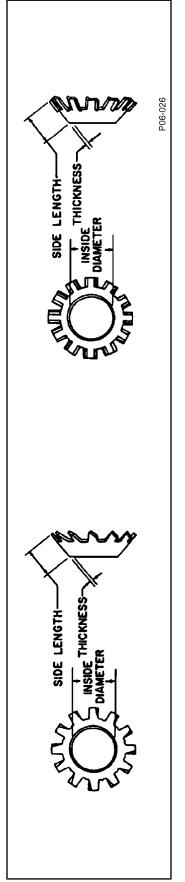
		Dash P	Dash Number				Inside Diameter	Inside iameter	Outside Diameter	side neter	Thick	Thickness
	Steel	el		Corrosion Resistant	Phosphor Bronze							
Plain (Uncoat- ed)	Cadmium or Zinc Optional	Cadmium	Phosphate	Passivated	Tinned	Bolt Size	Max	Αİ	Max	Z	Max	Mi
-14	-28	-42	-56	-70	-84	1	1.060	1.025	1.620	1.590	790.	.059
Material:	-											
Carbon steel,	Carbon steel, Federal Specification QQ-S-633.	ation QQ-S-633	···									
Corrosion-resi	Corrosion-resistant steel, Federal Standard Number	ral Standard Nu	umber 66.									
Phosphor broa	Phosphor bronze, Federal Specification QQ-P-330.	cification QQ-F	-330.									
Finish:												
Cadmium plat	Cadmium plating, Federal Specification QQ-P-416.	cification QQ-1	P-416.									
Zinc plating,	Zinc plating, Federal Specification QQ-Z-325.	ation QQ-Z-325										
Phosphate coa	Phosphate coating, Military Specification MIL-C-16232.	pecification MI	L-C-16232.									
Tin plating, N	Tin plating, Military Specification MIL-T-10727.	tion MIL-T-10	727.									

Table 6-14. MS35334 Lockwasher

	Dash N	umber				ide neter		side neter	Thick	ness
	Ste	el								
Plain (Uncoated)	Cadmium or Zinc Optional	Cadmium	Phosphate	Bolt Size	Max	Min	Max	Min	Max	Min
-1	-10	-19	-28	1/4	.267	.256	.536	.500	.045	.035
-2	-11	-20	-29	5/16	.332	.320	.607	.590	.050	.040
-3	-12	-21	-30	3/8	.398	.384	.748	.700	.050	.042
-4	-13	-22	-31	7/16	.464	.448	.858	.800	.067	.050
-5	-14	-23	-32	1/2	.530	.512	.924	.880	.067	.055
-6	-15	-24	-33	9/16	.596	.576	1.034	.990	.067	.055
-7	-16	-25	-34	5/8	.663	.640	1.135	1.100	.067	.059
-8	-17	-26	-35	3/4	.795	.768	1.265	1.240	.084	.070
-9	-18	-27	-36	7/8	.927	.894	1.447	1.400	.084	.075

Material:

Carbon steel, Federal Specification QQ-S-633.


Finish:

Cadmium plating, Federal Specification QQ-P-416.

Zinc plating, Federal Specification QQ-Z-325.

Phosphate coating, Military Specification MIL-C-16232.

Table 6-15. MS35336 Lockwasher

Thickness		Min	.015	.017	.017	.020	.020	.023	.028	.037	.037
Thick		Max	610.	.021	.021	.025	.025	.028	.034	.045	.045
Side Length		Min	.050	.082	880.	.083	.113	.165	.242	.260	.294
Side L		Мах	.065	.092	.105	660:	.128	.192	.255	.270	.304
		Outside Diameter	.213	.289	.322	.354	.454	.599	.765	.867	926.
ide neter		Min	.113	.140	.167	.195	.255	.318	.383	.448	.512
Inside Diameter		Max	.123	.150	.177	.205	.267	.333	398	.463	.529
		Bolt Size	No. 4	No. 6	No. 8	No. 10	1/4	5/16	3/8	7/16	1/2
	Phosphor Bronze	Tinned	9-	-12	-18	-24	-30	-36	-42	-48	-54
	Corro- sion Re- sistant	Passiv- ated	-5	-11	-17	-23	-29	-35	-41	-47	-53
Dash Number		Phos- phate	4-	-10	-16	-22	-28	-34	-40	-46	-52
Dash l	Steel	Cadmium	-3	6-	-15	-21	-27	-33	-39	-45	-51
	Carbon Steel	Cadmium or Zinc Optional	-2	8-	-14	-20	-26	-32	-38	-44	-50
		Plain (Un- coated)	-1	L-	-13	-19	-25	-31	-37	-43	-49

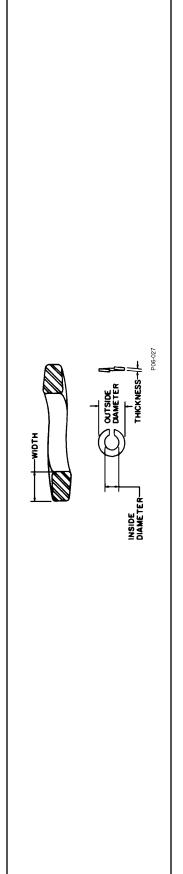
Material:

Carbon steel, Federal Specification QQ-S-633.

Corrosion-resistant steel, Federal Standard Number 66.

Phosphor bronze, Federal Specification QQ-P-330.

inish:

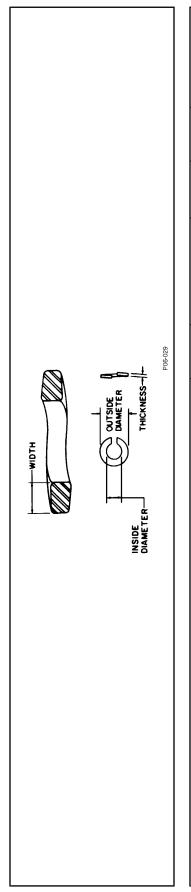

Cadmium plating, Federal Specification QQ-P-416.

Zinc plating, Federal Specification QQ-Z-325.

Phosphate coating, Military Specification MIL-C-16232.

Tin plating, Military Specification MIL-T-10727.

Table 6-16. MS35337 Lockwasher



Thickness		Ā	.015	.020	.025	.031	.040	.047	.056	070.	.085	660:	.113	.126	.153	.179	.202	224
Thick		Max	.021	.026	.031	7£0.	.046	<i>L</i> \$0.	990'	080	960	109	.123	.136	.163	661.	.222	.244
Width		Mi	.030	.035	.040	.047	.055	.107	.117	.136	.154	.170	.186	.201	.233	.264	.289	.314
side neter		Ā																
Outside Diameter		Max	.165	.202	.239	.280	.323	.489	.575	829.	.780	.877	576.	1.082	1.277	1.470	1.656	1.837
Inside Diameter		Min	880.	.115	.141	.168	.194	.255	.319	382	.446	605.	.573	989.	.763	068:	1.017	1.144
Inside Diamet		Max	760.	.124	.151	.178	.205	.267	.333	398	.464	.529	595.	099.	.791	.922	1.053	1.184
		Bolt Size	No. 2	No. 4	No. 6	No. 8	No. 10	1/4	5/16	3/8	7/16	1/2	9/16	8/9	3/4	8/L	1	1-1/8
	Phosphor Bronze	Cadmium	96-	-67	86-	66-	-100	-101	-102	-103	-104	-105	-106	-107	-108	-109	-110	-111
	Corrosion Resistant	Passivated	-77-	-78	62-	-80	-81	-82	-83	-84	-85	98-	-87	88-	68-	06-	-91	-92
Dash Number		Phos- phate	-58	-59	09-	-61	-62	-63	-64	-65	99-	<i>L</i> 9-	89-	69-	-20	-71	-72	-73
Dash	Steel	Cadmium	-39	-40	-41	-42	-43	-44	-45	-46	-47	-48	-49	-50	-51	-52	-53	-54
	St	Cadmium or Zinc Optional	-20	-21	-22	-23	-24	-25	-26	-27	-28	-29	-30	-31	-32	-33	-34	-35
		Plain (Un- coated)	-1	-2	-3	4-	-5	9-	L-	8-	6-	-10	-11	-12	-13	-14	-15	-16

Table 6-16. MS35337 Lockwasher - Continued

		Dash	Dash Number				Inside Diamete	Inside Diameter	Outside Diameter	ide eter	Width	Thick	Thickness
	Sŧ	Steel		Corrosion Resistant	Phosphor Bronze								
Plain (Un-	Cadmium or Zinc	Cadmium	Phos-	Passivated	Cadmium	Bolt	×	Z	×	Z	Z	×	Z Z
-17	-36	-55	-74	-93	-112	1-1/4	1.315	1.271	2.012		.336	.264	244
-18	-37	-56	-75	-94	-113	1-3/8	1.446	1.398	2.183		.356	.284	.264
-19	-38	-57	92-	-95	-114	1-1/2	1.577	1.525	2.352		.375	.302	.282
Material:													
rbon ste	Carbon steel, Federal Specification QQ-S-633.	cification QQ-3	S-633.										
rrosion-1	Corrosion-resistant steel, Federal Standard Number 66.	Federal Standa	rd Number 60	9.									
osphor b	Phosphor bronze, Federal Specification QQ-P-330.	Specification (QQ-P-330.										
Finish:													
dmium I	Cadmium plating, Federal Specification QQ-P-416.	Specification	QQ-P-416.										
nc platin	Zinc plating, Federal Specification QQ-Z-325.	zification QQ-Z	2-325.										
osphate	Phosphate coating, Military Specification MIL-C-16232.	ry Specification	n MIL-C-162	32.									

Table 6-17. MS35338 Lockwasher

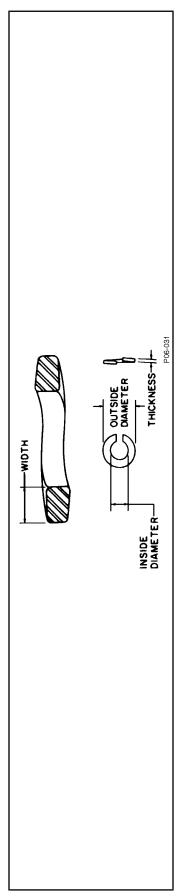

SS		Min	.020	.025	.031	040	.047	.062	.078	094	109	.125	.141	.156	.188	.219
Thickness		Max	. 026	.031	. 037	. 046	. 053	. 072	. 088	.104	. 119	.135	.151	.166	. 198	. 652.
																_
Width		Min	.035	.040	.047	.055	.062	.109	.125	.141	.156	.171	.188	.203	.234	.266
Out- side Diam- eter		Max	.175	.212	.253	.296	.337	.493	.591	889.	.784	628.	626.	1.086	1.279	1.474
Inside Diameter		Min	.088	.115	.141	.168	.194	.255	.319	.382	.446	.509	.573	.636	.763	830
Ins Dian		Мах	.097	.124	.151	.178	.205	.267	.333	.398	.464	.529	.595	.660	.791	.922
		Bolt Size	No. 2	No. 4	No. 6	No. 8	No. 10	1/4	5/16	3/8	7/16	1/2	9/16	2/8	3/4	8/L
	Nickel Copper Alloy	Plain (Uncoat- ed)	-115	-116	-117	-118	-119	-120	-121	-122	-123	-124	-125	-126	-127	-128
	Phos- phor Bronze	Cadmi- um	96-	-97	-98	-99	-100	-101	-102	-103	-104	-105	-106	-107	-108	-109
er	Corro- sion Re- sistant	Passi- vated	-77	-78	-79	-80	-81	-82	-83	-84	-85	-86	-87	-88	-89	- 06-
Dash Numb		Phos- phate	-58	-59	09-	-61	-62	-63	-64	-65	99-	-67	-68	69-	-70	-71
Ď		Cadmi- um	-39	-40	-41	-42	-43	-44	-45	-46	-47	-48	-49	-50	-51	-52
	Steel	Cadmium or Zinc Optional	-20	-21	-22	-23	-24	-25	-26	-27	-28	-29	-30	-31	-32	-33
		Plain (Uncoat- ed)	-1	-2	-3	-4	-5	9-	-7	-8	6-	-10	-11	-12	-13	-14

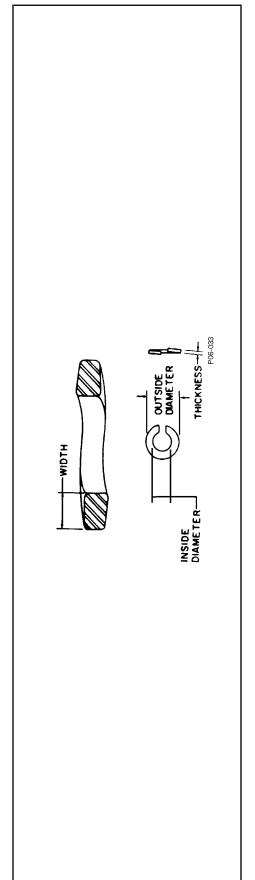
Table 6-17. MS35338 Lockwasher - Continued

		Õ	Dash Number	er				Ins Diam	Inside Diameter	Out- side Diam- eter	Width	Thick	Thickness
	Steel			Corro- sion Re- sistant	Phos- phor Bronze	Nickel Copper Alloy							
Plain (Uncoat- ed)	Cadmium or Zinc Optional	Cadmi- um	Phos- phate	Passi- vated	Cadmi- um	Plain (Uncoat- ed)	Bolt Size	Max	Min	Max	Min	Мах	Min
-15	-34	-53	-72	-91	-110	-129	1	1.053	1.017	1.672	.297	.270	.250
-16	-35	-54	-73	-92	-111	-130	1-1/8	1.184	1.144	1.865	.328	.301	.281
-17	-36	-55	-74	66-	-112	-131	1-1/4	1.315	1.271	2.058	.359	.332	.312
-18	-37	-56	<i>SL</i> -	-94	-113	-132	1-3/8	1.446	1.398	2.253	.391	.364	.344
-19	-38	-57	9 <i>L</i> -	\$6-	-114	-133	1-1/2	1.577	1.525	2.446	.422	395	.375
Material:													
Carbon stee	Carbon steel, Federal Specification QQ-S-633.	fication QQ	-S-633.										
Corrosion-re	Corrosion-resistant steel, Federal Standard Number 66	ederal Stand	ard Number	r 66									
Phosphor bi	Phosphor bronze, Federal Specification QQ-P-330.	pecification	QQ-P-330.										
Nickel copp	Nickel copper alloy, Federal Specification QQ-N-286.	ul Specificat	ion QQ-N-2	.386.									
Finish:													
Cadmium p	Cadmium plating, Federal Specification QQ-P-416.	Specification	1 QQ-P-416	م در									
Zinc plating	Zinc plating, Federal Specification QQ-Z-325	fication QQ.	-Z-325.										

Phosphate coating, Military Specification MIL-C-16232.

Table 6-18. MS35339 Lockwasher

	Dash Number	ē			Ins Dian	Inside Diameter	Outside Diameter	Width	Thick	Thickness
	Steel									
Plain Uncoated)	Cadmium or Zinc Optional	Cadmium	Phosphate	Bolt Size	Max	Min	Max	Min	Мах	Min
-1	-20	-39	-58	No. 2	760.	880.	.185	.040	.031	.025
-2	-21	-40	-59	No. 4	.124	.115	.226	.047	.037	.031
-3	-22	-41	09-	9 .oN	151.	.141	697.	.055	940.	.040
-4	-23	-42	-61	8 .oN	178	.168	.310	.062	.053	.047
-5	-24	-43	-62	No. 10	.205	.194	.353	.070	.062	950.
-6	-25	-44	-63	1/4	.267	.255	.495	.110	780.	.077
-7	-26	-45	-64	5/16	.333	.319	.601	.130	.107	760.
-8	-27	-46	-65	3/8	368.	.382	969°	.145	.125	.115
-9	-28	-47	99-	7/16	.464	.446	.792	.160	.143	.133
-10	-29	-48	-67	1/2	.529	605.	688°	.176	.161	.151
-11	-30	-49	-68	9/16	565.	.573	686	.193	.180	.170
-12	-31	-50	-69	5/8	.660	.636	1.100	.210	.199	.189
-13	-32	-51	-70	3/4	.791	.763	1.299	.244	.236	.226
-14	-33	-52	-71	8/ <i>L</i>	.922	068	1.504	.281	.286	.266
-15	-34	-53	-72	1	1.053	1.017	1.716	.319	.326	.306
-16	-35	-54	-73	1-1/8	1.184	1.144	1.921	.256	.365	.345
-17	-36	-55	-74	1-1/4	1.315	1.271	2.126	.393	.404	.384
-18	-37	-56	-75	1-3/8	1.446	1.398	2.325	.427	442	.422


Table 6-18. MS35339 Lockwasher - Continued

	Dash Number	Jer.			Inside Diamete	Inside	Outside Diameter	Width	Thickness	ness
	Steel									
Plain	Cadminm or Zinc			Bolt						
(Uncoated)	Optional	Cadmium	Phosphate	Size	Max	Min	Max	Min	Max	Min
-19	-38	<i>LS</i> -	9 <i>L</i> -	1-1/2	1.577	1.525	2.518	.458	.478	.458
Material										

Carbon steel, Federal Specification QQ-S-633. Finish: Cadmium plating, Federal Specification QQ-P-416. Zinc plating, Federal Specification QQ-Z-325.

Phosphate coating, Military Specification MIL-C-16232.

Table 6-19. MS35340 Lockwasher

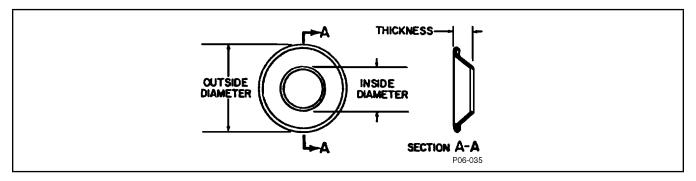
ssət		Min	.027	.034	.045	.057	890:	.084	.108	.123	.143	.162	.182	.202	.241	.285	.330
Thickness		Max	.033	.040	.051	.063	.074	.094	.118	.133	.153	.172	.192	.212	.251	.305	.350
Width		Min	.053	.062	620.	960:	.112	.132	.143	.170	.186	.204	.223	.242	.279	.322	998.
Outside Diameter		Max	.211	.256	.317	.378	.437	.539	.627	.746	.844	.945	1.049	1.164	1.369	1.586	1.810
Inside Diameter		Min	880.	.115	.141	.168	.194	.255	.319	.382	.446	.509	.573	989.	.763	068.	1.017
Inside Diamet		Max	260.	.124	.151	.178	.205	.267	.333	.398	.464	.529	.595	099:	.791	.922	1.053
		Bolt Size	No. 2	No. 4	No. 6	No. 8	No. 10	1/4	2/16	3/8	7/16	1/2	9/16	8/9	3/4	8/L	1
		Phosphate	-58	-59	-60	-61	-62	-63	-64	-65	-99	-67	-68	69-	-70	-71	-72
er	el	Cadmium	-39	-40	-41	-42	-43	-44	-45	-46	-47	-48	-49	-50	-51	-52	-53
Dash Number	Carbon Steel	Cadmium or Zinc Optional	-20	-21	-22	-23	-24	-25	-26	-27	-28	-29	-30	-31	-32	-33	-34
		Plain (Uncoated)	-1	-2	-3	-4	-5	9-	<i>L</i> -	8-	6-	-10	-11	-12	-13	-14	-15

Table 6-19. MS35340 Lockwasher - Continued

Cadmium or Zinc Uncoated) Cadmium or Zinc Optional Optional54 Cadmium or Zinc Optional Optional Optional54 Bolt Size Nax Min Max		Dash Number	ēr			Ins	Inside Diameter	Outside Diameter	Width	Thick	Thickness
Cadmium or Zinc Cadmium or Zinc Cadmium Phosphate Size Max Min Max Min Max 1		Carbon Ste	el								
-54 -73 1-1/8 1.184 1.144 2.031 .411 .395 -55 -74 1-1/4 1.315 1.271 2.244 .452 .437 -56 -75 1-3/8 1.446 1.398 2.453 .491 .478 -57 -76 1-1/2 1.577 1.525 2.654 .526 .516	Plain (Uncoated)	Cadmium or Zinc Optional	Cadmium	Phosphate	Bolt Size	Мах	Min	Max	Min	Max	Min
-55 -74 1-1/4 1.315 1.271 2.244 .452 .437 -56 -75 1-3/8 1.446 1.398 2.453 .491 .478 -57 -76 1-1/2 1.577 1.525 2.654 .526 .516	-16	-35	-54	-73	1-1/8	1.184	1.144	2.031	.411	.395	.375
-56 -75 1-3/8 1.446 1.398 2.453 4.91 .478 .78	-17	-36	-55	-74	1-1/4	1.315	1.271	2.244	.452	.437	.417
-57 -76 1-1/2 1.577 1.525 2.654 .526 .516	-18	-37	-56	-75	1-3/8	1.446	1.398	2.453	.491	.478	.458
	-19	-38	-57	92-	1-1/2	1.577	1.525	2.654	.526	.516	.406

Material:

Carbon steel, Federal Specification QQ-S-633.


Finish:

Zinc plating, Federal Specification QQ-Z-325.

Phosphate coating, Military Specification MIL-C-16232.

Cadmium plating, Federal Specification QQ-P-416.

Table 6-20. NAS390 Flush Type, Finishing Washer

Dash Number	Screw Size	Inside Diameter	Outside Diameter	Thickness Max
-4	No. 4	.136	.246	.084
-6	No. 6	.167	.343	.093
-8	No. 8	.185	.430	.106
-10	No. 10	.203	.484	.115
-14	1/4 or No. 14 Wood Screw	.247	.659	.147
-16	No. 16 Wood Screw	.263	.706	.165

Dash number is screw size.

P after dash number indicates chromium-plated washer.

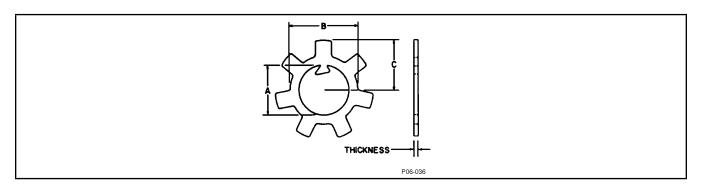
Example of part number:

NAS390-4 = washer, cadmium-plated steel or brass, for number 4 screw.

NAS390-4P = washer, chromium-plated steel or brass, for number 4 screw.

Material:

Steel.


Brass.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Chromium plating.

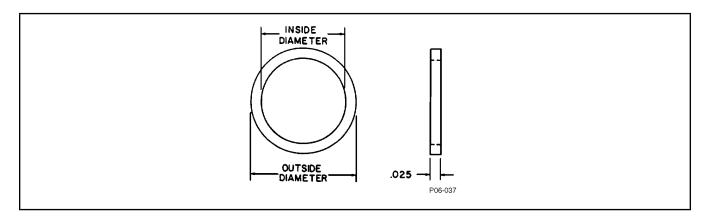
Table 6-21. NAS460 Tab Type Washer

Dash Number	Eye Bolt Size ±.010	A ±.005	B ±.010	C ±.010	Thickness ±.010
-416	1/4	.256	.374	.317	.030
-516	5/16	.319	.436	.364	.030
-616	3/8	.381	.499	.411	.030
-716	7/16	.444	.560	.458	.030
-816	1/2	.506	.684	.546	.030
-916	9/16	.569	.773	.626	.048
-1016	5/8	.631	.896	.705	.048
-1216	3/4	.756	1.019	.798	.048
-1416	7/8	.881	1.206	.934	.048
-1616	1	1.006	1.367	1.057	.060
-1816	1-1/8	1.131	1.517	1.211	.060
-2016	1-1/4	1.256	1.698	1.361	.060
-2216	1-3/8	1.381	1.880	1.487	.060
-2416	1-1/2	1.506	2.029	1.623	.075
-2816	1-3/4	1.756	2.392	1.875	.075
-3216	2	2.006	2.754	2.127	.075

Dash number indicates bolt size in 1/16 inch.

Example of part number:

NAS460-416 = washer, low carbon steel, for 1/4-inch diameter bolt.


Material:

Low carbon steel, Federal Specification QQ-S-636.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

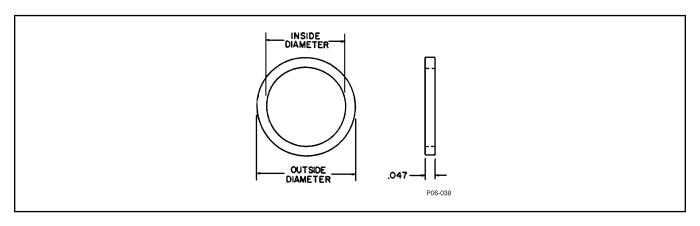
Table 6-22. NAS535 Step-Up Washer (Flexible Tubing Adapter)

Dash Number	Nominal Tubing Inside Diameter	Inside Diam- eter	Outside Diameter	For Use With Coupling Nut
-3B	3/16	.266	.563	AN3054-4
-3C			.672	AN3054-6
-4B	1/4	.344	.672	AN3054-6
-4C			.813	AN3054-8
-6B	3/8	.484	.813	AN3054-8
-6C			.922	AN3054-10
-8B	1/2	.609	.922	AN3054-10
-8C			1.109	AN3054-12
-10B	5/8	.750	1.109	AN3054-12
-10C			1.359	AN3054-16
-12B	3/4	.891	1.359	AN3054-16
-12C			1.656	AN3054-20
-16B	1	1.141	1.656	AN3054-20
-16C			1.906	AN3054-24
-20B	1-1/4	1.422	1.906	AN3054-24
-20C			2.156	AN3054-28
-24B	1-1/2	1.688	2.156	AN3054-28
-24C			2.406	AN3054-32
-28B	1-3/4	1.953	2.406	AN3054-32
-28C			2.906	AN3054-40
-32B	2	2.250	2.906	AN3054-40

Dash number indicates nominal tubing inside diameter in 1/16 inch.

Example of part number:

NAS535-3B = washer for tubing with inside diameter of 3/16 inch.

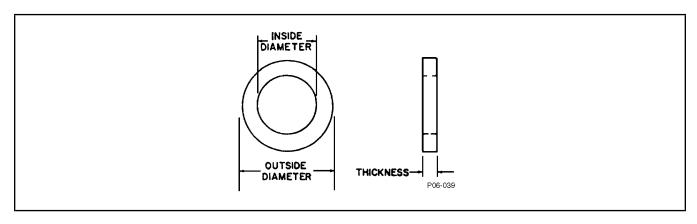

Material:

Clad aluminum alloy, Federal Specification QQ-A-362.

Finish:

Anodize, Military Specification MIL-A-8625.

Table 6-23. NAS536 Retention Washer (Flexible Tubing Adapter)



Dash Number	Nominal Tubing Inside Diameter	Inside Diameter +.005 000	Outside Diameter +.000005	For Use With Connector
-6	3/16	.238	.450	AN3064-6
-8	1/4	.316	.600	AN3064-8
-10	3/8	.441	.722	AN3064-10
-12	1/2	.566	.857	AN3064-12
-16	5/8	.707	1.138	AN3064-16
-20	3/4	.831	1.384	AN3064-20
-24	1	1.081	1.639	AN3064-24
-28	1-1/4	1.347	1.888	AN3064-28
-32	1-1/2	1.597	2.137	AN3064-32
-40	1-3/4	1.863	2.645	AN3064-40

Material:

Phenolic-resin cotton base plastic, Military Specification MIL-P-15035.

Table 6-24. NAS549 Flat, Phenolic Fiber Washer

Dash Number	Bolt Size	Inside Di	ameter	Outside Diameter +.020005	Thickness
-L3	No. 2 and 3	.105	±.005	.250	.031
-3					.063
-L4	No. 4	.125		.312	.031
-4					.063
-L6	No. 6	.149		.375	.031
-6					.063
-L8	No. 8	.174		.375	.031
-8					.063
-L10	No. 10	.203		.438	.031
-10					.063
-H10					.094
-L416	1/4	.265	±.010	.500	.031
-416					.063
-H416					.094
-L516	5/16	.328		.562	.031
-516					.063
-H516					.094
-L616	3/8	.390		.625	.031
-616					.063
-H616					.094
-L716	7/16	.453		.750	.031
-716]				.063
-H716					.094
-L816	1/2	.515		.875	.031
-816]				.063
-H816					.094
-L916	9/16	.578	±.010	1.062	.031
-916]				.063
-H916				Ţ	.094

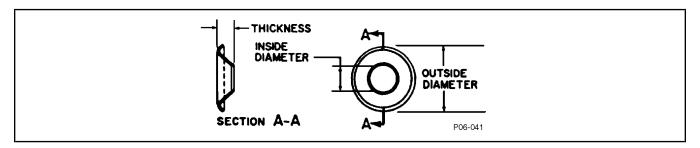
Table 6-24. NAS549 Flat, Phenolic Fiber Washer - Continued

Dash Number	Bolt Size	Inside Diameter	Outside Diameter +.020005	Thickness
-L1016	5/8	.640	1.188	.031
-1016				.063
-H1016				.094
-L1216	3/4	.765	1.312	.031
-1216				.063
-H1216				.094
-L1416	7/8	.890	1.500	.031
-1416				.063
-H1416				.094
-L1616	1	1.015	1.750	.031
-1616				.063
-H1616				.094

Dash number from 3 to 10 is bolt size.

Dash number from 416 to 1616 indicates bolt diameter in 1/16 inch.

Example of part number:


NAS549-10 = washer for number 10 bolt.

NAS549L516 = washer, light series, for 5/16-inch diameter bolt.

Material:

Phenolic-resin paper base plastic, Military Specification MIL-P-3115.

Table 6-25. NAS391 Countersunk Type, Finishing Washer

Dash Number	Screw Size	Inside Diam- eter	Outside Diameter	Thickness Max
-4	No. 4	.115	.360	.075
-6	No. 6	.169	.445	.082
-8	No. 8	.187	.520	.093
-10	No. 10	.228	.562	.100
-14	1/4 or No. 14 Wood Screw	.295	.725	.130
-16	No. 16 Wood Screw	.311	.760	.146

Dash number is screw size.

P after dash number indicates chromium-plated washer.

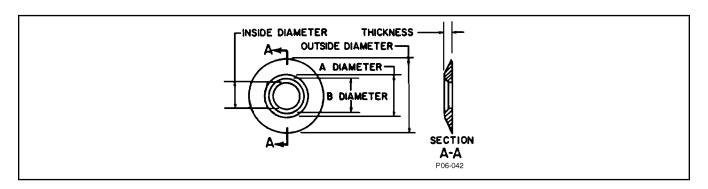
Example of part number;

NAS391-4 = washer, cadmium-plated steel or brass, for number 4 screw.

NAS391-4P = washer, chromium-plated steel or brass, for number 4 screw.

Material:

Steel.


Brass.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Chromium plating.

Table 6-26. 950 Ball Socket Washer

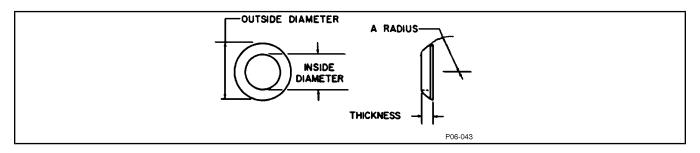
Dash Number	Bolt Size	Inside Diam- eter .010	Outside Diameter ±.010	A Diameter ±.010	B Diameter ±.010	C Radius ±.005	Thickness +.010
-3	No. 10	.234	.750	.438	.375	.375	.078
-4	1/4	.297	1.000	.500	.438	.375	.094
-5	5/16	.375	1.000	.562	.500	.375	.094
-6	3/8	.438	1.125	.625	.562	.500	.094
-7	7/16	.500	1.250	.750	.688	.500	.125
-8	1/2	.562	1.500	.812	.750	.500	.125

Dash number indicates bolt diameter in 1/16 inch.

Example of part number:

950-4 = washer for 1/4-inch diameter bolt.

Material:


Steel.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Zinc plating, Federal Specification QQ-Z-325.

Table 6-27. 955 Ball Seat Washer

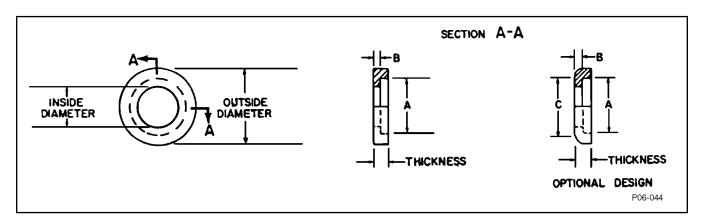
Dash Number	Bolt Size	Inside Diameter ±.010	Outside Diameter ±.010	A Radius ±.005	Thickness ±.010
-3	No. 10	.203	.375	.375	.062
-4	1/4	.266	.438	.375	.078
-5	5/16	.328	.500	.375	.094
-6	3/8	.391	.562	.500	.094
-7	7/16	.453	.688	.500	.156
-8	1/2	.516	.750	.500	.188

Dash number indicates bolt diameter in 1/16 inch.

Example of part number:

955-5 = washer for 5/16-inch diameter bolt.

Material:


Steel:

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Zinc Plating, Federal Specification QQ-Z-325.

Table 6-28. AN975 Taper Pin Washer

Dash Number	Bolt Size	Inside Diameter	Outside Diameter	A	В	C Diameter Min	Thickness
-3	No. 10	.203	.469	.688	.063	.375	.187
-4	1/4	.266	.563	.406	.078	.438	.203
-5	5/16	.328	.688	.531	.078	.500	.203
-6	3/8	.391	.781	.594	.078	.563	.203
-7	7/16	.453	.844	.656	.078	.625	.203
-8	1/2	.516	.938	.719	.094	.750	.219
-9	9/16	.578	1.094	.844	.094	.875	.219
-12	3/4	.766	1.281	1.000	.109	1.125	.234
-14	7/8	.891	1.469	1.188	.109	1.313	.234

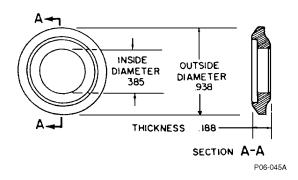
Dash number indicates bolt diameter in 1/16 inch.

Example of part number:

AN975-5 = washer for 5/16-inch diameter boh.

Material:

Carbon steel, Federal Specification QQ-S-633.


Low carbon steel, Federal Specification QQ-S-636.

Carbon steel, Military Specification MIL-S-7952.

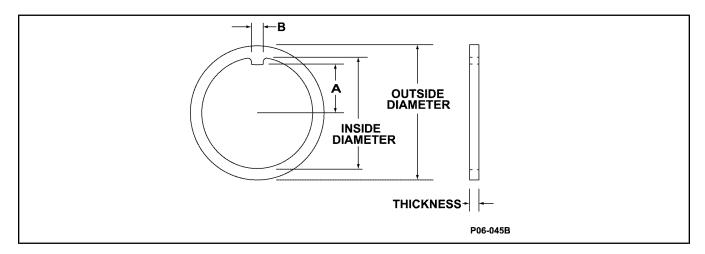
Finish:

Cadmium plating, Federal Specification QQ-P-416

Table 6-29. AN4085 Double Type Magneto Coupling Washer

AN Part Number

AN4085-1


Material:

Steel, Military Specification MIL-S-6049.

Chrome-vanadium steel, Military Specification MIL-S-8503.

Zinc plating, Federal Specification QQ-Z-325.

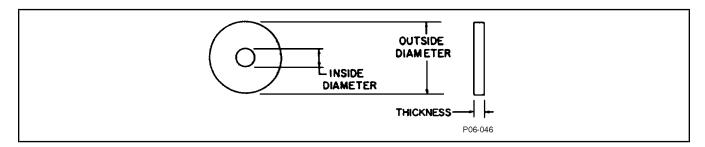
Table 6-30. AN7503 Wheel Bearing Retaining Washer

Dash Number	A ±.005	B ±.010	Inside Diameter ±.005	Outside Diameter Min	Thickness ±.005
-15	.393	.125	.949	1.375	.093
-16	.424	.156	1.010	1.500	.125
-20	.546	.156	1.260	1.750	.125
-23	.635	.156	1.445	1.875	.125
-24	.670	.156	1.515	1.875	.125
-28	.755	.156	1.760	2.250	.125
-31	.850	.219	1.950	2.375	.125
-32	.880	.219	2.010	2.625	.125

Table 6-30. AN7503 Wheel Bearing Retaining Washer - Continued

Dash Number	A ±.005	B ±.010	Inside Diameter ±.005	Outside Diameter Min	Thickness ±.005
-39	1.105	.219	2.450	3.062	.125
-47	1.307	.281	2.948	3.688	.125
-55	1.557	.281	3.448	4.750	.125
-71	2.057	.281	4.450	5.375	.187

Material:


Steel.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Zinc plating, Federal Specification QQ-Z-325.

Table 6-31. AN8013 Vibration Insulator Stop Washer

Dash	Number				Thickn	ess ±.005
Steel	Aluminum Alloy	Size	Inside Diameter +1/64 -0	Outside Diameter +1/64 -0	Steel	Aluminum Alloy
-1	-D1	1	.172	.875	.031	.032
-2	-D2	2	.266	1.375	.050	.051
-3	-D3	3	.391	1.875	.062	.064

Code:

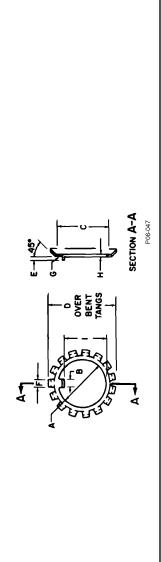
Dash number is washer size.

D before dash number indicates aluminum alloy washer.

Example of part number:

AN8013D2 = washer, 24S aluminum alloy, size 2.

Material:


Steel, Military Specification MIL-S-7809.

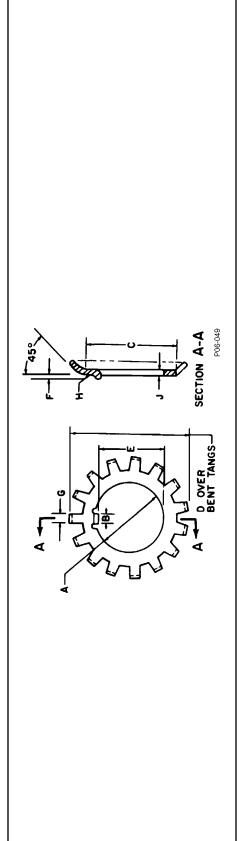
24S aluminum alloy, Federal Specification QQ-A-355.

Finish:

Cadmium plating, Federal Specification QQ-P-416 or zinc plating, Federal Specification QQ-Z-325 (steel washers only). Anodize, Military Specification MIL-A-8625 (24S aluminum alloy washers only).

Table 6-32. MS172201 through 172235, Key, Bearing Retaining, Washer

_	+.020	.333	.411	.513	.591	.724	088.	1.084	1.287	1.474	1.693	1.880	2.067	2.225	2.443	2.631	2.813	3.017	3.220
н	±.010	.038046	.038046	.038046	.038046	.038046	.046054	.046054	.046054	.053063	690 650.	690 650.	890:- 850:	890 850.	890:- 850:	890:- 850:	890850.	890:- 850:	890:-850:
5	±.010	.016	.016	.016	.016	.016	.016	.031	.031	.031	.031	.031	.031	.047	.047	.047	.047	.047	.047
ш	+.010	.084104	.084104	.084104	.084104	.146166	.146166	.146166	.146166	.204234	.204234	.204234	.204234	.204234	.204234	.204234	.297327	.297327	297327
В	+.010	.062094	.062094	.062094	.062094	.062094	.094125	.094125	.094125	.094125	.125156	.125156	.125156	.125156	.125156	.188250	.188250	.188250	.188250
Q	+.000	.828	.922	1.094	1.203	1.344	1.562	1.859	2.078	2.250	2.500	2.688	2.953	3.188	3.375	3.594	3.922	4.141	4.359
၁	+.020	.531	.625	.750	.875	696	1.188	1.438	1.656	1.844	2.062	2.250	2.500	2.688	2.875	3.094	3.375	3.594	3.812
В	+.010	.110120	.110120	.110120	.110 - 120	.156176	.156176	.156176	.156176	.280300	.280300	.280300	.280300	.280300	.280300	.280300	.280300	.340360	.340360
A	±.010	.406421	.484499	.601616	.679694	.801816	989 - 1.009	1.193 - 1.213	1.396 - 1.416	1.583 - 1.603	1.792 - 1.817	1.992 - 2.017	2.182 - 2.207	2.400 - 2.425	2.588 - 2.613	2.791 - 2.816	2.973 - 3.003	3.177 - 3.207	3.395 - 3.425
	Nominal Bearing Bore Diameter	.3937	.4724	9065.	.6693	.7874	.9843	1.1811	1.3780	1.5748	1.7717	1.9685	2.1654	2.3622	2.5591	2.7559	2.9528	3.1496	3.3465
	Part Number	MS172201	MS172202	MS172203	MS172204	MS172205	MS172206	MS172207	MS172208	MS172209	MS172210	MS172211	MS172212	MS172213	MS172214	MS172215	MS172216	MS172217	MS172218


Table 6-32. MS172201 through 172235, Key, Bearing Retaining, Washer - Continued

	1	1				Γ
+.020	3.380	3.579	3.786	4.071	4.193	
I 6	890 850.	890850.	890 850.	890 850.	890 850.	
Q 5	740.	.047	.047	.047	.047	
ш 5	297327	722- 762.	.297327	.360390	.360390	
ш	.188250	.188250	.250312	.250312	.250312	
D 000+	4.547	4.812	5.000	5.188	5.406	
C +:020	4.000	4.219	4.406	4.594	4.812	
a 5	.340360	.340360	.340360	.340360	.340360	
4	3.582 - 3.612	3.800 - 3.830	3.988 - 4.018	4.192 - 4.222	4.395 - 4.425	
Nominal Bearing Bore	3.5433	3.7402	3.9370	4.1339	4.3307	
Part	MS172219	MS172220	MS172221	MS172222	MS172223	

Material: Steel, Aeronautical Material Specification AMS6357. Finish:

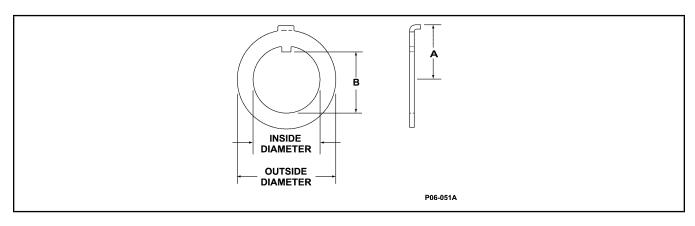
Phosphate Treatment, Aeronautical Material Specification AMS2481.

Table 6-33. MS172271 through 172320, Key Washer

		_	_	_	_	_	_	_	_				
٢	+.010	.038046	.038046	.038046	.038046	.038046	.046054	.046054	.046054	.046054	.046054	.046054	.046054
Ŧ	+.010	.016	.016	.016	.016	.016	.016	.016	.016	.016	.031	.031	.031
5	+.010	.084104	.084104	.084104	.084104	.146166	.146166	.146166	.146166	.146166	.146166	.146166	.146166
ш	+.010	.062094	.062094	.062094	.062094	.062094	.094125	.094125	.094125	.094125	.094125	.094125	.094125
ш	+.020	.443	505.	.567	.630	<i>LL</i> 9:	.739	.802	.864	.927	686	1.052	1.114
a	+.000	1.156	1.250	1.312	1.453	1.578	1.656	1.719	1.781	1.891	1.984	2.047	2.109
၁	+.020	.859	.922	.984	1.125	1.203	1.281	1.344	1.406	1.469	1.562	1.625	1.688
В	+.010	.110120	.110120	.110120	.110120	.156176	.156176	.156176	.156176	.156176	.156176	.156176	.156176
۷	+.010	.515530	.578593	.641656	.708723	.770785	.832852	.895915	876856.	1.020 - 1.040	1.082 - 1.102	1.145 -	1.208 -
	Shaft Thread Diameter	.500	.5625	.625	.6875	.750	.8125	.875	.9375	1.000	1.0625	1.125	1.1875
	Part Number	MS172271	MS172272	MS172273	MS172274	MS172275	MS172276	MS172277	MS172278	MS172279	MS172280	MS172281	MS172282

Table 6-33. MS172271 through 172320, Key Washer - Continued

7	±.010	.046 - 054	.046054	.046054	.053063	.053063	.053063	.053063	.053063	.053063	.053063	.053063	.053063	.053063	.058068	890:- 850:	890:- 850:
=	±.010	.031	.031	.031	.031	.031	.031	.031	.031	.031	.031	.031	.031	.031	.031	.031	.047
5	±.010	.146166	.146166	.146166	.204234	.204234	.204234	.204234	.204234	.204234	.204234	.204234	.204234	.204234	.204234	.204234	.204234
ш	±.010	.094125	.094125	.094125	.094125	.094125	.125156	.125156	.125156	.125156	.125156	.125156	.125156	.125156	.125156	.125156	.125156
ш	+.020	1.177	1.239	1.302	1.349	1.411	1.474	1.536	1.599	1.661	1.724	1.786	1.849	1.911	1.974	2.036	2.099
۵	+.000	2.172	2.234	2.297	2.344	2.406	2.469	2.562	2.625	2.719	2.781	2.844	2.906	2.969	3.047	3.109	3.172
O	+.020	1.750	1.812	1.875	1.938	2.000	2.062	2.125	2.188	2.281	2.344	2.406	2.469	2.531	2.594	2.656	2.719
B	±.010	.156176	.156176	.156176	.219239	.219239	.219239	.219239	.219239	.219239	.219239	.219239	.219239	.219239	.219239	.219239	.219239
⋖	+.010	1.270 - 1.290	1.332 - 1.352	1.395 - 1.415	1.458 - 1.478	1.520 - 1.540	1.587 - 1.612	1.650 -	1.713 -	1.775 -	1.837 - 1.862	1.900 - 1.925	1.963 - 1.988	2.025 - 2.050	2.087 - 2.112	2.150 - 2.175	2.219 - 2.244
	Snan Thread Diameter	1.250	1.3125	1.375	1.4375	1.500	1.5625	1.625	1.6875	1.750	1.8125	1.875	1.9375	2.000	2.0625	2.125	2.1875
	Part Number	MS172283	MS172284	MS172285	MS172286	MS172287	MS172288	MS172289	MS172290	MS172291	MS172292	MS172293	MS172294	MS172295	MS172296	MS172297	MS172298


Table 6-33. MS172271 through 172320, Key Washer - Continued

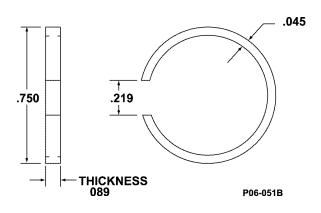
Shaft Thread Number ±.010 ±.020 +.020 +.020 +.020 ±.010 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Shaft Thread Thread Thread 20 +.020 (030) +.020 (030) +.020 (030) +.020 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (030) +.010 (034)	ا	±.010	890:- 850:	.058068	890:- 850:	890:- 850:	.058068	
Shaft Thread Diameter ±.010 ±.020 +.020 +.020 +.020 ±.010 299 2.250 2.281- .219239 2.781 3.234 2.161 .125156 300 2.3125 2.343- .219239 2.844 3.297 2.224 .125156 301 2.375 2.406- .219239 2.906 3.359 2.286 .125156 302 2.4375 2.469- .219239 2.906 3.422 2.349 .125156 303 2.500 2.531- .219239 3.031 3.484 2.411 .125156	=	±.010	.047	.047	.047	.647	.047	
Shaft Thread Diameter ±.010 ±.010 ±.010 ±.010 ±.010 ±.010 ±.020 ±.030 +.020 ±.030<	5	±.010	.204234	.204234	.204234	.204234	.204234	
Shaft Thread Diameter ±.010 ±.010 ±.010 ±.010 ±.000 +.020 +.000 299 2.250 2.281 - 2.306 2.19239 2.781 3.234 800 2.3125 2.343 - 2.368 2.19239 2.844 3.297 801 2.375 2.406 - 2.431 2.19239 2.906 3.359 802 2.4375 2.469 - 2.494 219239 2.969 3.422 803 2.500 2.531 - 2.556 2.19239 3.031 3.484	ш	±.010	.125156	.125156	.125156	.125156	.125156	
Shaft Thread Diameter A B C 299 2.250 2.281 - 2.306 .219239 2.343 - 2.368 2.19239 2.344 2.244 800 2.3125 2.343 - 2.368 .219239 2.368 2.906 801 2.375 2.406 - 2.431 .219239 2.494 2.906 802 2.4375 2.469 - 2.494 .219239 2.494 2.969 3.031	ш	+.020	2.161	2.224	2.286	2.349	2.411	
Shaft Thread Diameter ±.010 ±.010 299 2.250 2.281 - 2.306 800 2.3125 2.343 - 2.39 801 2.375 2.406 - 2.19 - 239 802 2.4375 2.469 - 219 - 239 803 2.500 2.531 - 2.944 803 2.500 2.531 - 2.19 - 239 2.556 2.556 2.556	۵	+.000	3.234	3.297	3.359	3.422	3.484	
Shaft Thread Diameter ±.010 ±.6 299 2.250 2.281 - 219 2.306 300 2.3125 2.343219 2.375 2.406219 302 2.4375 2.469219 2.494 303 2.500 2.531219	ن 	+.020	2.781	2.844	2.906	5.969	3.031	
Shaft Thread Diameter 299 2.250 800 2.3125 801 2.375 802 2.4375 803 2.500	Δ	±.010						
802 803 803 803 803 803 803 803 803 803 803	⋖	±.010	2.281 - 2.306	2.343 - 2.368	2.406 - 2.431	2.469 - 2.494	2.531 - 2.556	
Part Number MS172299 MS172300 MS172301 MS172302 MS172303		Shaft Thread Diameter	2.250	2.3125	2.375	2.4375	2.500	
		Part Number	MS172299	MS172300	MS172301	MS172302	MS172303	Material:

Steel, Aeronautical Material Specification AMS6357. Finish:

Phosphate treatment, Aeronautical Material Specification AMS2481.

Table 6-34. MS25081 Key Way Washer

					B ±.005
Dash Number	Inside Diam- eter ±.005	Outside Diam- eter ±.016	A ±.005	Max	Min
-1	.475	.719	.388	.440	.433
-2	.631	.938	.513	.597	.589
-3	.652	.875	.466	.605	.591

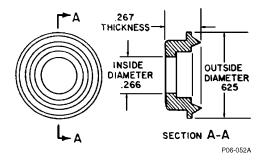

Material:

Low carbon steel, Federal Specification QQ-S-636.

Finish:

Cadmium plating, Federal Specification QQ-S-416.

Table 6-35. MS90136 Spring Tension Washer; Series N Connectors

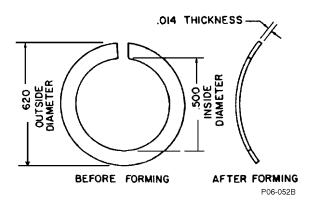


Part Number MS90136-1

Material:

Phosphor bronze, Federal Specification QQ-P-330.

Table 6-36. MS90139 Shouldered and Recessed Washer; Series N Connectors



Part Number MS90139-1

Material:

Brass, Federal Specification QQ-B-613

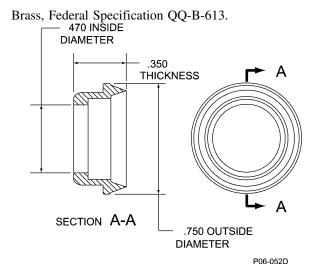
Table 6-37. MS90217 Spring Washer; Part of Coaxial Connectors



Part Number MS90217-1

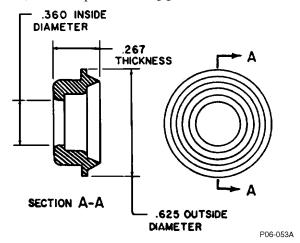
Material:

Copper-beryllium alloy, Federal Specification QQ-C-533.


Table 6-38. MS90219 Shouldered and Recessed Washer; Part of RF Coaxial Connectors

Part Number MS90219-1

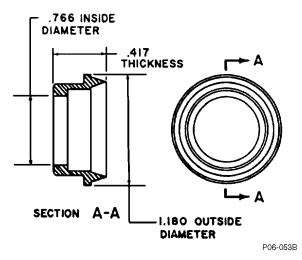
Material:


Table 6-38. MS90219 Shouldered and Recessed Washer; Part of RF Coaxial Connectors - Continued

Part Number MS90219-2

Material:

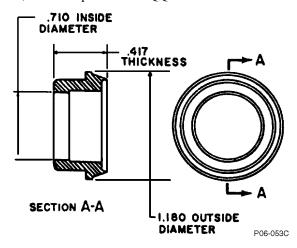
Brass, Federal Specification QQ-B-613.



Part Number MS90219-3

Material:

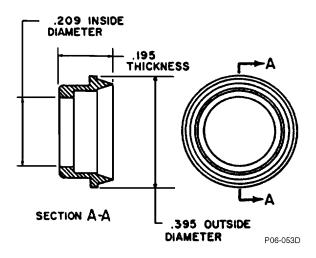
Brass, Federal Specification QQ-B-613.


Table 6-38. MS90219 Shouldered and Recessed Washer; Part of RF Coaxial Connectors - Continued

Part Number MS90219-4

Material:

Brass, Federal Specification QQ-B-613.

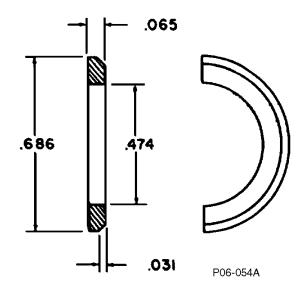


Part Number MS90219-5

Material:

Brass, Federal Specification QQ-B-613.

Table 6-38. MS90219 Shouldered and Recessed Washer; Part of RF Coaxial Connectors - Continued

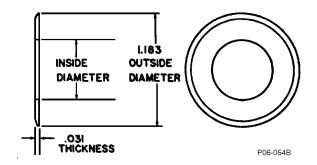


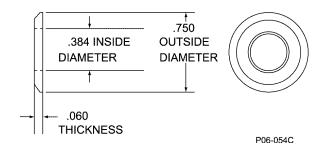
Part Number MS90219-6

Material:

Brass, Federal Specification QQ-B-613.

Table 6-39. MS90221 Half Washer; Part of Series C Connectors

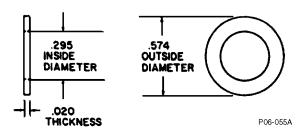



Part Number MS90221-1

Material:

Brass, Federal Specification QQ-B-613.

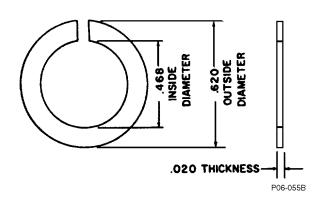
Table 6-40. MS90235 Holding Washer; Part of RF Coaxial Connectors



Part Number MS90235-1

Material:

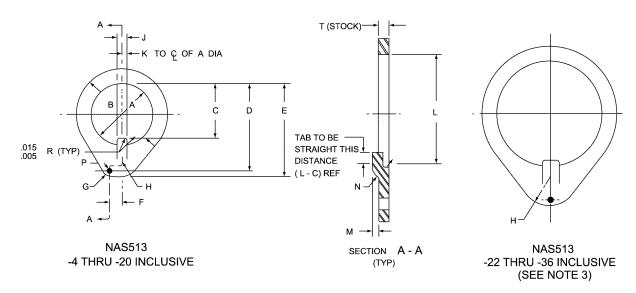
Brass, Federal Specification QQ-B-613.


Table 6-41. MS90242 Holding Washer; Part of Coaxial Connectors

Material:

Soft copper, Federal Specification QQ-C-576.

Table 6-42. MS91820 Split Washer; Part of Series C Connectors



Part Number MS91820-1

Material:

Polytetrafluoroethylene.

Table 6-43. Washer-Rod End Locking

		RMINAL HREAD		B DIA													
DASH NO.	'	SIZE (REF)	A DIA	+.02 00	С	D ±.016	E ±.016	F ±.031	G RAD	H RAD	J ±.005	K	L ±.031	M ±.005	N RAD	т	P DIA
4 5		1/4 - 28UNF-3A 5/16 - 24UNF-3A	.272 ±.005 .334 ±.005	.44 .50	.214 ±.005 .273 ±.005	.406 .484	.500 .578	.125 .125	.094 .094	.094 .094	.052 .052	.026 ±.005 .026 ±.005	.293 .355	.036 .036	.031	.050 .050	.062 .062
6 7	l .	3/8 - 24UNF-3A 7/16 - 20UNF-3A	.396 ±.008 .459 ±.008	.56 .63	.327 ±.008 .386 ±.008	.562 .625	.656 .719	.125 .125	.094 .094	.094	.082 .082	.041 ±.005 .041 ±.005	.418 .463	.036 .049	.031 .031	.050 .063	.062 .062
8 9		1/2 - 20UNF-3A 9/16 - 18UNF-3A	.520 ±.008 .583 ±.008	.75 .88	.450 ±.008 .496 ±.010	.719 .812	.813 .906	.156 .188	.094 .094	.156 .156	.082 .114	.041 ±.005 .057 ±.005	.542 .597	.049 .057	.031 .062	.063 .071	.062 .071
10 12	l .	5/8 - 18UNF-3A 3/4 - 16UNF-3A	.647 ±.010 .772 ±.010	1.00 1.12	.559 ±.010 .681 ±.010	.937 1.062	1.031 1.156	.188 .188	.094 .094	.188 .188	.114 .114	.057 ±.005 .057 ±.005	.675 .800	.057 .057	.062 .062	.071 .071	.071 .071
14 16	1 7	7/8 - 14UNF-3A - 14NS-3A	.897 ±.010 1.022 ±.010	1.31 1.50	.795 ±.010 .918 ±.010	1.250 1.422	1.344 1.516	.188 .188	.094 .094	.250 .250	.142 .142	.071 ±.005 .071 ±.005	.944 1.088	.066 .074	.062 .062	.080 .090	.080 .090
18 20		1/8 - 12UNF-3A 1/4 - 12UNF-3A	1.147 ±.010 1.272 ±.010	1.62 1.75	1.028 ±.010 1.154 ±.010	1.547 1.687	1.656 1.796	.219 .219	.109 .109	.313	.174 .174	.087 ±.007 .087 ±.007	1.213 1.280	.074 .096	.062 .094	.090 .112	.090 .112
22 24		3/8 - 12UNF-3A 1/2 - 12UNF-3A	1.397 ±.010 1.518 ±.010	1.88 2.00	1.254 ±.010 1.379 ±.010	1.859 1.969	1.969 2.078	_	_	.375 .375	.236 .236	.118 ±.007 .118 ±.007	1.405 1.530	.096 .096	.094 .094	.112 .112	.112 .112
26 28		5/8 - 12UN-3A 3/4 - 12UN-3A	1.643 ±.010 1.766 ±.010	2.12 2.25	1.495 ±.010 1.607 ±.010	2.109 2.266	2.219 2.375	_	_	.375 .500	.236 .298	.118 ±.007 .149 ±.007	1.638 1.763	.109 .109	.094 .094	.125 .125	.125 .125
30 32	1 7	7/8 - 12UN-3A - 12UN-3A	1.891 ±.010 2.016 ±.010	2.38 2.63	1.732 ±.010 1.857 ±.010	2.375 2.594	2.484 2.703	_	_	.500 .500	.298 .298	.149 ±.007 .149 ±.007	1.888 2.076	.109 .109	.094 .094	.125 .125	.125 .125
34 36	2 .	1/8 - 12UN-3A 1/4 - 12UN-3A	2.141 ±.010 2.266 ±.010	2.75 2.88	1.973 ±.010 2.098 ±.010	2.750 2.875	2.860 2.984	_ _	_ _	.500 .500	.298 .298	.149 ±.007 .149 ±.007	2.201 2.326	.109 .109	.094 .094	.125 .125	.125 .125

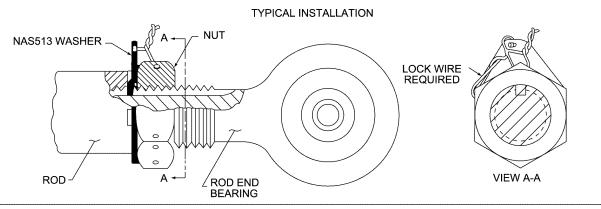
MATERIAL: SPRING STEEL, 1095, SPEC MIL-S-7947 CONDITION A

HEAT TREAT: 180,000 TO 210,000 PSI. SPEC MIL-H-6875, ROCKWELL HARDNESS C40-45

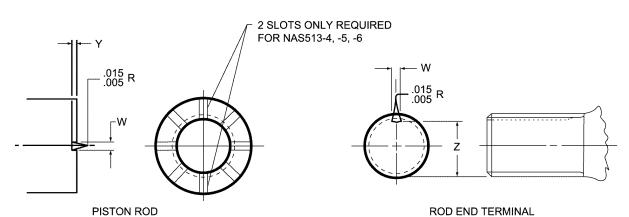
FINISH: CADMIUM PLATE, SPEC QQ-P-416 TYPE 1, CLASS 2

DASH NUMBER DESIGNATES WASHER SIZE AS NOTED IN THE ABOVE TABLE CODE:

EXAMPLE OF PART NUMBER:


NAS513-4 = LOCKWASHER FOR USE WITH A 1/4-28UNF-3A ROD END TERMINAL AND AN NAS509-4 JAM NUT

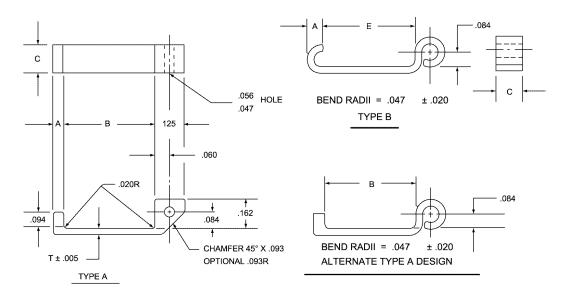
NOTES: THIS WASHER IS INTENDED FOR USE WITH THE NAS509 JAM NUT FOR POSITIVE LOCKING


OF ROD END TERMINALS TO HYDRAULIC PISTON RODS
WASHER FACE SURFACES MUST BE FLAT WITHIN .010 INCH
DIMENSIONS OF NAS513-4 THROUGH -20 APPLY TO NAS513-22 THROUGH -36 UNLESS OTHERWISE SPECIFIED
TOLERANCES UNLESS OTHERWISE SPECIFIED, DECIMALS ±.010, ANGLES ±1°

P06-056

Table 6-43. Washer-Rod End Locking - Continued

DESIGN INFORMATION



WASHER DASH NO. (REF)	TERMINAL THREAD	W +.005 000	Y +.005 000	2 +.000 005
4	1/4 - 28UNF-3A	.062	.056	.201
5	5/16 - 24UNF-3A	.062	.056	.260
6	3/8 - 24UNF-3A	.093	.056	.311
7	7/16 - 20UNF-3A	.093	.069	.370
8	1/2 - 20UNF-3A	.093	.069	.436
9	9/16 - 18UNF-3A	.125	.077	.478
10	5/8 - 18UNF-3A	.125	.077	.541
12	3/4 - 16UNF-3A	.125	.077	.663
14	7/8 - 14UNF-3A	.156	.086	.777
16	1 -14NS-3A	.156	.094	.900
18	1 1/8 - 12UNF-3A	.187	.094	1.010
20	1 1/4 - 12UNF-3A	.187	.116	1.136
22	1 3/8 - 12UNF-3A	.250	.116	1.236
24	1 1/2 - 12UNF-3A	.250	.116	1.361
26	1 5/8 - 12UN-3A	.250	.129	1.477
28	1 3/4 - 12UN-3A	.312	.129	1.589
30	1 7/8 - 12UN-3A	.312	.129	1.714
32	2 -12UN-3A	.312	.129	1.839
34	2 1/8 - 12UN-3A	.312	.129	1.955
36	2 1/4 - 12UN-3A	.312	.129	2.080

NOTE: THE INFORMATION INCLUDED ON THIS PAGE DEFINES THE SLOT DIMENSIONS OF THE PISTON ROD AND ROD END TERMINAL USED IN CONJUCTION WITH THE NAS513 WASHER.

P06-057

Table 6-44. Lock-Rod End (Key Type)

DASH NO.	THREAD OD (REF)	A ±.005	B ± .010	C ±.005	T ±.005
1	1/4 & 5/16	.036	.250	.055	.020*
2	3/8	.036	.281	.087	.020*
3	7/16 & 1/2	.049	.344	.087	.020
4	9/16 & 5/8	.057	.438	.118	.036
5	3/4	.057	.500	.118	.036
6	7/8 & 1	.066	.531	.149	.040
7	1 1/8	.074	.563	.180	.050
8	1 1/4	.096	.594	.180	.050
9	1 3/8 & 1 1/2	.096	.656	.242	.071
10	1 5/8	.109	.688	.242	.080
11	1 3/4 & 1 7/8	.109	.750	.305	.090
12	2, 2 1/8 & 2 1/4	.109	.832	.305	.090

(* TOLERANCE FOR -1 AND -2 TO BE +.001, -.005

MATERIAL: TYPE "A", ALLOY STEEL PER MIL-S-6758 (4130)

TYPE "B", ALLOY STEEL PER MIL-S-18729 (4130)

FINISH: CADMIUM PLATE PER SPEC QQ-P-416, TYPE 1, CLASS 2

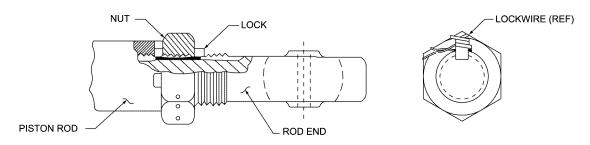
180,000 TO 200,000 PSI PER SPEC MIL-H-6875 ROCKWELL HARDNESS C40-43 **HEAT TREAT:**

NO LETTER AFTER DASH NUMBER FOR TYPE A LOCK, MADE FROM BAR, RODS AND FORGING STOCK CODE:

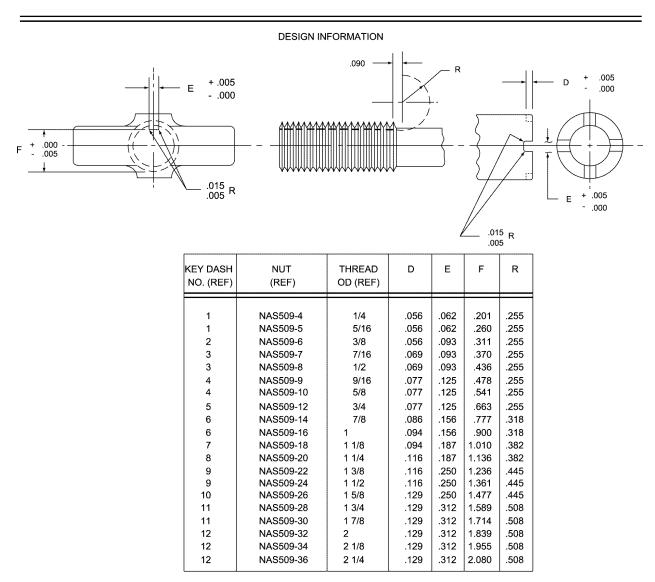
ADD LAFTER DASH NUMBER FOR TYPE B LOCK, MADE FROM PLATE, SHEET AND STRIP

EXAMPLES OF PART NUMBERS: NAS559-5 = LOCK, TYPE A FOR USE WITH 3/4 INCH THREAD NAS559-2L = LOCK, TYPE B FOR USE WITH 3/8 INCH THREAD

DIMENSIONS IN INCHES UNLESS OTHERWISE SPECIFIED. TOLERANCES: DECIMALS ±.010.

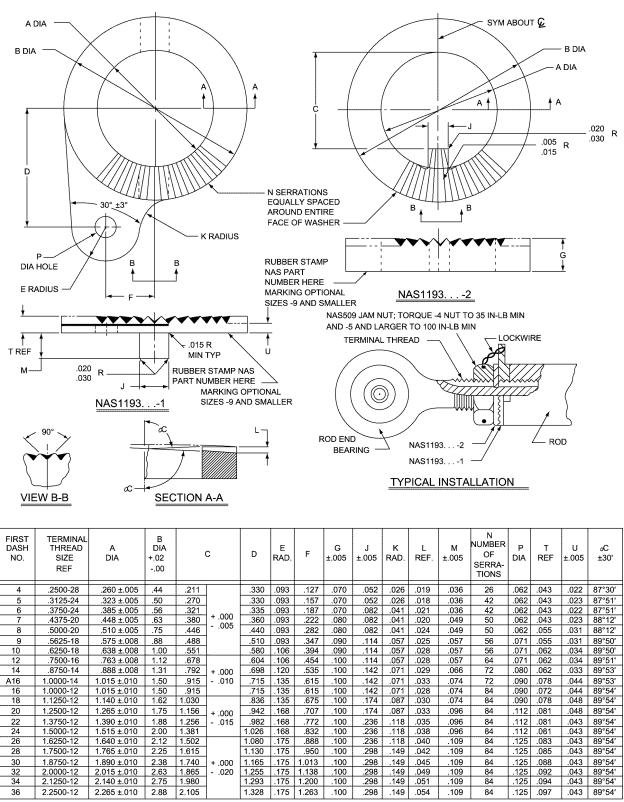

ANGLES ±0°30' UNLESS OTHERWISE SPECIFIED DASH NUMBERS SHOWN ON THIS NAS STANDARD ARE FOR TYPE A (2)

- (3) ALTERNATE METHOD OF FABRICATION FOR TYPE A: PROFILE IS MACHINED AND END CURLED TO FORM LOCKWIRE HOLE
- TYPE B IS FORMED FROM "T" SHEET
- LOCKS SHALL BE FREE FROM HANGING BURRS AND SLIVERS WHICH MIGHT BECOME DISLODGED (5) UNDER USAGE
- REMOVE SHARP EDGE AROUND SAFETY WIRE HOLE
- THIS LOCK IS INTENDED FOR USE WITH NAS509 JAM NUT FOR POSITIVE LOCKING OF ROD END (7)TERMINALS TO HYDRAULIC PISTON RODS, TIE RODS ENDS, PUSH PULL RODS, ETC. SEE SHEET 2 OF 2 FOR INSTALLATION INFORMATION


P06-058

NOTES:

Table 6-44. Lock-Rod End (Key Type) - Continued



TYPICAL INSTALLATION

NOTE: THE INFORMATION INCLUDED ON THIS PAGE DEFINES THE SLOT DIMENSIONS OF THE PISTON ROD AND ROD END TERMINAL USED IN CONJUNCTION WITH THE NAS559 LOCKING PIN

P06-059

Table 6-45. Locking Device - Positive Index

P06-060

Table 6-45. Locking Device - Positive Index - Continued

CODE:

8 THE CODE LETTER "K" FOLLOWING BASIC PART NUMBER DESIGNATES 17-4PH MATERIAL FOR USE UP TO 800°F.

FIRST DASH NUMBER DESIGNATES TERIMANAL THREAD SIZE AS DESIGNATED IN TABLE. THE CODE LETTER "C" FOLLOWING THE FIRST DASH NUMBER DESIGNATES A COMPLETE LOCKING DEVICE CONSISTING OF THE -1 AND -2 HALVES.

THE SECOND DASH NUMBER DESIGNATES LOCKING DEVICE HALF AS SHOWN IN FIGURE AND AS DIMENSIONED IN TABLE.

THE SUFFIX LETTER "P" FOLLOWING THE "C" CODE OR SECOND DASH NUMBER DESIGNATES CADMIUM PLATE FINISH FOR USE UP TO 400°F.

EXAMPLE

8 NAS1993K5C DESIGNATES A POSITIVE INDEXING LOCKING DEVICE ASSEMBLY OF 17-4PH MATERIAL FOR USE ON A .3125-24 THREADED TERMINAL AND CONSISTING OF AN NAS1193K5-1 HALF AND AN NAS1193K5-2 HALF.

NAS1193K5CP DESIGNATES A POSITIVE INDEXING LOCKING DEVICE ASSEMBLY OF CAD-MIUM PLATED 17-4PH MATERIAL FOR USE ON A.3125-24 THREADED TERMINAL AND CONSISTING OF AN NAS1193K5-1P HALF AND AN NAS1193K5-2P HALF.

NAS1193K5-1 DESIGNATES A POSITIVE INDEXING LOCK WASHER HALF OF THE CONFIGURATION AS SHOWN IN FIGURE FOR USE WITH A.3125-24 THREADED TERMINAL.

NAS1193K5-2 DESIGNATES A POSITIVE INDEXING LOCK WASHER HALF OF THE CONFIGURATION AS SHOWN IN FIGURE FOR USE WITH A.3125-24 THREADED TERMINAL.

MATERIAL:

8 "K" CODE: CORROSION RESISTANT STEEL INVESTMENT CASTING 17-4PH PER AMS5355 FOR USE UP TO 800°F.

FINISH: 8 17-4PH MATERIAL: NO CODE - NONE

"P" CODE - CADMIUM PLATE PER QQ-P-416 TYPE II, CLASS 2

HEAT TREAT: 8 17-4PH MATERIAL: 180,000-200,000 PSI PER AMS5355 EXCEPT HARDNESS NOT TO EXCEED

ROCKWELL C44 MAX

TOLERANCES: CASTING TOLERANCES + .005/IN.

ANGULAR TOLERANCES + 30'.

CORE LOCATION AND DIMENSIONS + 30' OR + .01.

NOTES:

- THIS LOCKING DEVICE IS INTENDED FOR USE WITH THE NAS509 JAM NUT OF AN EQUIV-ALENT DASH NUMBER WHERE CLOSE LINEAR TOLERANCES OR CLOSE ADJUSTMENT TO WITHIN .001 INCH OF ROD END LENGTH IS REQUIRED.
- 2. BREAK ALL SHARP EDGES EXCEPT AS NOTED.
- 3. TRIM GATES FLUSH.
- 4. SURFACE FINISH C-12 ALL OVER PER NAS823.
- PENETRANT INSPECT PER MIL-C-6021 FOR CLASS 2 NON-MAGNETIC MATERIAL.
- 6. FOR PISTON ROD AND KEYWAY DETAIL, SEE NAS513 SHEET 2.
- DIMENSIONS TO BE MET BEFORE CADMIUM PLATING.
- THE NO CODE (TYPE 410 MATERIAL) PARTS ARE INACTIVE FOR DESIGN AFTER 29 SEPT. 1973 AND ARE SUPERSEDED BY "K" CODE PARTS. FOR DESCRIPTION OF STATUS NOTES, SEE NAS380.

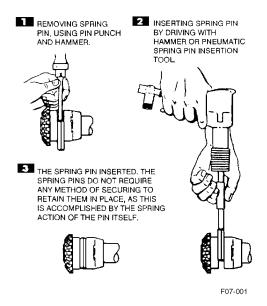
P06-061

CHAPTER 7 PINS

7.1 PINS.

The types of pins used in aircraft structure are taper pins, flathead pins, cotter pins, lockpins, spring pins, and machine pins.

7.1.1 <u>Taper Pins</u>. (Refer to <u>Table 7-1</u> and <u>Table 7-2</u>.) Taper pins are used in joints that carry shear loads and where the absence of clearance is essential. The AN385 plain taper pin can be drilled or undrilled. The drilled plain taper pin is usually secured with safety wire. The AN386 threaded taper pin is used with an AN975 taper-pin washer and a shear nut if the taper pin is drilled or a self-locking nut is undrilled. When a shear nut is used with the threaded taper pin and washer, the nut is secured with a cotter pin. For the proper methods of securing with cotter pins, refer to Chapter 16, paragraph 16.5.


7.1.2 Flathead Pins. (Refer to Table 7-3 and Table 7-4.) The flathead pin is used with tie rod terminals or secondary controls, which do not operate continuously. The flathead pin should be secured with cotter pin. The pin should be installed, when possible, with the head of the pin positioned up, forward, or inboard depending on the installation. When installed in this manner, should the securing device fail, the possibility of the pin falling out is greatly minimized.

7.1.3 <u>Cotter Pins</u>. Cotter pins are used to secure bolts, screws, nuts, and pins, and in applications where such securing is required. Where nonmagnetic cotter pins are required or where resistance to corrosion is desired, NASM24665 cotter pins will be used. Cotter pins will not be re-used on aircraft and missiles.

7.1.4 Lockpins. (Refer to Table 7-5 and Table 7-6.)

7.1.5 Spring Pins. (Refer to Table 7-7 through Table 7-10.) The spring pin is a slotted or coiled and chamfered pin, heat-treated to achieve optimum toughness, resilience, and shear strength. Spring pins are manufactured with the diameter greater than the holes in which they are to be used. Spring pins are stronger than mild carbon steel straight pins, taper pins, or grooved pins of the equivalent

size. The spring pin is compressed as it is driven into the hole, and exerts continuous spring pressure against the sides of the hole to prevent loosening by vibration. Spring pins are removed and replaced as shown in Figure 7-1. Spring pins require no other means of securing and can be used inside one another to increase shear strength. Be careful when using these pins, since spring pin performance depends entirely on the fit, and the permanence of the fit under vibration or repeated load conditions (especially in soft materials, such as aluminum alloys and magnesium) has not been established. They will not be used in an aircraft component or system where the loss or failure of the pin might endanger the safety of flight of the aircraft. The spring pin is designed for use in double shear applications. The proper bearing factors for double shear application shall be established for the material in which the spring pin is being used; that is, whether the material is heattreated steel, corrosion-resistant steel, aluminum alloy, or magnesium. The joints where spring pins are used for fastening shall be designed like riveted and bolted joints. Spring pins should not be mixed with other structural fasteners in the same joint. These pins for primary structural applications should be used only where there will be no rotation or relative movement under load of the parts to be joined. Spring pins may be reused if a careful inspection reveals no deformation of the pin or hole. Be careful to observe that the hole has not enlarged or deformed preventing proper functioning of the spring pin. Where hole misalignment results in the pin gap closing or necessitates excess inserting force, the spring pin will not be used. Where temperatures are in excess of 337.8°C (500°F) noncorrosion-resistant steel spring pins will not be used; nor will corrosion-resistant steel pins be used where temperatures are in excess of 371.1°C (700°F). The spring pin will not be used as a substitute for a cotter pin nor in applications subjected to shock loading, unless the installation has been tested for fatigue life and proved satisfactory. The spring pin springback relative to span length and recommended hole sizes for clevis joint applications are given in Table 7-11. When the spring pin is used in a clevis joint, it is recommended that the pin be held by the outer members of the unit for maximum efficiency and reduced maintenance.

7.1.6 Machine Pins. (Refer to Table 7-12.)

7.1.7 Quick-Release Pins. (See Figure 7-2.) Quick-release pins are used in some applications where rapid removal and replacement of equipment is necessary. When equipment is secured with these pins, no binding of the spindle should be present. Spindle binding could cause the locking balls to remain in the open position with a resultant possibility of the pin falling out under vibration. Any spindle binding or if one or more of the locking balls fall out the pin is considered unserviceable and will be replaced. Ensure; a. No visible separation is allowed between the head and the shank; b. the balls will not separate from the shank; c. the head of the Quick Release Pin may spin on the shank as long as the criteria in a. and b. above are met.

Figure 7-1. Removing and Replacing Spring Pin

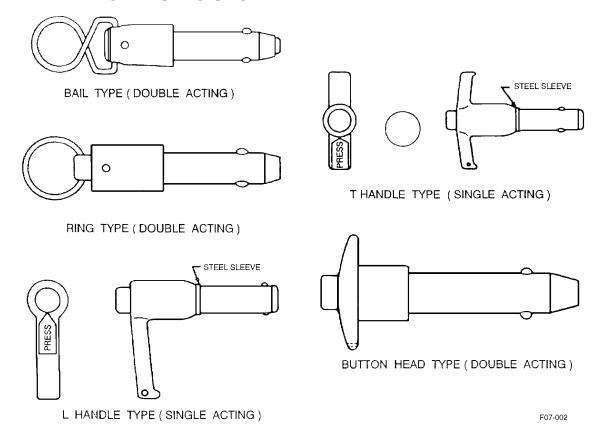
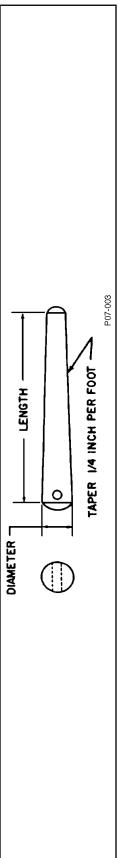



Figure 7-2. Quick-Release Pins

Table 7-1. AN385 Plain Taper Pin

Size Number	0/2	0/9	2/0	4/0	3/0	2/0	1/0	-	2	က	4	ro	9
Diameter Large End	.062	820	.094	.109	.125	.141	.156	172	.193	.219	.250	.289	.341
Length						_	Dash Numbers	ers					
000-	7,0	0/3	0/4	9/8	0/6	o/c	Ç	•	c	c	5	Ц	u
020	3	000	0/6	5	ا م	2/0	2	-	<u>ا</u>] د	t	n 	٥
.375	70-3	60-3	50-3	40-3									
.500	70-4	60-4	50-4	40-4	30-4								
.625	70-5	9-09	50-5	40-5	30-5	20-5	10-5	1-5					
.750	9-02	9-09	9-09	40-6	30-6	20-6	10-6	1-6	2-6				
.875	70-7	2-09	20-7	40-7	30-7	20-7	10-7	1-7	2-7	3-7			
1.000	8-02	8-09	8-09	40-8	30-8	20-8	10-8	1-8	2-8	3-8			
1.250	70-10	60-10	50-10	40-10	30-10	20-10	10-10	1-10	2-10	3-10			
1.500	70-12	60-12	50-12	40-12	30-12	20-12	10-12	1-12	2-12	3-12	4-12		
1.750					30-14	20-14	10-14	1-14	2-14	3-14	4-14	5-14	
2.000							10-16	1-16	2-16	3-16	4-1.6	5-16	6-16
2.250									2-18	3-18	4-18	5-18	6-18
2.500									2-20	3-20	4-20	5-20	6-20
2.750										3-22	4-22	5-22	6-22
3.000										3-24	4-24	5-24	6-24

Code:

H before the first dash number indicates drilled head.

A before the first dash number indicates alloy steel pins.

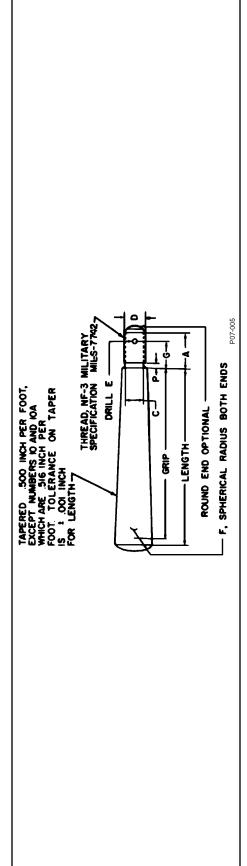
P before the second dash number indicates cadmium-plated pin.

Example of part number:

Table 7-1. AN385 Plain Taper Pin - Continued

AN385-60-4 = number 6/0 plain carbon steel pin, 0.500-inch long.

AN385H69-4 = number 6/0 drilled carbon steel pin, 0.500-inch long.


Steel, Military Specifications MIL-S-5626, MIL-S-6049, MIL-S-6050, MIL-S-6098, MIL-S-6758, and MIL-S-8695. Material:

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Carbon steel, Federal Specification QQ-S-633.

Table 7-2. AN386 Threaded Taper Pin

First Dash Number	1	2	3	4	5	9	7	8	6	10	10A
Thread	10-32	10-32	1/4-28	5/16-24	3/8-24	7/16-20	1/2-20	9/16-18	3/4-16	7/8-14	7/8-14
A	7/16	7/16	29/64	33/64	35/64	35/64	19/32	21/32	47/64	51/64	51/64
C ±.005	.141	.141	.196	.250	.313	.360	.422	.482	099.	.773	.773
D ±.002	.205	.255	.317	.355	.455	.505	909.	.755	905	1.050	1.153
	No. 50	No. 50	No. 48	No. 48	No. 36	No. 36	No. 36	No. 28	No. 28	No. 28	No. 28
Ш	(.070)	(0.070)	(920.)	(920.)	(.106)	(.106)	(.106)	(.141)	(.141)	(.141)	(.141)
Щ	1/2	1/2	1/2	1/2	1/2	3/4	3/4		_	1-1/4	1-1/4
Ŋ	5/16	5/16	21/64	21/64	23/64	23/64	13/32	15/32	35/64	39/64	39/64
Ь	3/64	3/64	3/64	1/16	1/16	1/16	1/16	5/64	3/32	3/32	3/32

1st	1st Dash Number	mber	-	2	3	4	2	9	7	8	6	10	10A
2nc	2nd Dash Number	mber											e e
Cotter		Grip	Length = Grip	Grip + 1/8	~		Length =	Length = Grip +3/16	91		Length =	Length = Grip +1/4	
Pi	å	•)	•		_)	•)	•	
Hole	Hole												
9	6A	3/4											
7	7A	2/8											
~	8A	_											
6	9A	1-1/8											

Table 7-2. AN386 Threaded Taper Pin - Continued

1st	1st Dash Number	mber	_	2	<u>ო</u>	4	2	9	7	8	6	10	10A
2nd	Dash	Number											
Cotter Pin Hole	No Hole	Grip	Length = Grip	= Grip + 1/8	8/		Length =	Length = Grip +3/16	9		Length =	Length = Grip +1/4	
10	10A	1-1/4											
11	11A	1-3/8											
12	12A	1-1/2											
13	13A	1-5/8											
14	14A	1-3/4											
15	15A	1-7/8		Do not sl	pecify pins I range obt	longer than ainable from	Do not specify pins longer than those listed between heavy lines. Listings cover full range obtainable from standard B&S taper reamers, the number	between hea	vy lines. Li	stings imbers of			
				which are 10 reame	e indicated rs.	by the first	which are indicated by the first dash number. Number 10A requires number 10 reamers.	r. Number 10	JA requires	number			
16	16A	2											
17	17A	2-1/8											
18	18A	2-1/4											
19	19A	2-3/8											
20	20A	2-1/2											
21	21A	2-5/8											
22	22A	2-3/4											
23	23A	2-7/8											
24	24A	3											
25	25A	3-1/8											
56	26A	3-1/4											
27	27A	3-3/8											
28	28A	3-1/2											
59	29A	3-5/8											
30	30A	3-3/4											
31	31A	3-7/8											
32	32A	4											
34	34A	4-1/4											
36	36A	4-1/2											
38	38A	4-3/4			_				_				

Table 7-2. AN386 Threaded Taper Pin - Continued

10A							
10		4					
10		ip +1/					
		= Gr					
6		Length = Grip +1/4					
8							
7							
_		9/16					
9		Length = Grip +3/16					
_) = U					
2		Lengt					
4							
3							
_		1/8					
2		Grip +					
1		Length = Grip +					
nber	mber	Grip	5	5-1/4	5-1/2	5-3/4	9
1st Dash Number	2nd Dash Number	No Hole	40A	42A	44A	46A	48A
1st	2nd	Cotter Pin Hole	40	42	4	46	48

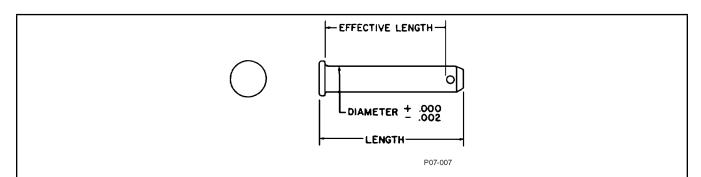
Code:

A after second dash number indicates no cotter pin hole.

Example of part number:

AN386-1-8 = pin, number 1 taper, 8/8 or 1-inch grip with cotter pin hole.

AN386-1-8A = pin, number 1 taper, 8/8 or 1-inch grip without cotter pin hole.


Material:

Steel, Military Specifications MIL-S-18732, MIL-S-6049, MIL-S-6050, MIL-S-6090, and MIL-S-8695.

Finish.

Cadmium plating, Federal Specification QQ-P-416.

Table 7-3. AN392 through AN406, Flathead Pins

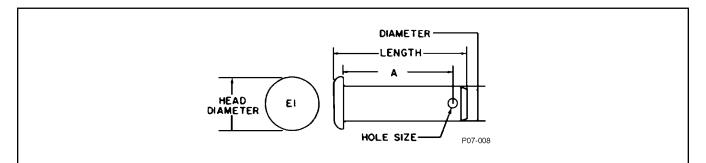
					umbers nbers Only)
Part Number	Size	Diameter	Single Shear (Pounds)	From	То
AN392	1/8	.124	920	7	67
AN393	3/16	.186	2070	7	95
AN394	1/4	.248	3681	11	97
AN395	5/16	.311	5751	11	97
AN396	3/8	.373	8287	15	127
AN397	7/16	.436	11,272	15	127
AN398	1/2	.497	14,722	15	127
AN399	9/16	.560	18,637	15	127
AN400	5/8	.622	23,010	15	127
AN402	3/4	.747	33,135	15	127
AN404	7/8	.871	45,000	19	137
AN406	1	.996	58,905	19	137

Code:

Dash number indicates pin effective length in 1/32 inch and is also used to designate pin length.

Example of part number:

AN395-21 = pin, flathead, 5/16-inch diameter, effective length 21/32 inch.


Material:

 $Steel,\ MilL-S-6050,\ MIL-S-6758,\ MIL-S-8503,\ MIL-S-8695,\ or\ MIL-S-18732.$

Finish:

Cadmium plating, Federal Specification QQ-P-416 or zinc plating, Federal Specification QQ-Z-325.

Table 7-4. AN121601 through AN121621, AN121651 through, AN121671, AN121701 through AN121727, AN121751 through AN121777, AN121801 through AN121829, AN121851 through AN121891

Part Number	Diameter	Length	A	Hole Size	Head Diameter
AN121601	.125	.391	.253	No. 51 (.065072)	.250
AN121602	.125	.453	.315	No. 51	.250
AN121603	.125	.516	.378	No. 51	.250
AN121604	.125	.578	.440	No. 51	.250
AN121605	.125	.641	.503	No. 51	.250
AN121606	.125	.703	.565	No. 51	.250
AN121607	.125	.766	.628	No. 51	.250
AN121608	.125	.828	.690	No. 51	.250
AN121609	.125	.891	.753	No. 51	.250
AN121610	.125	.953	.815	No. 51	.250
AN121611	.125	1.016	.878	No. 51	.250
AN121612	.125	1.078	.940	No. 51	.250
AN121613	.125	1.141	1.003	No. 51	.250
AN121614	.125	1.203	1.065	No. 51	.250
AN121615	.125	1.266	1.128	No. 51	.250
AN121616	.125	1.328	1.190	No. 51	.250
AN121617	.125	1.391	1.253	No. 51	.250
ANI21618	.125	1.453	1.315	No. 51	.250
AN121619	.125	1.516	1.378	No. 51	.250
AN121620	.125	1.578	1.440	No. 51	.250
AN121621	.125	1.641	1.503	No. 51	.250
AN121651	.187	.391	.253	No. 51 (.065072)	.312
AN121652	.187	.453	.315	No. 51	.312
AN121653	.187	.516	.378	No. 51	.312
AN121654	.187	.578	.440	No. 51	.312
AN121655	.187	.641	.503	No. 51	.312
AN121656	.187	.703	.565	No. 51	.312
AN121657	.187	.766	.628	No. 51	.312
AN121658	.187	.828	.690	No. 51	.312
AN121659	.187	.891	.753	No. 51	.312
AN121660	.187	.953	.815	No. 51	.312
AN121661	.187	1.016	.878	No. 51	.312
AN121662	.187	1.078	.940	No. 51	.312

Table 7-4. AN121601 through AN121621, AN121651 through, AN121671, AN121701 through AN121727, AN121751 through AN121777, AN121801 through AN121829, AN121851 through AN121891 - Continued

1			1		Head
Part Number	Diameter	Length	A	Hole Size	Diameter
AN121663	.187	1.141	1.003	No. 51	.312
AN121664	.187	1.203	1.065	No. 51	.312
AN121665	.187	1.266	1.128	No. 51	.312
AN121666	.187	1.328	1.190	No. 51	.312
AN121667	.187	1.391	1.253	No. 51	.312
AN121668	.187	1.453	1.315	No. 51	.312
AN121669	.187	1.516	1.378	No. 51	.312
AN121670	.187	1.578	1.440	No. 51	.312
AN121671	.187	1.641	1.503	No. 51	.312
AN121701	.250	.547	.378	No. 51	.375
AN121702	.250	.609	.440	No. 51	.375
AN121703	.250	.672	.503	No. 51	.375
AN121704	.250	.734	.565	No. 51	.375
AN121705	.250	.797	.628	No. 51	.375
AN121706	.250	.859	.690	No. 51	.375
AN121707	.250	.922	.753	No. 51	.375
AN121708	.250	.984	.815	No. 51	.375
AN121709	.250	1.047	.878	No. 51	.375
AN121710	.250	1.109	.940	No. 51	.375
AN121711	.250	1.172	1.003	No. 51	.375
AN121712	.250	1.234	1.065	No. 51	.375
AN121713	.250	1.297	1.128	No. 51	.375
AN121714	.250	1.359	1.190	No. 51	.375
AN121715	.250	1.422	1.253	No. 51	.375
AN121716	.250	1.484	1.315	No. 51	.375
AN121717	.250	1.547	1.378	No. 51	.375
AN121718	.250	1.609	1.440	No. 51	.375
AN121719	.250	1.672	1.503	No. 51	.375
AN121720	.250	1.734	1.565	No. 51	.375
AN121721	.250	1.797	1.628	No. 51	.375
AN121722	.250	1.859	1.690	No. 51	.375
AN121723	.250	1.922	1.753	No. 51	.375
AN121724	.250	1.984	1.815	No. 51	.375
AN121725	.250	2.047	1.878	No. 51	.375
AN121726	.250	2.109	1.940	No. 51	.375
AN121727	.250	2.172	2.003	No. 51	.375
AN121751	.312	.594	.392	No. 41 (.094101)	.438
AN121752	.312	.656	.454	No. 41	.438
AN121753	.312	.719	.517	No. 41	.438
AN121754	.312	.781	.579	No. 41	.438
AN121755	.312	.844	.642	No. 41	.438
AN121756	.312	.906	.704	No. 41	.438

Table 7-4. AN121601 through AN121621, AN121651 through, AN121671, AN121701 through AN121727, AN121751 through AN121777, AN121801 through AN121829, AN121851 through AN121891 - Continued

Part Number	Diameter	Length	A	Hole Size	Head Diameter
AN121757	.312	.969	.767	No. 41	.438
AN121758	.312	1.031	.829	No. 41	.438
AN121759	.312	1.094	.892	No. 41	.438
AN121760	.312	1.156	.954	No. 41	.438
AN121761	.312	1.219	1.017	No. 41	.438
AN121762	.312	1.281	1.079	No. 41	.438
AN121763	.312	1.344	1.142	No. 41	.438
AN121764	.312	1.406	1.204	No. 41	.438
AN121765	.312	1.469	1.267	No. 41	.438
AN121766	.312	1.531	1.329	No. 41	.438
AN121767	.312	1.594	1.392	No. 41	.438
AN121768	.312	1.656	1.454	No. 41	.438
AN121769	.312	1.719	1.517	No. 41	.438
AN121770	.312	1.781	1.579	No. 41	.438
AN121771	.312	1.844	1.642	No. 41	.438
AN121772	.312	1.906	1.704	No. 41	.438
AN121773	.312	1.969	1.767	No. 41	.438
AN121774	.312	2.031	1.829	No. 41	.438
AN121775	.312	2.094	1.892	No. 41	.438
AN121776	.312	2.156	1.954	No. 41	.438
AN121777	.312	2.219	2.017	No. 41	.438
AN121801	.375	.719	.517	No. 41	.500
AN121802	.375	.781	.579	No. 41	.500
AN121803	.375	.844	.642	No. 41	.500
AN121804	.375	.906	.704	No. 41	.500
AN121805	.375	.969	.767	No. 41	.500
AN121806	.375	1.031	.829	No. 41	.500
AN121807	.375	1.094	.892	No. 41	.500
AN121808	.375	1.156	.954	No. 41	.500
AN121809	.375	1.219	1.017	No. 41	.500
AN121810	.375	1.281	1.079	No. 41	.500
AN121811	.375	1.344	1.142	No. 41	.500
AN121812	.375	1.406	1.204	No. 41	.500
AN121813	.375	1.469	1.267	No. 41	.500
AN121814	.375	1.531	1.329	No. 41	.500
AN121815	.375	1.594	1.392	No. 41	.500
AN121816	.375	1.656	1.454	No. 41	.500
AN121817	.375	1.719	1.517	No. 41	.500
AN121818	.375	1.781	1.579	No. 41	.500
AN121819	.375	1.844	1.642	No. 41	.500
AN121820	.375	1.906	1.704	No. 41	.500
AN121821	.375	1.969	1.767	No. 41	.500

Table 7-4. AN121601 through AN121621, AN121651 through, AN121671, AN121701 through AN121727, AN121751 through AN121777, AN121801 through AN121829, AN121851 through AN121891 - Continued

Part Number	Diameter	Length	 A	Hole Size	Head Diameter
AN121822	.375	2.031	1.829	No. 41	.500
AN121823	.375	2.094	1.892	No. 41	.500
AN121824	.375	2.156	1.954	No. 41	.500
AN121825	.375	2.219	2.017	No. 41	.500
AN121826	.375	2.281	2.079	No. 41	.500
AN121827	.375	2.344	2.142	No. 41	.500
AN121828	.375	2.406	2.204	No. 41	.500
AN121829	.375	2.469	2.267	No. 41	.500
AN121851	.500	.750	.517	No. 41	.625
AN121852	.500	.812	.579	No. 41	.625
AN121853	.500	.875	.642	No. 41	.625
AN121854	.500	.938	.704	No. 41	.625
AN121855	.500	1.000	.767	No. 41	.625
AN121856	.500	1.062	.829	No. 41	.625
AN121857	.500	1.125	.892	No. 41	.625
AN121858	.500	1.188	.954	No. 41	.625
AN121859	.500	1.250	1.017	No. 41	.625
AN121860	.500	1.312	1.079	No. 41	.625
AN121861	.500	1.375	1.142	No. 41	.625
AN121862	.500	1.438	1.204	No. 41	.625
AN121863	.500	1.500	1.267	No. 41	.625
AN121864	.500	1.562	1.329	No. 41	.625
AN121865	.500	1.625	1.392	No. 41	.625
AN121866	.500	1.688	1.454	No. 41	.625
AN121867	.500	1.750	1.517	No. 41	.625
AN121868	.500	1.812	1.579	No. 41	.625
AN121869	.500	1.875	1.642	No. 41	.625
AN121870	.500	1.938	1.704	No. 41	.625
AN121871	.500	2.000	1.767	No. 41	.625
AN121872	.500	2.062	1.829	No. 41	.625
AN121873	.500	2.125	1.892	No. 41	.625
AN121874	.500	2.188	1.954	No. 41	.625
AN121875	.500	2.250	2.017	No. 41	.625
AN121876	.500	2.312	2.079	No. 41	.625
AN121877	.500	2.375	2.142	No. 41	.625
AN121878	.500	2.438	2.204	No. 41	.625
AN121879	.500	2.500	2.267	No. 41	.625
AN121880	.500	2.562	2.329	No. 41	.625
AN121881	.500	2.625	2.392	No. 41	.625
AN121882	.500	2.688	2.454	No. 41	.625
AN121883	.500	2.750	2.517	No. 41	.625
AN121884	.500	2.812	2.579	No. 41	.625

Table 7-4. AN121601 through AN121621, AN121651 through, AN121671, AN121701 through AN121727, AN121751 through AN121777, AN121801 through AN121829, AN121851 through AN121891 - Continued

Part Number	Diameter	Length	A	Hole Size	Head Diameter
AN121885	.500	2.875	2.642	No. 41	.625
AN121886	.500	2.938	2.704	No. 41	.625
AN121887	.500	3.000	2.767	No. 41	.625
AN121888	.500	3.062	2.829	No. 41	.625
AN121889	.500	3.125	2.892	No. 41	.625
AN121890	.500	3.188	2.954	No. 41	.625
AN121891	.500	3.250	3.017	No. 41	.625

Material:

Steel, Aeronautical Material Specification AMS6320.

Finish:

Cadmium plating, Aeronautical Material Specification AMS2400.

Hardness:

Rockwell C26-32.

Table 7-5. AN150201 through AN150300, Lockpins

		LENGTH-		
	DIAMET	EK		
			P07-012	
		Diameter and Pa	rt Numbers	
Length ±.010	.0625 ±.0005	.0938 ±.0005	.1250 ±.0005	.1875 ±.0005
.125	AN150206	AN150229	AN150252	
.188	AN150207	AN150230	AN150253	AN150276
.250	AN150208	AN150231	AN150254	AN150277
.312	AN150209	AN150232	AN150255	AN150278
.375	AN150210	AN150233	AN150256	AN150279
.438	AN150211	AN150234	AN150257	AN150280
.500	AN150212	AN150235	AN150258	AN150281
.562	AN150213	AN150236	AN150259	AN150282
.625	AN150214	AN150237	AN150260	AN150283
.688	AN150215	AN150238	AN150261	AN150284
.750	AN150216	AN150239	AN150262	AN150285
.812	AN150217	AN150240	AN150263	AN150286
.875	AN150218	AN150241	AN150264	AN150287
.938	AN150219	AN150242	AN150265	AN150288
1.000	AN150220	AN150243	AN150266	AN150289
1.062	AN150221	AN150244	AN150267	AN150290
1.125	AN150222	AN150245	AN150268	AN150291
1.188	AN150223	AN150246	AN150269	AN150292

Table 7-5. AN150201 through AN150300, Lockpins - Continued

		Diameter and Pa	rt Numbers	
Length ±.010	.0625 ±.0005	.0938 ±.0005	.1250 ±.0005	.1875 ±.0005
1.250	AN150224	AN150247	AN150270	AN150293
1.312		AN150248	AN150271	AN150294
1.375		AN150249	AN150272	AN150295
1.438		AN150250	AN150273	AN150296
1.500		AN150251	AN150274	AN150297

Example of part number:

AN150266 = Lockpin, 0.1250-inch diameter, 1.000-inch long.

Material

Steel, Aeronautical Material Specification AMS5132.

Table 7-6. AN150301 through AN150400, Brass Lockpins

	DIAM	LENG METER	P07-013	
Т		Diameter and I	Part Numbers	
Length ±.010	.0625 ±.0005	.0938 ±.0005	.1250 ±.0005	.1875 ±.0005
.125	AN150306	AN150329	AN150352	
.188	AN150307	AN150330	AN150353	AN150376
.250	AN150308	AN150331	AN150354	AN150377
.312	AN150309	AN150332	AN150355	AN150378
.375	AN150310	AN150333	AN150356	AN150379
.438	AN150311	AN150334	AN150357	AN150380
.500	AN150312	AN150335	AN150358	AN150381
.562		AN150336	AN150359	AN150382
.625		AN150337	AN150360	AN150383
.688		AN150338	AN150361	AN150384
.750		AN150339	AN150362	AN150385
.812		AN150340	AN150363	AN150386
.875		AN150341	AN150364	AN150387
.938		AN150342	AN150365	AN150388
1.000		AN150343	AN150366	AN150389
1.062		AN150344	AN150367	AN150390
1.125		AN150345	AN150368	AN150391
1.188		AN150346	AN150369	AN150392
1.250		AN150347	AN150370	AN150393
1.312		AN150348	AN150371	AN150394
1.375		AN150349	AN150372	AN150395
1.438		AN150350	AN150373	AN150396

Table 7-6. AN150301 through AN150400, Brass Lockpins - Continued

		Diameter and P	art Numbers	
Length ±.010	.0625 ±.0005	.0938 ±.0005	.1250 ±.0005	.1875 ±.0005
1.500		AN150351	AN150374	AN150397

Example of part number:

AN150366 = brass lock pin, 0.1250-inch diameter, 1.000-inch long.

Material:

Brass, Aeronautical Material Specification AMS4610.

Table 7-7. MS9047 Phosphate Finish Steel Spring Pin

						-LENGTH	DIAMETER P07-014	~				
						Diameter	neter					
	.062	820.	.094	.125	.156	.188	.219	.250	.312	.375	.438	.500
					Rec	ommende	Recommended Hole Size	ize				
	Min .062	Min .078	Min .094	Min .125	Min .156	Min .187	Min .219	Min .250	Min .312	Min .375	Min .437	Min .500
Length	Max .065	Max .081	Max .097	Max .129	Max .160	Max .192	Max .224	Max .256	Max .318	Max .382	Max .445	Max .510
.188 ±.015	MS9047- 002											
.250 ±.015	MS9047- 003	MS9047- 034	MS9047- 065	MS9047- 096								
.312 ±.015	MS9047- 004	MS9047- 035	MS9047- 066	MS9047- 097	MS9047- 128	MS9047- 159						
.375 ±.015	MS9047- 005	MS9047- 036	MS9047- 067	MS9047- 098	MS9047- 129	MS9047- 160	MS9047- 191	MS9047- 222				
.438 ±.015	MS9047- 006	MS9047- 037	MS9047- 068	MS9047- 099	MS9047- 130	MS9047- 161	MS9047- 192	MS9047- 223				
.500 ±.015	MS9047- 007	MS9047- 038	MS9047- 069	MS9047- 100	MS9047- 131	MS9047- 162	MS9047- 193	MS9047- 224				
.562 ±.015	MS9047- 008	MS9047- 039	MS9047- 070	MS9047- 101	MS9047- 132	MS9047- 163	MS9047- 194	MS9047- 225	MS9047- 256	MS9047- 287		
.625 ±.015	MS9047- 009	MS9047- 040	MS9047- 071	MS9047- 102	MS9047- 133	MS9047- 164	MS9047- 195	MS9047- 226	MS9047- 257	MS9047- 288		
.688 ±.015	MS9047- 010	MS9047- 041	MS9047- 072	MS9047- 103	MS9047- 134	MS9047- 165	MS9047- 196	MS9047- 227	MS9047- 258	MS9047- 289		
.750 ±.015	MS9047- 011	MS9047- 042	MS9047- 073	MS9047- 104	MS9047-	MS9047- 166	MS9047- 197	MS9047- 228	MS9047- 259	MS9047-		

Table 7-7. MS9047 Phosphate Finish Steel Spring Pin - Continued

	500		Min .500	Max .510						MS9047- 358	MS9047- 359	MS9047- 360	MS9047- 361	MS9047- 362	MS9047- 363	MS9047- 364
	.5		Ζιλ:	∑. v:												
	.438		Min .437	Max .445				MS9047- 325	MS9047- 326	MS9047- 327	MS9047- 328	MS9047- 329	MS9047- 330	MS9047- 331	MS9047- 332	MS9047- 333
	.375		Min .375	Max .382	MS9047- 291	MS9047- 292	MS9047- 293	MS9047- 294	MS9047- 295	MS9047- 296	MS9047- 297	MS9047- 298	MS9047- 299	MS9047- 300	MS9047- 301	MS9047- 302
	.312		Min .312	Max .318	MS9047- 260	MS9047- 261	MS9047- 262	MS9047- 263	MS9047- 264	MS9047- 265	MS9047- 266	MS9047- 267	MS9047- 268	MS9047- 269	MS9047- 270	MS9047- 271
	.250	ize	Min .250	Max .256	MS9047- 229	MS9047- 230	MS9047- 231	MS9047- 232	MS9047- 233	MS9047- 234	MS9047- 235	MS9047- 236	MS9047- 237	MS9047- 238	MS9047- 239	MS9047- 240
neter	.219	Recommended Hole Size	Min .219	Max .224	MS9047- 198	MS9047- 199	MS9047- 200	MS9047- 201	MS9047- 202	MS9047- 203	MS9047- 204	MS9047- 205	MS9047- 206	MS9047- 207	MS9047- 208	MS9047- 209
Diameter	.188	ommende	Min .187	Max .192	MS9047- 167	MS9047- 168	MS9047- 169	MS9047- 170	MS9047- 171	MS9047- 172	MS9047- 173	MS9047- 174	MS9047- 175	MS9047- 176	MS9047- 177	MS9047- 178
	.156	Rec	Min .156	Max .160	MS9047- 136	MS9047- 137	MS9047- 138	MS9047- 139	MS9047- 140	MS9047- 141	MS9047- 142	MS9047- 143	MS9047- 144	MS9047- 145	MS9047- 146	MS9047- 147
	.125		Min .125	Max .129	MS9047- 105	MS9047- 106	MS9047- 107	MS9047- 108	MS9047- 109	MS9047- 110	MS9047- 111	MS9047- 112	MS9047- 113	MS9047- 114	MS9047- 115	MS9047- 116
	.094		Min .094	Max .097	MS9047- 074	MS9047- 075	MS9047- 076	MS9047- 077	MS9047- 078	MS9047- 079	MS9047- 080	MS9047- 081	MS9047- 082	MS9047- 083	MS9047- 084	MS9047- 085
	820.		Min .078	Max .081	MS9047- 043	MS9047- 044	MS9047- 045	MS9047- 046	MS9047- 047	MS9047- 048	MS9047- 049	MS9047- 050	MS9047- 051	MS9047- 052	MS9047- 053	MS9047- 054
	.062		Min .062	Max .065	MS9047- 012	MS9047- 013	MS9047- 014	MS9047- 015	MS9047- 016							
				Length	.812 ±.015	.875 ±.015	.938 ±.015	1.000 ±.015	1.125 ±.020	1.250 ±.020	1.375 ±.020	1.500 ±.020	1.625 ±.020	1.750 ±.020	1.875 ±.020	2.000 ±.020

Table 7-7. MS9047 Phosphate Finish Steel Spring Pin - Continued

						Diameter	eter					
	.062	820.	.094	.125	.156	.188	.219	.250	.312	.375	.438	.500
					Rec	ommende	Recommended Hole Size	ize				
	Min .062	Min .078	Min .094	Min .125	Min .156	Min .187	Min .219	Min .250	Min .312	Min .375	Min .437	Min .500
Length	Max .065	Max .081	Max .097	Max .129	Max .160	Max .192	Max .224	Max .256	Max .318	Max .382	Max .445	Max .510
2.250 ±.025					MS9047- 148	MS9047- 179	MS9047- 210	MS9047- 241	MS9047- 272	MS9047- 303	MS9047- 334	MS9047- 365
2.500 ±.025					MS9047- 149	MS9047- 180	MS9047- 211	MS9047- 242	MS9047- 273	MS9047- 304	MS9047- 335	MS9047- 366
.750 ±.025						MS9047- 181	MS9047- 212	MS9047- 243	MS9047- 274	MS9047- 305	MS9047- 336	MS9047- 367
3.000 ±.025						MS9047- 182	MS9047- 213	MS9047- 244	MS9047- 275	MS9047- 306	MS9047- 337	MS9047- 368
3.250 ±.030						MS9047- 183	MS9047- 214	MS9047- 245	MS9047- 276	MS9047- 307	MS9047- 338	MS9047- 369
3.500 ±.030						MS9047- 184	MS9047- 215	MS9047- 246	MS9047- 277	MS9047- 308	MS9047- 339	MS9047-
3.750 ±.030									MS9047- 278	MS9047- 309	MS9047- 340	MS9047- 371
4.000 ±.030									MS9047- 279	MS9047- 310	MS9047- 341	MS9047- 372
Example of part number: MS9047-170 = steel spring pin with phosphate finish, .188-inch diameter, 1.000-inch long. Material:	ber: spring pin w	ith phospha	te finish, .18	8-inch dian	neter, 1.000-	inch long.						
Steel, Aeronautical Material Specification AMS5120 or AMS5121	laterial Spec	ification A	4S5120 or A	MS5121.								

Table 7-8. MS9048 Cadmium-Plated Steel Spring Pin

						-LENGTH						
							DIAMETER PO7-015	-				
						Diar	Diameter					
	.062	820.	.094	.125	.156	.188	.219	.250	.312	.375	.438	.500
					Re	Recommended Hole Size	ed Hole	Size				
	Min	Min	Min	Min	Min	Min	Min	Min	Min	Min	Min	Min
	.062	.078	.094	.125	.156	.187	.219	.250	.312	.375	.437	.500
Length	Max .065	Max .081	Max .097	Max .129	Max .160	Max .192	Max .224	Max .256	Max .318	Max .382	Max .445	Max .510
.188 ±.015	MS9048- 002											
.250 ±.015	MS9048- 003	MS9048- 034	MS9048- 065	MS9048- 096								
.312 ±.015	MS9048- 004	MS9048- 035	MS9048- 066	MS9048- 097	MS9048- 128	MS9048- 159						
.375 ±.015.	MS9048- 005	MS9048- 036	MS9048- 067	MS9048- 098	MS9048- 129	MS9048- 160	MS9048- 191	MS9048- 222				
.438 ±.015	MS9048- 006	MS9048- 037	MS9048- 068	MS9048- 099	MS9048- 130	MS9048- 161	MS9048- 192	MS9048- 223				
.500 ±.015	MS9048- 007	MS9048- 038	MS9048- 069	MS9048- 100	MS9048- 131	MS9048- 162	MS9048- 193	MS9048- 224				
.562 ±.015	MS9048- 008	MS9048- 039	MS9048- 070	MS9048- 101	MS9048- 132	MS9048- 163	MS9048- 194	MS9048- 225	MS9048- 256	MS9048- 287		
.625 ±.015	MS9048- 009	MS9048- 040	MS9048- 071	MS9048- 102	MS9048- 133	MS9048- 164	MS9048- 195	MS9048- 226	MS9048- 257	MS9048- 288		•
.688 ±.015	MS9048- 010	MS9048- 041	MS9048- 072	MS9048- 103	MS9048- 134	MS9048- 165	MS9048- 196	MS9048- 227	MS9048- 258	MS9048- 289		
.750 ±.015	MS9048- 011	MS9048- 042	MS9048- 073	MS9048- 104	MS9048- 135	MS9048-	MS9048- 197	MS9048- 228	MS9048- 259	MS9048-		

Table 7-8. MS9048 Cadmium-Plated Steel Spring Pin - Continued

						Diar	Diameter					
	.062	.078	.094	.125	.156	.188	.219	.250	.312	.375	.438	.500
					Re	Recommended Hole Size	ed Hole	Size				
	Min	Min	Min	Min	Min	Min	Min	Min	Min	Min	Min	Min
	790.	8/0·	.094	c71.	961.	.18/	617:	067:	.312	c/ £.	.43/	90c.
Length	Max .065	Max .081	Max .097	Max .129	Max .160	Max .192	Max .224	Max .256	Max .318	Max .382	Max .445	Max .510
.812 ±.015	MS9048- 012	MS9048- 043	MS9048- 074	MS9048- 105	MS9048- 136	MS9048- 167	MS9048- 198	MS9048- 229	MS9048- 260	MS9048- 291		
.875 ±.015	MS9048- 013	MS9048- 044	MS9048- 075	MS9048- 106	MS9048- 137	MS9048- 168	MS9048- 199	MS9048- 230	MS9048- 261	MS9048- 292		
.938 ±.015	MS9048- 014	MS9048- 045	MS9048- 076	MS904 8- 107	MS9048- 138	MS9048- 169	MS9048- 200	MS9048- 231	MS9048- 262	MS9048- 293		
1.000 ±.015	MS9048- M	MS9048- 046	MS9048- 077	MS9048- 108	MS9048- 139	MS9048- 170	MS9048- 201	MS9048- 232	MS9048- 263	MS9048- 294	MS9048- 325	
1.125 ±.020	MS9048- M	MS9048- 047	MS9048- 078	MS9048- 109	MS9048- 140	MS9048- 171	MS9048- 202	MS9048- 233	MS9048- 264	MS9048- 295	MS9048- 326	
1.250 ±.020		MS9048- 048	MS9048- 079	MS9048- 110	MS9048- 141	MS9048- 172	MS904 8- 203	MS9048- 234	MS9048- 265	MS9048- 296	MS9048- 327	MS9048- 358
1.375 ±.020		MS9048- 049	MS9048- 080	MS9048- 111	MS9048- 142	MS9048- 173	MS9048- 204	MS9048- 235	MS9048- 266	MS9048- 297	MS9048- 328	MS9048- 359
1.500 ±.020		MS9048- 050	MS9048- 081	MS9048- 112	MS9048- 143	MS9048- 174	MS9048- 205	MS9048- 236	MS9048- 267	MS9048- 298	MS9048- 329	MS9048- 360
1.625 ±.020		MS9048- 051	MS9048- 082	MS9048- 113	MS9048- 144	MS9048- 175	MS9048- 206	MS9048- 23 7	MS9048- 268	MS9048- 299	MS9048- 330	MS9048- 361
1.750 ±.020		MS9048- 052	MS9048- 083	MS9048-	MS9048- 145	MS9048- 176	MS9048- 207	MS9048- 238	MS904 8- 269	MS9048- 300	MS9048- 331	MS9048- 362
1.875 ±.020		MS9048- 053	MS9048- 084	MS9048- 115	MS9048- 146	MS9048- 177	MS9048- 208	MS9048- 239	MS9048- 270	MS9048- 301	MS9048- 332	MS9048- 363
2.000 ±.020		MS9048- 054	MS9048- 085	MS9048- 116	MS9048- 147	MS9048- 178	MS9048- 209	MS9048- 240	MS9048- 271	MS9048- 302	MS9048-	MS9048- 364
2.250 ±.025					MS9048-	MS9048- 179	MS9048-	MS9048-	MS9048- 272	MS9048-	MS9048- 334	MS9048- 365

Table 7-8. MS9048 Cadmium-Plated Steel Spring Pin - Continued

						Diar	Diameter					
	.062	.078	.094	.125	.156	.188	.219	.250	.312	.375	.438	.500
					Re	Recommended Hole Size	ed Hole	Size				
	Min .062	Min .078	Min .094	Min .125	Min .156	Min .187	Min .219	Min .250	Min .312	Min .375	Min .437	Min .500
LEGNOSCH	Max .065	Max .081	Max .097	Max .129	Max .160	Max .192	Max .224	Max .256	Max .318	Max .382	Max .445	Max .510
2.500 ±.025					MS9048- 149	MS9048- 180	MS9048- 211	MS9048- 242	MS9048- 273	MS9048- 304	MS9048- 335	MS9048- 366
2.750 ±.025						MS9048- 181	MS9048- 212	MS9048- 243	MS9048- 274	MS9048- 305	MS9048- 336	MS904 8- 367
3.000 ±.025						MS9048- 182	MS9048- 213	MS9048- 244	MS9048- 275	MS9048- 306	MS9048- 337	MS9048- 368
3.250 ±.030						MS9048- 183	MS9048- MS9048- 214 245	MS9048- 245	MS9048- 276	MS9048- 307	MS9048- 338	MS9048- 369
3.500 ±.030						MS9048- 184	MS9048- MS9048- 215 246	MS9048- 246	MS9048- 277	MS9048- 308	MS9048- 339	MS9048- 370
3.750 ±.030									MS9048- 278	MS9048- 309	MS9048- 340	MS9048- 371
4.000 ±.030									MS9048- 279	MS9048- 310	MS9048- 341	MS9048- 372
Example of part number:	er:											
MS9048-232 = cadmium-plated steel spring pin, .250-inch diameter, 1.000-inch long.	ım-plated sı	teel spring I	oin, .250-inc	h diameter,	1.000-inch	long.						
Material:												
Steel, Aeronautical Material Specification AMS5120 or AMS5121.	terial Spec	ification AA	4S5120 or A	MS5121.								

Table 7-9. MS171401 through MS171900, Spring Pins

DIAMETER DIAMETER PO7-016	Diameter	078 .094 .125 .156 .188 .219 .250 .312 .375 .438 .500	Recommended Hole Size	n 078 Min 094 Min 125 Min 156 Min 187 Min 219 Min 250 Min 312 Min 375 Min 337 Min 500	fax Max Max <th></th> <th>MS171432 MS171462 MS171492 MS171522</th> <th>MS171433 MS171463 MS171523 MS171553 MS171583</th> <th>MS171434 MS171464 MS171524 MS171554 MS171584 MS171614 MS171614 MS171644</th> <th>MS171435 MS171465 MS171525 MS171555 MS171585 MS171615 MS171615 MS171645</th> <th>MS171436 MS171466 MS171526 MS171556 MS171586 MS171586 MS171616 MS171646</th> <th>171467 MS171497 MS171527 MS171587 MS171617 MS171647 MS171677 MS171707</th> <th>MS171438 MS171468 MS171528 MS171558 MS171588 MS171588 MS171618 MS171678 MS171678 MS171708</th> <th>MS171439 MS171469 MS171529 MS171559 MS171589 MS171619 MS171649 MS171679 MS171709</th> <th>MS171449 MS171500 MS171500 MS171550 MS171560 MS171590 MS171620 MS171650 MS171680 MS171100</th>		MS171432 MS171462 MS171492 MS171522	MS171433 MS171463 MS171523 MS171553 MS171583	MS171434 MS171464 MS171524 MS171554 MS171584 MS171614 MS171614 MS171644	MS171435 MS171465 MS171525 MS171555 MS171585 MS171615 MS171615 MS171645	MS171436 MS171466 MS171526 MS171556 MS171586 MS171586 MS171616 MS171646	171467 MS171497 MS171527 MS171587 MS171617 MS171647 MS171677 MS171707	MS171438 MS171468 MS171528 MS171558 MS171588 MS171588 MS171618 MS171678 MS171678 MS171708	MS171439 MS171469 MS171529 MS171559 MS171589 MS171619 MS171649 MS171679 MS171709	MS171449 MS171500 MS171500 MS171550 MS171560 MS171590 MS171620 MS171650 MS171680 MS171100
				⊢			MS171492 MS171522		MS171494 MS171524	MS171495 MS171525	MS171496 MS171526	4S171497		MS171499 MS171529	MS171500 MS171530
		820.		Min .078	Max .081		MS171462	3 MS171463	4 MS171464	MS171465	MS171466	MS171437 MS171467 N	8 MS171468	MS171469	MS171470
		.062		Min .062	Max .065	MS171431	MS171432	MS171433	MS171434	MS171435	MS171436	MS171437	MS171438	MS171439	MS171449
					Length	.188 ±.015	.250 ±.015	.312 ±.015	.375 ±.015	.438 ±.015	.500 ±.015	.562 ±.015	.625 ±.015	.688 ±.015	.750 ±.015

Table 7-9. MS171401 through MS171900, Spring Pins - Continued

Table 7-9. MS171401 through MS171900, Spring Pins - Continued

						Dian	Diameter					
	.062	870.	.094	.125	.156	.188	219	.250	.312	.375	.438	.500
					Re	commend	Recommended Hole Size	ze				
	Min .062	Min .078	Min .094	Min .125	Min .156	Min .187	Min .219	Min .250	Min.312	Min .375	Min.437	Min.500
Length	Max .065	Max .081	Max .097	Max .129	Max .160	Max .192	Max .224	Max .256	Max .318	Max .382	Max .445	Max .510
2.500 ±.025					MS171574	MS171604	MS171574 MS171604 MS171634 MS171664 MS171694 MS171724 MS171754 MS171784	MS171664	MS171694	MS171724	MS171754	MS171784
2.750 ±.025						MS171605	MS171605 MS171635 MS171665 MS171695 MS171725 MS171755 MS171785	MS171665	MS171695	MS171725	MS171755	MS171785
3.000 ±.025						MS171606	MS171606 MS171636 MS171666 MS171696 MS171726 MS171786 MS171786	MS171666	MS171696	MS171726	MS171756	MS171786
3.250 ±.030						MS171607	MS171607 MS171637 MS171667 MS171697 MS171727 MS171757 MS171787	MS171667	MS171697	MS171727	MS171757	MS171787
3.500 ±.030						MS171608	MS171608 MS171638 MS171668 MS171698 MS171728 MS171758 MS171788	MS171668	MS171698	MS171728	MS171758	MS171788
3.750 ±.030									MS171699	MS171729	MS171699 MS171729 MS171759 MS171789	MS171789
4.000 ±.030									MS171700	MS171730	MS171700 MS171730 MS171760 MS171790	MS171790
					Examp	Example of part number:	umber:					
			-	MS171534 =	= spring pin,	.125-inch di	MS171534 = spring pin, .125-inch diameter, 1.000 inch long.	0 inch long.				
						Material:						
			Согго	sion-resistan	t steel, Aero	nautical Mat	Corrosion-resistant steel, Aeronautical Material Specification AMS5506.	cation AMS:	5506.			

Table 7-10. NAS561 Heavy Duty Spring Pin

		COILED	ED CHAMETER	-LENGTH-			SLOTTED	DIAMETER	LENGTH PO7-017		
					Diameter	ter					
	.062	.094	.125	.156	.188	.219	.250	.312	375	.437	.500
Slotted	Min Max	Min Max Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max	Min Max
Diameter	690. 990.	.099 .103	.131 .135	.162 .167	194 .199	.226 .232	.258 .264	.321 .328	.385 .392	.448 .456	.513 .521
Coiled Pin Diameter	.066 .068	.098 .100	.130 .132	.161 .163	.194 .197	.226 .229	.258 .261	.327 .340	.391 .407	.457 .475	.522 .542
Recommended Hole Size	.062 .065	.094 .097	.125 .129	.156 .160	.187	.219 .224	.250 .256	.312 .318	.375 .382	.437 .445	.500 .510
Minimum Double Shear Strength											
(Pounds)	425	1000	1800	2880	4140	5640	7360	11,500	16,580	22,540	25,800
Length					$ ho_{\Sigma}$	Part Numbers	s.				
*.188 ±.015	2-3										•
.250 ±.015	2-4	3-4									
*.312 ±.015	2-5	3-5									
.375 ±.015	2-6	3-6	4-6								
*.438 ±.015	2-7	3-7	4-7								
.500 ±.015	2-8	3-8	8-4	2-8	8-9						
*.562 ±.015	2-9	3-9	4-9	6-5	6-9						
*.625 ±.015	2-10	3-10	4-10	5-10	6-10						
*.688 ±.015	2-11	3-11	4-11	5-11	6-11						

Table 7-10. NAS561 Heavy Duty Spring Pin - Continued

<u></u>	_	<u> </u>						-														
	.500	Min Ma	.513 .521	.522 .542	.500 .510	000 30	77,800										16-24		16-28		16-32	16-36
	.437	Min Max Min Max	.448 .456	.457 .475	.437 .445	22,540	0+5,27										14-24		14-28		14-32	14-36
	.375	Min Max	.385 .392	.391 .407	.375 .382	16 700	005,01								12-20		12-24		12-28		12-32	12-36
	.312	Min Max	.321 .328	.327 .340	.312 .318	003 11	77,700	-					10-16		10-20		10-24		10-28		10-32	10-36
	.250	Min Max	.258 .264	.258 .261	.250 .256	0362	1	1	8-12		8-14		8-16	8-18	8-20	8-22	8-24	8-26	8-28	8-30	8-32	8-36
ter	219	Min Max	.226 .232	.226 .229	.219 .224	0772	Part Numbers		7-12		7-14		7-16	7-18	7-20	7-22	7-24	7-26	7-28	7-30	7-32	7-36
Diameter	.188	Min Max	194 .199	.194 .197	187 .192	0,1	- 1	1	6-12	6-13	6-14	6-15	6-16	6-18	6-20	6-22	6-24	9-59	6-28	9-30	6-32	
	.156	Min Max	.162 .167	.161 .163	.156 .160	Coo	70007		5-12	5-13	5-14	5-15	.5-16	5-18	5-20	5-22	5-24	5-26	5-28	5-30	5-32	
	.125	Min Max	.131 .135	.130 .132	.125 .129	000	noor		4-12	4-13	4-14	4-15	4-16	4-18	4-20	4-22	4-24	4-26	4-28			
	.094	ax	.099 .103	001. 860.	.094 .097	000	0001		3-12	3-13	3-14	3-15	3-16	3-18	3-20	3-22	3-24					
	.062	Min Max Min M	690. 990.	890. 990.	.062 .065	307	477		2-12													
		Slotted	Pin Diameter	Coiled Pin Diameter	Recom- mended Hole Size	Minimum Double Shear Strength	(rounds)	Longin	.750 ±.015	*.812 ±.015	.875 ±.015	*.938 ±.015	1.000 ±.015	*1.125 ±.020	1.250 ±.020	*1.375 ±.020	1.500 ±.020	*1.625 ±.020	1.750 ±.020	*1.875 ±.020	2.000 ±.020	2.250 ±.025

Table 7-10. NAS561 Heavy Duty Spring Pin - Continued

		<u>~</u>							_							
	.500	Min Max	.513 .521	.522 .542	.500 .510		25,800		16-40	16-44	16-48	16-52	16-56	16-60	16-64	
	.437	Min Max	.448 .456	.457 .475	.437 .445		22,540		14-40	14-44	14-48	14-52	14-56	14-60	14-64	
	.375	Min Max Min Max Min Max	.385 .392	391 .407	.375 .382		16,580		12-40	12-44	12-48	12-52	12-56	12-60	12-64	
	.312	Min Max	.321 .328	.327 .340	.312 .318		11,500		10-40	10-44	10-48	10-52	10-56	10-60	10-64	
	.250	Min Max	.258 .264	.258 .261	.250 .256		7360	S	8-40	8-44	8-48	8-52		_		
er	.219	Min Max	.226 .232	.226 .229	.219 .224		5640	Part Numbers								ilable.
Diameter	.188	Min Max Min Max	194 .199	.194 .197	.187 .192		4140	Pa								it are not avai
	.156	Min Max	.162 .167	.161 .163	.156 .160		2880									oiled pins that
	.125	Min Max	.131 .135	.130 .132	.125 .129		1800									s lengths of c
	.094		.099 .103	.098 .100	.094 .097		1000					····				lumn indicate
	.062	Min Max Min Max	690. 990.	890. 990.	.062 .065		425									the length co.
		Slotted	Diameter	Coiled Pin Diameter	Recommended Hole Size	Minimum Double Shear	Strength (Pounds)	Length	2.500 ±.025	2.750 ±.025	3.000 ±.025	3.250 ±.030	3.500 ±.030	3.750 ±.030	$4.000 \pm .030$	* The asterisk in the length column indicates lengths of coiled pins that are not available.

C after basic part number indicates a corrosion-resistant steel, slotted spring pin.

P after basic part number indicates a carbon steel, cadmium-plated, slotted spring pin. F after basic part number indicates a carbon steel coiled pin with black oiled finish.

PF after basic pan number indicates a carbon steel, cadmium plated, coiled spring pin.

CF after basic part number indicates a corrosion-resistant steel, coiled spring pin.

First dash number designates diameter in 1/32 inch.

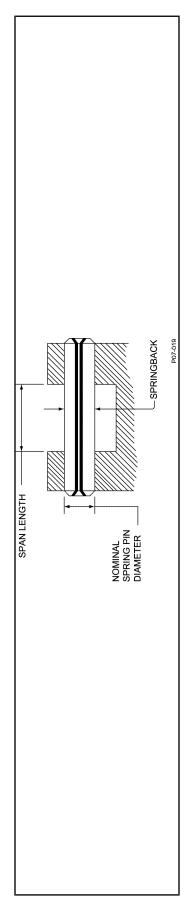
Table 7-10. NAS561 Heavy Duty Spring Pin - Continued

Second dash number designates the length in 1/16 inch.

Example of part number:

NASS61CF4-6 = coiled pin, corrosion-resistant steel, .125-inch diameter, .375-inch long.

Material:


Corrosion-resistant steel.

Carbon steel, Military Specification MIL-S-7949.

Finish:

Cadmium plating, Federal Specification QQ-P-416. (For carbon steel only.)

Table 7-11. Recommended Spring Pin Sizes for Clevis Joint Applications

							Sp	Span Length (Inches)	th (Inch	es)					
		1/8	1/4	3/8	1/2	2/8	3/4	2/8	1	1-1/4	1-1/2	1-3/4	2	2-1/2	3
Nominal Spring Pin	Hole														
Diameter	Diameter							Sprin	Springback						
.125	Min .125	.127	.129	.129	.130	.130	.130	.131	.131						
	Max .129	.129	.130	.130	.130	.131	.131	.131	.131						
.156	Min .156	.158	.159	.160	.161	.162	.162	.163	.163	.163	.163				
	Max .160	.160	.161	.161	.162	.162	.162	.163	.163	.163	.163				
.189	Min .187	.188	.189	.190	.191	.192	.193	.194	.195	.195	195	.195	.195		
	Max .192	.192	.193	.193	.194	.194	.194	.195	.195	.195	195	.195	.195		
.219	Min .219	.220	.221	.222	.223	.223	.224	.225	.225	.226	.226	.226	.226		
	Max .224	.224	.225	.225	.225	.225	.226	.226	.226	.226	.226	.226	.226		
.250	Min .250	.252	.254	.255	.256	.256	.257	.258	.258	.259	.260	.260	.260		
	Max .256	.257	.258	.258	.259	.259	.260	.260	.260	.260	.260	.260	.260		
.312	Min .312	.313	.313	.313	.314	.315	.315	.316	.317	.317	.318	.319	.320	.321	.321
	Max .318	.319	.319	.319	.319	.319	.319	.320	.320	.320	.320	.320	.321	.321	.321
.375	Min .375	.376	.376	.376	.376	.377	.378	.379	.380	.382	.383	.384	.384	.385	.385
	Max .382	.383	.383	.383	.383	.383	.383	.384	.384	.384	.384	.385	.385	.365	.385
.500	Min .500	.501	.502	.502	.503	.504	.504	.505	.506	.507	.508	.510	.512	.514	.514
	Max .510	.511	.511	.511	.512	.512	.512	.512	.513	.513	.513	.514	.514	.514	.514

Table 7-12. NAS607 Machine Pin (Dowel)

																	,		,	
				9													14.	48	16-	48
				ıs									10-	40	12-	40	14-	40	16-	40
				4-									10-	36	12-	36	14-	36	16-	36
				4								8-32	10-	32	12-	32	14-	32	16-	32
				3- 1/2		,	,					8-28	10-	28	12-	28	14-	28	16-	28
				က		,	,		5-24	6-24	7-24	8-24	10-	24	12-	24	14-	24	16-	24
	_ 0.			2- 1/2			•	4-20	5-20	6-20	7-20	8-20	10-	20	12-	50	14-	20	16-	20
	P07-020	ımbers		2- 1/4		,	,	4-18	5-18	6-18		8-18	10-	18						
-LENGTH-		Part Number Dash Numbers	Length	2		2-16	3-16	4-16	5-16	6-16	7-16	8-16	10-	16	12-	16	14-	16	16-	16
		mber [Len	1- 3/4		2-14	3-14	4-14	5-14	6-14	7-14	8-14	10-	14						
	<u> </u>	Part No		1,2		2-12	3-12	4-12	5-12	6-12	7-12	8-12	10-	12						
DIAMETER				+ 1 1/4		2-10	3-10	4-10	5-10	6-10	7-10	8-10	10-	10						
DIAN)			-		2-8	3-8	4-8	5-8	8-9	7-8	8-8	10-8							
				8/2		2-7	3-7	4-7	5-7	C-9										
				3/4	1-6	2-6	3-6	4-6	9-9	9-9		9-8								
					2/8	1-5	2-5	3-5	4-5	5-5	6-5									
				1/2	1-4	2-4	3-4	4-4	5-4	6-4										
				3/8	1-3	2-3														
				1/4	1-3															
				Diam- eter	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	2/8		3/4		2//8			

Code:

First dash number indicates pin diameter in 1/16 inch.

Second dash number indicates pin length in 1/8 inch.

P following second dash number indicates plated pin.

Example of part number:

NAS607-4-4P = pin, cadmium plated, 1/4-inch diameter, 1/2-inch long.

Material:

Steel, case hardened.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Corrosion-preventive, Military Specification MIL-C-16173. (Unplated pins only.)

CHAPTER 8 BUSHINGS

8.1 BUSHINGS.

Bushed holes used in aircraft assemblies help to maintain desired tolerances and close fits. Because of close hole tolerances usually used, it is improbable that any appreciable wear will develop in bushings if kept properly lubricated; however, if wear should occur inside the bushing, replacement is necessary. Wear and elongation, damage from gunfire, hard landings, sandstorms, etc., can be cause for bushing replacement. Therefore, all bushings throughout an aircraft should be checked for proper functioning. When fitting new bushings, it is essential that they be of the same type and material, or suitable substitute material, as those they replace. See Table 8-1 through Table 8-6 for information on NAS bushings. The material and length of a bushing are equally as important as its diameter.

- **8.1.1** Removing Bushings. Removing worn or damaged bushings is best done by using an arbor press fitted with a support plate with openings of various sizes to accommodate different diameter bushings. Remove the bushings as follows:
 - a. Place the assembly containing the bushing in position over an appropriate-sized opening of the support plate (Figure 8-1).

NOTE

When removing plain, symmetrical bushings which extend through the assembly, the driving force may be applied from either side. On flanged bushings, the flange must be placed opposite the driving force.

- b. Select a drive pin of proper diameter and place it in position on the bushing. The shoulder of the drive pin should be smaller than the hole in the assembly, but larger than the hole in the bushing. This differential will be dependent upon the bushing wall thickness. The pilot on the drive pin should be large enough to keep the shoulder centered on the bushing. However, if care is taken in centering the drive pin on the bushing, no pilot is needed.
- c. While holding the assembly firmly with one hand, rotate the actuating lever of the arbor press to bring the trust arm against the drive pin (Figure 8-2).

d. With a steady pull on the actuating lever, or by a driving action with the thrust arm of the press, force the bushing out of the assembly.

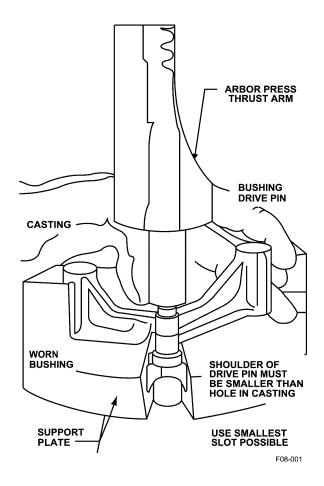


Figure 8-1. Bushing Extraction Detail

8.1.2 Reaming Holes for Bushings. When replacing worn or damaged bushings, the hole in the assembly will normally not require reaming. However, if a new assembly is to be used, or if the hole from which the worn bushing was removed is exceedingly scored, nicked, or otherwise imperfect, the hole should be reamed. Where bushing alignment is critical, bushings should be line-reamed with a machine as it is difficult to obtain satisfactory results with a hand reamer. Where hand reaming is required, ream as follows:

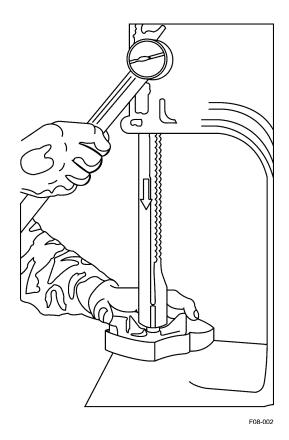


Figure 8-2. Bushing Extraction - Arbor Press Method

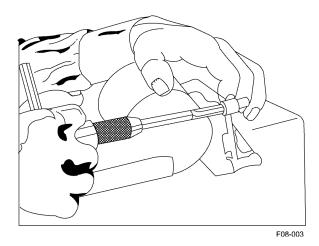


Figure 8-3. Reaming Bushing With Spiral Reamer

a. Clamp the assembly securely in a vise, or provide some means of holding it securely. Position the assembly to provide clearance for manipulation of the reaming tools.

- b. Insert the correct-size reamer into a tap wrench or other driving tool (Figure 8-3).
- c. Keep the reamer directly in line with the sides of the hole in the assembly and ream to the dimension applicable for the particular bushing.

8.1.3 <u>Pressing in New Bushings</u>. The four methods outlined for pressing bushings into place in assemblies are listed in the order of their preference: the arbor press, drawin, vise, and the mallet methods. The arbor press method is preferred because it provides greater control of the driving force with less danger of damaging the bushing or assembly

NOTE

Any of the four methods outlined can be facilitated by the use of heat applied to the assembly, by cooling the bushing for contraction, or by simultaneous application of heating and cooling to the respective parts.

8.1.4 Arbor Press Method.

CAUTION

When heat is applied to the assembly it is preferably done in a circulating oil bath, and care must be exercised not to heat the assembly over 93°C (200°F). Torches shall not be used for the purpose of heating.

- a. Place a suitable anvil on the arbor press and center the hole in the assembly over the anvil (Figure 8-4). If the assembly is of a regular shape, the use of an anvil is not always required.
- b. Place the chamfered edge of the bushing in the hole. Carefully align the bushing with sides of the hole so that when the driving pressure is applied, the bushing will be squarely stated into the hole.
- c. Place a drive pin in position in the new bushing.
- d. Operate the actuating lever of the arbor press to bring the thrust arm down against the drive pin.
- e. Hold casting firmly in place on the anvil, with a steady pull on the actuating lever, press the bushing into place.
- f. Release pressure and remove the drive pin.
- 8.1.5 <u>Draw-In Method</u>. Use a puller arrangement. If a puller is not available, use a combination of stud or bolt with appropriate size washers and nut, and tighten with a wrench.

- 8.1.6 <u>Vise Method</u>. Follow procedures as outlined in paragraph 8.1.4, steps a through c, of the arbor press method. Because of the limited opening of the jaws of most machinists' vises, the drive pin and anvil must be relatively shorter or eliminated entirely. The size and shape of the assembly will regulate their use. To eliminate damage to the assembly or bushing, it is preferable to use jaw pads of soft material.
 - a. Operate the handle of the vise until bushing is pressed into place (Figure 8-5).
 - b. Open vise and remove assembly.

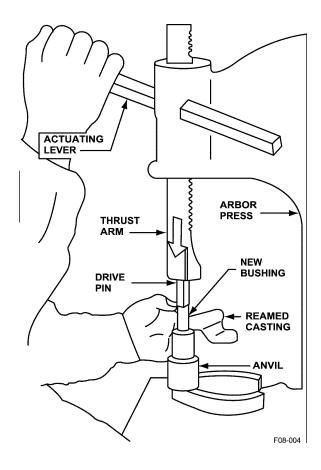


Figure 8-4. Inserting Bushing - Arbor Press Method

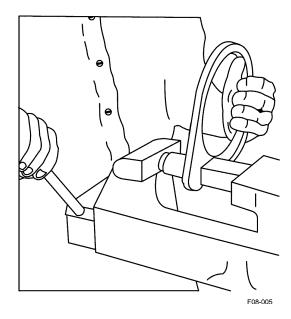
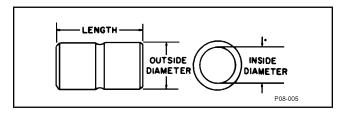



Figure 8-5. Inserting Bushing - Vise

Table 8-1. NAS72, 73, 74 Clamp-Up, Steel Bushing

First Dash Number	Inside Diam- eter	Outside Diam- eter
-3	.190	.373
-4	.250	.4355
-5	.3125	.498
-6	.375	.5605
-7	.4375	.623
-8	.500	.6855
-9	.5625	.748
-10	.625	.873
-12	.750	.998
-14	.875	1.123
-16	1.000	1.248

Second Dash Number	Length
002	.135
003	.197

T.O. 1-1A-8

Second Dash Number	Length
004	.260
005	.322
006	.385
007	.447
008	.510
009	.572
010	.635
011	.697
012	.760
013	.822
014	.885
015	.947
100	1.010
101	1.072
102	1.135
103	1.197
104	1.260
105	1.322
106	1.385
107	1.447
108	1.510
109	1.572
110	1.635
111	1.697
112	1.760
113	1.822
114	1.885
115	1.947
200	2.010
201	2.072
202	2.135
203	2.197
204	2.260
205	2.322
206	2.385
207	2.447
208	2.510
209	2.572
210	2.635
211	2.697
212	2.760

Second Dash Number	Length
213	2.822
214	2.885
215	2.947
300	3.010
301	3.072
302	3.135
303	3.197
304	3.260
305	3.322
306	3.385
307	3.447
308	3.510
309	3.572
310	3.635
311	3.697
312	3.760
313	3.822
314	3.885
315	3.947

- 1. Bushing under 3/8 inch in length shall not be grooved.
- 2. These bushings are not intended for reaming on assembly.
- 3. These bushings are designed for clamping to the shaft, with relative motion occurring on the bushing outside diameter only.

Code:

First dash number designates size.

Second dash number designates length.

E after first dash number designates bushing without groove for bushing lengths 3/8 inch and longer.

Example of part number:

NAS73-8-012 = bushing .500-inch inside diameter x 0.760-inch long with groove.

NAS73-8E012 = bushing .500-inch inside diameter x.760-inch long without groove.

Material:

Steel, Military Specification MIL-S-6050 (NAS73 cadmium plated, NAS72 chrome plated).

Steel, Military Specification MIL-S-6758 (NAS73 cadmium plated, NAS72 chrome plated).

Aluminum bronze, Military Specification MIL-B-6946 (NAS74).

8.1.7 Mallet Method.

CAUTION

Do not use this method for installing thinwalled bushings.

NOTE

This method of installation is not recommended except in extreme emergencies where proper installation facilities are not available.

- a. Follow procedures as outlined in paragraph 8.1.4, steps a through c, of the arbor press method. Rest the assembly on a firm base in a suitable manner so that the blows will not mar the assembly.
- b. Tap the bushing into position with uniform blows of the mallet, hitting the bushing or drive pin as squarely as possible, making certain that the bushing is in line with the hole before each blow (Figure 8-6).

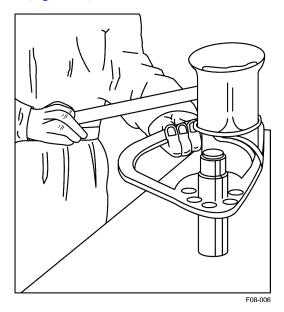


Figure 8-6. Inserting Bushing - Mallet Method

8.2 REAMING NEW BUSHINGS.

CAUTION

Extreme care must be exercised to prevent damage to flanged bushings.

New bushings which cannot be used in their standard reamed condition must be checked and reamed after installation. In general, the procedures for hand reaming a bushing are the same as those for reaming holes in assemblies prior to the insertion of bushings.

- a. Clamp the assembly in a vise or provide some other means of holding the assembly securely. The assembly must be clamped in a position that will provide clearance for manipulation of the reaming tools.
- b. Insert the correct-size reamer into a tap wrench or other driving tool (Figure 8-3).
- Keep the reamer directly in line with the sides of the bushing, and ream.

Table 8-2. NAS75, 76 Plain, Press Fit Bushing

Size	Dolt	Incido Diem	Outside
Dash Number	Bolt (Size)	Inside Diam- eter	Outside Diameter
-3	10	.190	.3136 +.0000 0005
-4	1/4	.250	.3761 +.0000 0005
-5	5/16	.3125	.4386 +.0000 0005
-6	3/8	.375	.5013 +.0000 0007
-7	7/16	.4375	.5638 +.0000 0007
-8	1/2	.500	.6265 +.0000 0008
-9	9/16	.5625	.6892
-10	5/8	.625	.8142
-11		.6875	.8767
-12	3/4	.750	.9393
-14	7/8	.875	1.0648
-16	1	1.000	1.1898
-18		1.125	1.3148
-20		1.250	1.4399

1. These bushings are not intended for reaming on assembly.

Code

Length to be specified in inches and thirty-seconds of an inch.

NAS75 - (Size Dash Number) - (Length Dash Number) For aluminum bronze material, suffix the letter A to basic part number (NAS76).

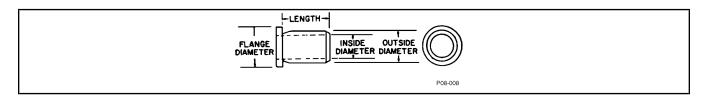
T.O. 1-1A-8

For cadmium-plated finish, suffix the letter P to the last dash number (NAS76).

Example of part number:

NAS75-8-009 = steel bushing - .500-inch inside diameter, 9/32-inch long.

NAS75-8-015 = steel bushing - .500-inch inside diameter, 15/32-inch long.


NAS75-8-309 = steel bushing - .500-inch inside diameter, 3-9/32 inch long.

NAS75-8-315 = steel bushing - .500-inch inside diameter, 3-15/32 inch long.

Material:

Steel, Military Specification MIL-S-6050 (NAS75). Steel, Military Specification MIL-S-6758 (NAS75). Aluminum bronze, Military Specification MIL-B-6946 (NAS76).

Table 8-3. NAS77 Flanged, Press Fit, Steel and Bronze Bushing

Size Dash Number	Bolt (Size)	Inside Diameter	Outside Diameter	Flange Diameter
-3	10	.190	.3136 +.00000005	.437
-4	1/4	.250	.3761 +.00000005	.500
-5	5/16	.3125	.4386 +.00000005	.562
-6	3/8	.375	.5013 +.00000007	.625
-7	7/16	.4375	.5638 +.00000007	.687
-8	1/2	.500	.6265 +.00000008	.750
-9	9/16	.5625	.6892	.812
-10	5/8	.625	.8142	1.000
-11		.6875	.8767	1.062
-12	3/4	.750	.9393	1.125
-14	7/8	.875	1.0648	1.250
-16	1	1.000	1.1898	1.375
-18	1-1/8	1.125	1.3148	1.500
-20	1-1/4	1.250	1.4399	1.625

^{1.} These bushings are not intended for reaming on assembly.

Code:

Length to be specified in 0.01-inch increments.

A after basic part number designates aluminum bronze material. No letter indicates steel.

All steel bushings shall be cadmium plated. For a cadmium-plated finish on bronze bushings, suffix the letter P to the last dash number.

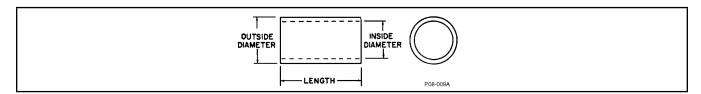
Example of part number.

NAS77-8-15 = cadmium-plated steel bushing, 0.500-inch inside diameter, 0.150-inch long.

NAS77A-8-15 = aluminum bronze bushing, 0.500-inch inside diameter, 150-inch long.

NAS77A-8-167P = aluminum bronze bushing, .500-inch inside diameter, 1.670-inches long, cadmium plated.

Material:


Steel, Military Specification MIL-S-6050.

Steel, Military Specification MIL-S-6758.

Table 8-3. NAS77 Flanged, Press Fit, Steel and Bronze Bushing - Continued

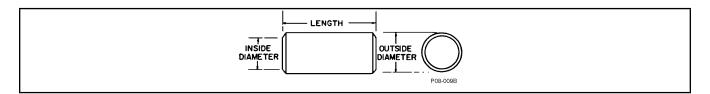

Size Dash Number	Bolt (Size)	Inside Diameter	Outside Diameter	Flange Diameter
Aluminum bronze, Milita	ry Specificatio	n MIL-B-6946.		

Table 8-4. NAS382 Plain Bearing, Pulley Bushing

Dash Number	Outside Diameter	Length	Inside Diameter				
-1	.250 +.000001	.312 +.015000	11 (.191) +.003000				
-2	.375 +.000002	.468 +.003003	.250 +.003000				
Material:							
Steel, Military Specification MIL-S-6050.							

Table 8-5. NAS537 Plain, Press Fit, Undersize Inside Diameter Bushing

		Inside Diameter				
		UD	(Undersize)	Outside Diame	Outside Diameter	
Size First Dash Num- ber	Diameter for Ream Hole	Diameter	Tolerance0000	Diameter	Tolerance +.0000	
-3	.190	.1790	+.0050	.3136	0005	
-4	.250	.2380	+.0050	.3761	0005	
-5	.312	.3010	+.0050	.4386	0005	
-6	.375	.3590	+.0070	.5013	0007	
-7	.437	.4220	+.0070	.5638	0007	
-8	.500	.4840	+.0070	.6265	0008	
-9	.562	.5460	+.0070	.6892	0010	
-10	.625	.6090	+.0070	.8142	0010	
-11	.687	.6710	+.0070	.8767	0010	
-12	.750	.7340	+.0070	.9393	0010	
-14	.875	.8590	+.0070	1.0648	0010	
-16	1.000	.9840	+.0070	1.1898	0010	
-18	1.125	1.0940	+.0120	1.3148	0010	
-20	1.250	1.2190	+.0120	1.4399	0010	

^{1.} These bushings are intended for reaming on assembly.

Code:

Length shall be specified in 0.01-inch increments, following the first dash number, and/or the finish code.

For aluminum bronze material, suffix the letter B to basic part number.

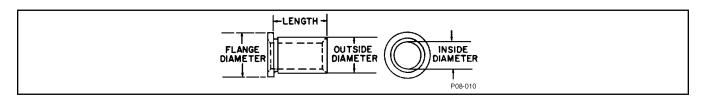
For cadmium-plated finish, suffix the letter P to first dash number.

Table 8-5. NAS537 Plain, Press Fit, Undersize Inside Diameter Bushing - Continued

		Inside Diameter			
		UD (Undersize)		Outside Diame	eter
Size First Dash Num- ber	Diameter for Ream Hole	Diameter	Tolerance0000	Diameter	Tolerance +.0000

Example of part number:

NAS537B8P-175 - aluminum bronze bushing, 0.500-inch inside diameter, cadmium plated, 1.75 inches long.


Material:

Steel, Military Specification MIL-S-6050.

Steel, Military Specification MIL-S-6758.

Aluminum bronze, Military Specification MIL-B-6946.

Table 8-6. NAS538 Flanged, Press Fit, Undersize Inside Diameter Bushing

		Inside Dia	meter	Outside D	iameter	Flange Diam	eter
First Dash Number	Diameter for Ream Hole	Diameter	Tolerance 0000	Diameter	Tolerance +.0000	Diameter	Toler- ance +.0000
-3	.190	.1790	+.0050	.3136	0005	.447	020
-4	.250	.2380	+.0050	.3761	0005	.510	020
-5	.312	.3010	+.0050	.4386	0005	.572	020
-6	.375	.3590	+.0070	.5013	0007	.635	020
-7	.437	.4220	+.0070	.5638	0007	.697	020
-8	.500	.4840	+.0070	.6265	0008	.760	020
-9	.562	.5460	+.0070	.6892	0010	.822	020
-10	.625	.6090	+.0070	.8142	0010	1.010	020
-11	.687	.6710	+.0070	.8767	0010	1.072	020
-12	.750	.7340	+.0070	.9393	0010	1.135	020
-14	.875	.8590	+.0070	1.0648	0010	1.260	020
-16	1.000	.9840	+.0070	1.1898	0010	1.385	020
-18	1.125	1.0940	+.0120	1.3148	0010	1.510	020
-20	1.250	1.2190	+.0120	1.4399	0010	1.635	020

^{1.} These bushings are intended for reaming on assembly.

Code

Length shall be specified in 0.01-inch increments, following the first dash number, and/or the finish code.

For aluminum bronze material, suffix the letter B to basic part number.

For cadmium-plated finish, suffix the letter P to first dash number.

Example of part number:

NAS538B8P-175 = aluminum bronze bushing, 0.500-inch inside diameter, cadmium-plated, 1.75 inches long.

T.O. 1-1A-8

Table 8-6. NAS538 Flanged, Press Fit, Undersize Inside Diameter Bushing - Continued

		Inside Diameter		Outside Diameter		Flange Diame	eter	
First Dash Number	Diameter for Ream Hole	Diameter	Tolerance 0000	Diameter	Tolerance +.0000	Diameter	Toler- ance +.0000	
Material:	Material:							
Steel, Militar	Steel, Military Specification MIL-S-6050.							
Steel, Military Specification MIL-S-6758.								
Aluminum b	ronze, Military Spec	cification MIL	-B-6946.					

CHAPTER 9 THREADED INSERTS

9.1 THREADED INSERTS.

Threaded inserts are commonly used in design of aircraft, engines, and accessories to protect and strengthen tapped threads in light materials, metals, and plastics, particularly in locations requiring frequent assembly and disassembly. The different kinds of threaded inserts are the lockring threaded inserts, clinch nuts, and one-piece threaded inserts.

9.1.1 Lockring Threaded Inserts. (See Figure 9-1.) Lockring standard and self-tapping threaded inserts can be installed in any material which can be drilled and tapped. The inserts provide a strong steel thread in which threaded fasteners can be installed and removed any number of times without damage to the parent material. The lockring prevents the insert from coming loose under all conditions including vibrations, stress, and temperature change. Placing the lockring over the insert automatically engages the

inner serrations of the ring with those of the insert. When driven, the outer serrations accurately broach their way into the parent material without distortion or concentrated stress. (See Figure 9-2.) This creates not only a secure lock, but also a perfect fit between the serrations of the lockring and those of the parent material. Although lockring inserts have a special pitch diameter on the threads mating with the parent material, they require only a national class 3 tapped hole for installation. This special pitch diameter results in maximum incidence of line-to-line or slight-interference fit between the insert and the parent material. Lockring inserts which incorporate a locking feature are also available. The locking effect is accomplished by cutting several slots diametrically into the base of the insert and closing the slots together. Lockring inserts may be installed anywhere with ordinary standard tools. However, special removal and installation tools are available.

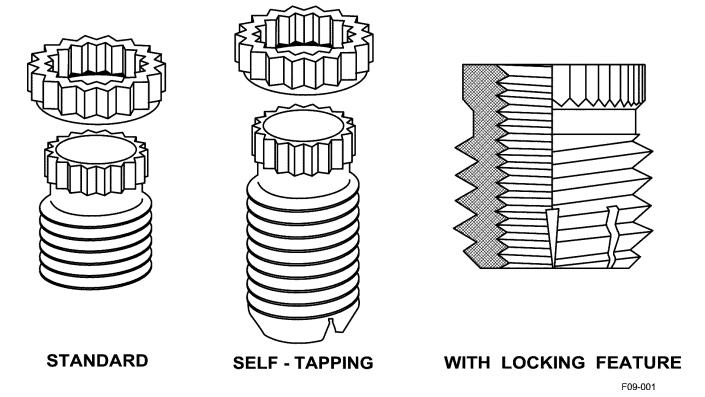


Figure 9-1. Lockring Threaded Inserts

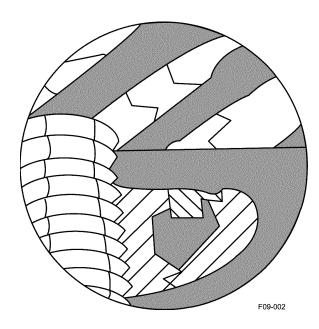


Figure 9-2. Lockring Installed

9.1.2 Installation of Lockring Threaded Inserts.

a. Drill, counterbore, chamfer 45° by outside diameter of counterbore, and tap Class 3 thread. (See A, Figure 9-3.)

NOTE

Tapping is not required when installing lockring self-tapping inserts.

- b. Install lockring inserts to a depth of 0.010 to 0.020-inch below surface. (See B, Figure 9-3.)
- c. Install lockring to a depth of 0.005 to 0.010-inch below surface. (See C, Figure 9-3.)

NOTE

Make sure that inner serrations of lockring engage with serrations of insert before driving in ring.

9.1.3 Removal of Lockring Threaded Inserts.

a. Drill out serrated collar of insert. (See A, Figure 9-4.)

NOTE

Diameter of drill should be same as diameter of collar serrations.

- b. Drive in square removal tool and remove insert. (See B, Figure 9-4.)
- c. If lockring fails to come out as insert is unscrewed, collapse remaining portion of ring with punch. (See C, Figure 9-4.)

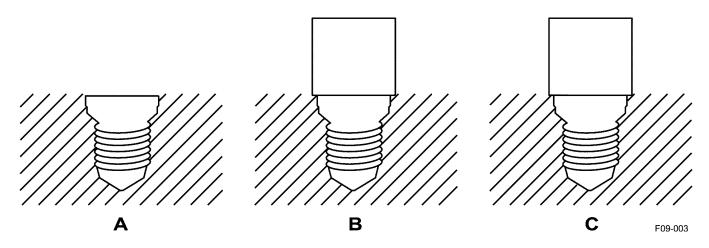


Figure 9-3. Installation of Lockring Threaded Inserts

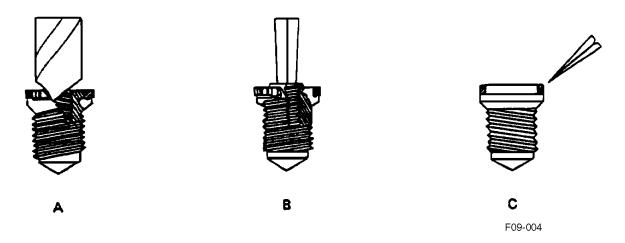


Figure 9-4. Removal of Lockring Threaded Inserts

9.2 CLINCH NUTS.

(See Figure 9-5.) Clinch nuts provide permanent fasteners for installations where it is desirable that the nut remain fixed in place in order to simplify and speed up assembly, disassembly, and maintenance of the unit. These shank-type fasteners are easily installed by a simple clinching or swaging operation, using hand tools or light power presses and are intended to become fixed or permanent fasteners suitable for attaching small parts to thin metal or plastic panels. Clinch nuts are available in a variety of materials, finishes, and sizes. Standard clinch nuts require no more space than a regular hex nut. Miniature clinch nuts require less space than the standard clinch nut. Clinch nuts are made with nylon locking inserts or with an all-metal offset crown closure.

9.2.1 Selection of Clinch Nuts. Clinch nuts are available in a variety of materials and finishes for compatibility with the work or conditions of use. Both the standard and miniature clinch nuts are designed for installation in aluminum or soft steel sheet. Two self-locking devices are available. The nongalling, nondestructive locking action of the nylon insert is highly suitable for electrical applications because it eliminates the possibility of cadmium flaking from screws. Nylon's wear resistance assures extended reusability; it is satisfactory for use up to 250°F for standard clinch nuts, or up to 350°F, the all-metal clinch nuts may be used.

9.2.2 Installation of Clinch Nuts.

- a. Drill or punch installation holes to tolerances indicated in Table 9-1.
- b. Counterbore installation hole to diameter shown in Table 9-1 to depth of .045 inch for flush mounting.

NOTE

Miniature clinch nuts are automatically flush mounting and require no counterboring.

Table 9-1. Installation Hole Sizes For Clinch Nuts

	Hole D	iameter	
Thread Size	Minimum	Maximum	Minimum Counter- bore Diameter
4	.184	.186	.501
6	.217	.219	.501
8	.268	.271	.563
10	.268	.271	.563
1/4	.352	.355	.626
5/16	.408	.412	.688

- c. Insert clinch nut shank completely into hole.
- d. Use dolly as bottom tool to hold nut crown squarely in place, and center punch from above for swaging and controlled pressure. (See Figure 9-6.)
- e. Swage shank to approximately 45 degrees from vertical.

NOTE

Use internal flaring or flush-mounting punch with miniature clinch nuts.

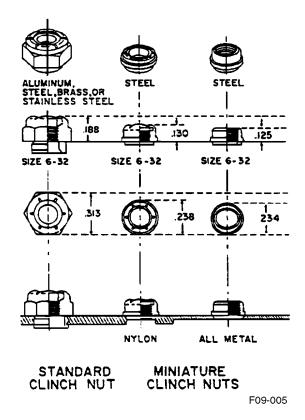


Figure 9-5. Clinch Nuts

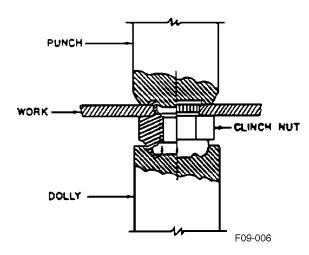


Figure 9-6. Installing Clinch Nut

9.3 HELICAL COIL INSERTS.

The purpose of the following paragraphs is to provide maintenance activities with general instructions for using Helical Coil Inserts and appropriate tools to repair parts and assemblies with worn or damaged threads. The repair process is simple and requires three basic steps: drilling, tapping, and installing (See Figure 9-7.) Typical types of repair are:

- a. Permanent restoration of stripped or damaged threads to their original size in a parent metal not previously protected.
- b. Replacement of Helical Coil Inserts damaged by improper use.
- c. Repair of solid bushings which have become worn or damaged.
- d. Repair of corroded tapped holes, which can be accomplished by using Standard or Screw-Locking Inserts, Oversize Inserts, or Twinserts. For future protection, it is suggested that liquid epoxy primer per FED. SPEC. MIL-P-23377 be applied sparingly to the tapped hole immediately prior to installation of the insert. The use of cadmium plated or dry film lubricated inserts may also be desirable in some cases.

9.3.1 <u>Military Standards</u>. Helical Coil Inserts and tools comply with the following Military Standards and Specifications:

MS122076 through MS122275 -	Insert, Helical Coil, Coarse Thread (free-running).
MS124651 through MS124850 -	Insert, Helical Coil, Fine Thread (free-running).
MS21209 -	Insert, Screw Thread, Coarse and Fine (screw-locking).
MS33537 -	Tapped Threads and Assembly.
MIL-I-8846 -	Inserts, Helical Coil.
MIL-T-21309 -	Tools for Inserting and Extracting Helical Coil Inserts.
MS9018 -	Insert, 18 - 1.5mm Aviation Spark Plug.
MS9071 -	18 - 1.5mm Boss Thread Dimensions.
AS1229 -	Insert, Helical Coil, Stud Locking Performance Standard.
AS3080 through AS3083 -	Insert, Helical Coil (stud locking).

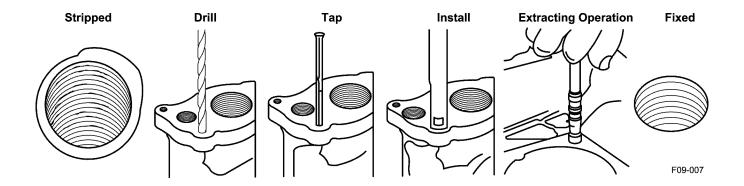


Figure 9-7. Helical Coil Insert Repair Process

9.3.2 <u>Description</u>. Helical Coil Inserts are precision coils of 18-8 stainless steel wire cold-worked to a tensile strength of 200,000 psi (Rockwell C43-50), diamond shaped, and agree with AMS 7245D and MIL-I-8846 specifications.

NOTE

Helical Coil Inserts are also made, on special order, of phosphor bronze (per AMS7247), of Inconel X-750 (per AMS7246), and of other materials to meet special requirements. Only stainless steel inserts are regularly supplied.

Each insert has a driving tang with a notch to facilitate removal of the tang after the insert is screwed into a Helical Coil tapped hole. They are used as screw thread bushings. In addition to being used to restore damaged threads, they are used in the original design of missiles, aircraft engines, and all types of mechanical equipment and accessories to protect and strengthen tapped threads in light materials, metals, and plastics, particularly in locations which require frequent assembly and disassembly, and/or where a screw-locking action is desired.

9.3.3 <u>Insert Types</u>. Helical Coil Standard and Screw-Locking Inserts are identical except for a number of flats formed on the middle coil or coils of the Screw-Locking Insert. Helical Coil Screw-Locking Inserts (dyed red) are used to secure screws and bolts against loosening under impact and vibration in both ferrous and non-ferrous materials, and conform to MIL-I-8846. They eliminate lock wiring, lock nuts, and other supplementary locking devices.

Inserts are available in Unified Coarse and Fine thread sizes in screw thread and Screw-Locking types, Stud-Lock, Oversize and Twinsert, 14 and 18mm spark plug sizes, and tapered pipe thread sizes. Later paragraphs of this chapter outline specific installation instructions for each type of insert.

9.4 SCREW THREAD AND SCREW-LOCKING INSERTS - UNIFIED COARSE AND FINE THREAD SIZES.

9.4.1 General Instructions.

- a. Determine the original tapped hole thread size, whether Unified Coarse or Fine, and whether a standard screw thread or Screw-Locking type of insert is required. Next determine the length of damaged or stripped thread to be replaced and whether the application is in a through hole or a blind hole. A through hole requires that the driving tang be removed. This is not necessary in a blind hole provided the length of the insert permits the tang to clear the point of the screw when the parts are assembled.
- b. Insert Selection. Use the original nominal thread size and length of the tapped hole, as determined above, to select the proper insert from Table 9-2. The proper insert length for blind holes will permit full screw engagement without interference if the driving tang is retained. Because all inserts are notched for tang break-off, the tangs should be removed where possible.

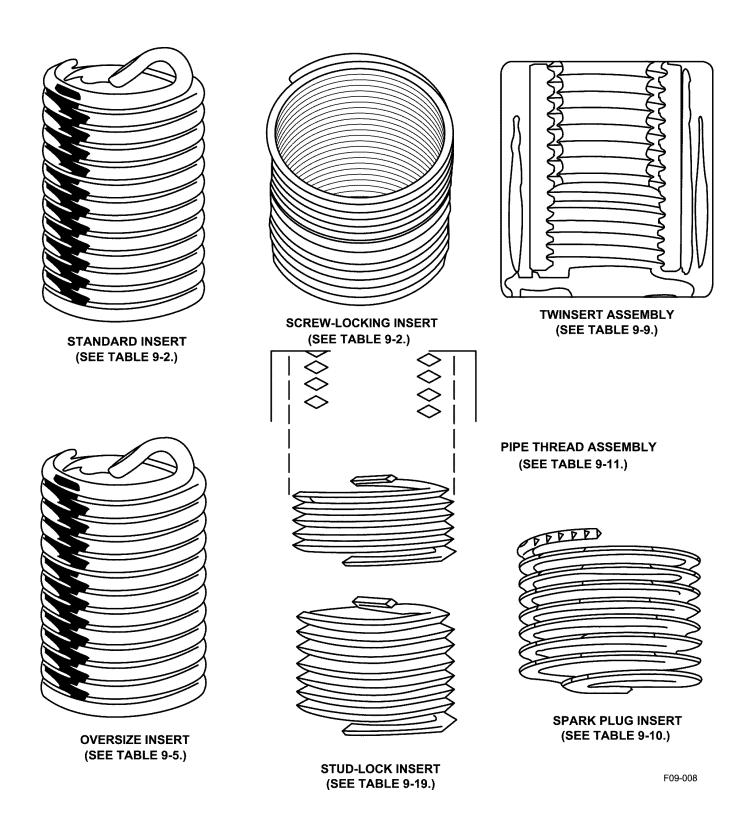


Figure 9-8. Types of Helical Coil Screw Thread Inserts

CAUTION

- Only use bolts with correct grip lengths for thickness of work to be held, and with enough thread length to assemble with full thread engagement into Screw-Locking Insert (e.g., an AN single-digit bolt should not be used with inserts of lengths equal to 1 1/2 and 2 times bolt size).
- When unplated, heat-treated steel screws or stainless steel screws are used with a Screw-Locking Insert, an antiseize compound should be applied to the screw to minimize galling and to obtain maximum cycle life. Also available are inserts plated with cadmium (code letter "P") or dry film lubricant ("L") per MS21209.

NOTE

An insert assembled in a blind hole, with the tang retained, should be longer than the required bolt thread engagement by 1/2 the nominal thread diameter or bolt size.

c. Insert Tolerance. The same insert is used for all classes of thread fits or thread tolerance ranges. Each variation in fit is determined by the tolerance of the tapped thread used. The free insert, before assembly, has a larger diameter than the tapped hole which will receive it. The tapped hole reduces the insert in diameter as it is assembled. This makes the insert conform to the tapped hole tolerance or class of fit. This snug fit also locks the insert in position.

9.5 REPAIR PROCEDURE.

 a. Drilling. Drill out stripped or damaged threads to the minimum depth specified in Table 9-3 under "Drilling Data." The minimum depth specified must be equaled or exceeded, and will not include depths of countersinks, if any.

NOTE

Recommended minimum edge distance after drilling and tapping for installation of insert is the nominal diameter of bolt, screw, stud, etc., measured from the centerline of the tapped hole.

b. Tapping. Select the tap of the required nominal thread size as given in Table 9-3 under "Tapping." Class 3B taps are standard. The tapping procedure

is the same as standard thread tapping. The full tapped thread depth must equal or exceed the nominal insert length, "L." After tapping, clean out all metal chips.

- Gage. Threads may be checked with a Helical Coil gage selected from Table 9-3.
- d. Insert Assembly. Select the correct size inserting tool from Table 9-3 in the "Inserting Tool" column. Follow procedure outlined for specific types of inserting tools in paragraph 9.5.1. For repair of tapped hole without counter sunk, locate the top coil of the insert 1/4 to 1/2 turn below top surface of hole. For repair of tapped hole with counter sunk, locate the top coil of the insert 1 to 1 1/2 turns below top surface of hole. When inserts are installed in small items which can be held in the hand, it is preferable that the inserting tool be mounted in a vise and the work brought to the tool.
- e. Tang Break-Off. Select proper tang break-off tool from Table 9-3. Tangs should be removed from inserts in through holes. In blind holes the tangs may be removed when necessary if enough hole depth is provided below the tang of the installed insert. Follow procedure described in paragraph 9.6.

9.5.1 Inserting Tool Instructions.

- a. Type III, Class 1, Style A Threaded Mandrel Prewinder Type used for sizes 4" through 1/2" UNF and UNC. (Ref. MIL-T-21309E) (See Figure 9-9.)
- (1) Place insert in well, tang end toward tip. Place finger lightly over the insert and rotate mandrel through insert until the insert projects beyond the tip one thread.
- (2) Place tool squarely against tapped hole and wind insert in to desired depth. Depth control can be adjusted by the depth control stop collar.
- (3) Retract mandrel by rotating counterclockwise.
- b. Type III, Class 1, Style B Threaded Non-captive Mandrel Prewinder Type used for sizes UNF 9/16" through 1 1/2". (Ref. MIL-T-21309E) (See Figure 9-10.)
 - (1) Keeping knurled body in contact with sleeve, loosen set screw on stop collar and slide mandrel forward until it projects a distance equal to insert length. Tighten set screw. Remove body, place insert on mandrel, and replace body.
 - Holding body, install insert until shoulder contacts body.

NOTE

If the mandrel binds during installation, reverse the direction of prewinder rotation only 1/4 turn to relieve spring tension, then continue assembly.

- (3) Readjust depth if necessary.
- c. Type III, Class 2, Style B Threaded Mandrel Type used for sizes UNC 9/16" through 1 1/2". (Ref. MIL-T-21309E) (See Figure 9-11.)

- d. Type III, Class 2, Style A Mandrel Type used for sizes #2 and #3 UNC. (Ref. MIL-T-21309E) (See Figure 9-12.)
 - (1) Screw the insert onto the tool. Be sure the tang of the insert is properly engaged in the driving contour of the tool.
 - (2) Position the insert and tool squarely over the tapped hole.
 - (3) Rotate the tool, exerting slight pressure against the work until the insert is located the prescribed distance below the work surface.

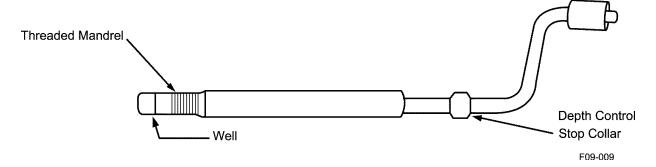


Figure 9-9. Type III, Class 1, Style A Threaded Mandrel Prewinder Type

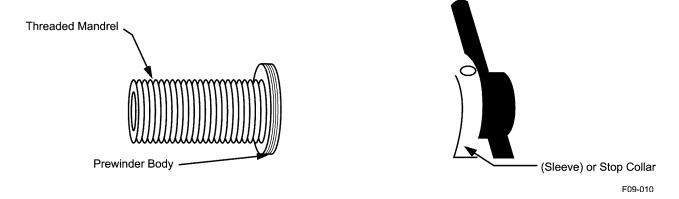


Figure 9-10. Type III, Class 1, Style B Threaded Non-Captive Mandrel Prewinder Type

Table 9-2. Helical Coil Screw Thread Inserts, Standard and Screw-Locking

Naminal Naminal Lingah Naminal Lin							Free Outside	utside					
10.0. Dia. 21.2 Min. Max. 1 Dia. 1 1/12 2 Dia. 2 Dia. 2 Dia. 2 Dia. 2 Dia. 2 Dia. Dia.			Insert No	minal Len	gth "L"*		Diam	neter		Number of	Free Coils	±1/4 Coil	
0.086 0.129 0.172 0.218 0.258 1.10 1.19 3 5-1/4 7-3/8 9-5/8 0.089 0.129 0.172 0.218 0.238 1.10 1.19 3 5-1/4 7-3/8 9-5/8 0.109 0.148 0.198 0.248 0.297 1.18 1.39 2-7/8 5 7-1/4 9-3/8 0.112 0.188 0.290 0.375 1.18 1.39 2-3/4 4-3/4 6-3/4 8-3/8 0.118 0.200 0.200 0.316 0.375 1.18 1.39 2-3/4 4-3/4 6-3/4 8-3/8 0.188 0.200 0.200 0.316 0.414 1.78 1.99 2-3/4 4-3/4 6-3/4 8-7/8 0.190 0.200 0.320 0.414 1.78 1.99 2-3/4 4-3/4 6-7/8 9-1/8 10-34 0.190 0.234 0.410 0.492 2.05 2.24 2-3/4 4-3/4 <th>Nominal Thread Size</th> <th>i e</th> <th>1 1/2 Dia</th> <th>o Dia</th> <th>2 1/2 Dia</th> <th></th> <th><u>.</u></th> <th>M</th> <th>L Dia</th> <th>1 1/2 Dia</th> <th>o Dia</th> <th>2 1/2 Dia</th> <th>s Ei</th>	Nominal Thread Size	i e	1 1/2 Dia	o Dia	2 1/2 Dia		<u>.</u>	M	L Dia	1 1/2 Dia	o Dia	2 1/2 Dia	s Ei
0.086 0.129 0.172 0.215 0.258 110 119 3 5-1/4 7-3/8 9-5/8 0.099 0.148 0.198 0.248 0.234 1.139 2.748 5 7-144 9-3/8 0.112 0.168 0.224 0.280 0.345 0.345 1.14 1.15 2.746 6-34 8-7/8 0.112 0.188 0.207 0.220 0.345 0.410 0.492 2.05 2.244 5-1/2 6 8-3/8 1.0 0.190 0.228 0.410 0.492 2.05 2.20 2.1/2 6 8-3/8 1.0 0.190 0.234 0.400 0.445 0.475 0.449 2.05 2.24 2.29 2.7/8 8 1.0 0.190 0.234 0.440 0.445 0.570 0.648 2.70 2.89 2.7/8 8 7.18 1.14 0.21 0.340 0.648 2.70 2.29 2.7/8 <th></th> <th>5</th> <th></th> <th>3 1</th> <th>5</th> <th>5 </th> <th>ed Coarse</th> <th></th> <th>5</th> <th></th> <th>1 1</th> <th>5</th> <th></th>		5		3 1	5	5	ed Coarse		5		1 1	5	
0.099 0.148 0.198 0.248 0.297 1128 1.39 2-7/8 5 7-1/4 9-3/8 0.112 0.108 0.224 0.280 0.234 1.44 1.59 2-34 4-34 6-34 8-7/8 0.112 0.108 0.220 0.236 0.240 0.345 0.414 1.78 1.13 3-1/4 6-34 8-7/8 0.190 0.227 0.207 0.240 0.492 2.05 2.20 3-1/2 6-7 8-3/8 10-3/4 0.190 0.228 0.340 0.440 0.492 2.05 2.20 3-1/2 6 8-3/8 10-3/4 0.190 0.228 0.340 0.440 0.492 2.05 2.27 6 8-3/8 10-34 0.216 0.324 0.440 0.463 0.440 0.463 3.70 2.44 2.59 2.748 4-34 6-3/8 10-3/8 0.220 0.324 0.440 0.460 0.625	2 (.086)-56	0.086	0.129	0.172	0.215	0.258	.110	.119	3	5-1/4	7-3/8	9-5/8	11-7/8
0.112 0.168 0.224 0.280 0.336 144 1.59 2.344 4-3/4 6-34 8-7/8 0.115 0.188 0.220 0.342 0.345 1.18 1.173 3-1/4 5-17 7-34 8-7/8 0.138 0.207 0.236 0.345 0.414 1.78 1.193 2-34 4-34 6-34 8-7/8 0.100 0.285 0.380 0.415 0.648 2.70 2.24 2.34 4-34 6-34 8-3/8 10-34 0.100 0.285 0.380 0.415 0.648 2.70 2.28 3-1/2 6 8-38 10-34 0.200 0.625 0.780 0.648 2.70 2.88 3-78 5-34 8-1/4 11-178 0.2312 0.469 0.625 0.781 0.938 1.125 4-22 4-23 4-27 4-38 7-1/8 11-178 0.312 0.520 0.781 1.504 1.312 526	3 (.099)-48	0.099	0.148	0.198	0.248	0.297	.128	.139	2-7/8	5	7-1/4	9-3/8	11-1/2
0.138 0.230 0.312 0.375 1.18 1.173 3-144 5-1/2 7-34 1.0 0.138 0.240 0.345 0.414 1.78 1.93 3-1/4 5-1/2 7-34 1.0 0.138 0.240 0.246 0.441 1.78 1.93 3-3/4 4-34 6-78 8-7/8 0.100 0.238 0.340 0.442 2.20 2.778 5 7-1/8 9-1/4 0.250 0.375 0.500 0.625 0.750 3.10 2.38 3-1/2 6 8-3/8 10-4 0.250 0.375 0.500 0.625 0.750 3.0 3-36 5-3/4 8 10-38 0.250 0.375 0.750 0.750 0.750 0.750 1.00 4 6-5/8 9-1/4 11-7/8 0.375 0.562 0.750 1.094 1.32 4-1 4-1 6-5/8 9-1/4 11-7/8 0.370 0.625 0.	4 (.112)-40	0.112	0.168	0.224	0.280	0.336	.144	.159	2-3/4	4-3/4	6-3/4	8-7/8	10-7/8
0.138 0.207 0.276 0.345 0.414 1.78 1.93 2.34 4.34 6-7/8 8-7/8 0.104 0.246 0.328 0.410 0.492 2.05 2.20 3-1/2 6 8-3/8 10-34 0.104 0.246 0.380 0.4410 0.492 2.05 2.24 2.85 3-1/2 6 8-3/8 10-34 0.210 0.285 0.324 0.443 0.648 2.74 2.85 3-1/8 8-7/8 9-1/4 0.210 0.375 0.600 0.625 0.750 3.09 3-38 3-38 5-34 8-3/8 10-38 0.210 0.375 0.605 0.738 1.125 452 472 4-38 7-1/4 11 17-18 0.375 0.562 0.730 1.250 1.500 1.500 5.51 472 4-38 7-1/4 11 18-1/8 0.500 0.750 1.000 1.250 1.500 5.94	5 (.125)-40	0.125	0.188	0.250	0.312	0.375	.158	.173	3-1/4	5-1/2	7-3/4	10	12-1/4
0.164 0.246 0.238 0.410 0.492 2.05 2.20 3-1/2 6 8-3/8 10-3/4 0.190 0.285 0.380 0.473 0.570 2.44 2.59 2.778 5 7-1/8 9-1/4 0.190 0.285 0.380 0.443 0.570 0.648 2.70 2.85 3-1/2 6 8-3/8 10-3/8 0.250 0.375 0.625 0.781 0.938 1.125 4.62 4.76 4.65/8 9-1/4 11-7/8 0.312 0.469 0.625 0.781 0.938 1.125 4.62 4.72 4.38 7-1/4 11-78 0.438 0.656 0.875 1.094 1.312 5.26 5.51 4-1/2 7-3/8 10-1/4 11-7/8 0.650 0.750 1.094 1.312 5.26 5.51 4-1/2 7-3/8 10-1/4 11-1/8 0.650 0.844 1.125 1.688 .669 .694 5-	6 (.138)-32	0.138	0.207	0.276	0.345	0.414	.178	.193	2-3/4	4-3/4	8/L-9	8-7/8	10-7/8
0.190 0.285 0.285 0.788 5.778 5.718 5.148 9-144 0.216 0.334 0.432 0.540 0.648 2.70 2.85 3-12 6 8-3/8 10-5/8 0.250 0.375 0.625 0.730 3.30 3-3/8 5-3/4 8 10-5/8 0.312 0.469 0.625 0.731 0.938 1.125 4.52 4.72 4-38 7-1/4 10-1/3 11-7/8 0.312 0.656 0.750 1.094 1.312 5.26 551 4-1/2 7-3/8 10-1/4 11-7/8 0.500 0.750 1.094 1.312 5.26 5.51 4-1/2 7-3/8 10-1/4 11-7/8 0.500 0.750 1.000 1.500 1.500 5.97 6.29 5-1/4 11-1/2 14-1/8 0.500 0.750 1.000 1.500 1.688 .669 5-1/8 8-1/4 11-1/8 14-34 0.625 <	8 (.164)-32	0.164	0.246	0.328	0.410	0.492	.205	.220	3-1/2	9	8-3/8	10-3/4	13-1/4
0.216 0.324 0.432 0.540 0.648 270 285 3-1/2 6 8-3/8 10-5/8 0.250 0.375 0.500 0.625 0.750 310 330 3-3/8 5-34 8 10-5/8 0.250 0.375 0.605 0.781 0.938 3.80 400 4 6-5/8 9-1/4 11-7/8 0.375 0.562 0.750 0.938 1.125 452 472 4-38 7-1/4 10 12-7/8 0.438 0.656 0.875 1.094 1.312 526 551 4-1/2 7-38 10-1/4 11-7/8 0.500 0.750 1.000 1.500 1.500 .597 .622 4-7/8 7-1/4 10 12-1/8 0.656 0.844 1.125 1.406 1.688 .669 .694 5-1/8 11-1/2 14-1/8 0.657 0.844 1.125 1.876 1.875 7-1/8 8-1/2 11-1/4	10 (.190)-24	0.190	0.285	0.380	0.475	0.570	.244	.259	2-7/8	5	7-1/8	9-1/4	11-3/8
0.250 0.375 0.500 0.625 0.750 310 330 3-38 5-34 8 10-38 0.312 0.469 0.625 0.781 0.938 380 400 4 6-58 9-1/4 11-78 0.312 0.469 0.625 0.781 0.938 1.125 452 472 4-38 7-1/4 10 12-7/8 0.438 0.562 0.750 1.094 1.312 5.26 551 4-1/2 7-38 10-1/4 11-7/8 0.500 0.750 1.000 1.250 1.500 5.97 622 4-7/8 7-1/8 11 14-1/8 0.655 0.844 1.125 1.406 1.688 .669 .694 5-1/8 8-1/4 11-1/8 14-1/8 0.655 0.938 1.250 1.875 2.250 .881 .906 5-1/8 8-1/4 11-1/2 14-3/4 0.655 1.125 1.500 1.262 1.875 .767	12 (.216)-24	0.216	0.324	0.432	0.540	0.648	.270	.285	3-1/2	9	8-3/8	10-5/8	13-1/8
0.312 0.469 0.625 0.781 0.938 .380 .400 4 6-5/8 9-1/4 11-7/8 0.375 0.562 0.750 0.938 1.125 .452 .472 4-3/8 7-1/4 10 12-7/8 0.438 0.656 0.875 1.094 1.312 526 .551 4-1/2 7-38 10-1/4 11-7/8 0.500 0.750 1.000 1.250 1.500 .597 .622 4-7/8 7-7/8 11 14-1/8 0.562 0.844 1.125 1.406 1.688 .669 .694 5-1/8 8-1/4 11-1/2 14-3/4 0.625 0.844 1.125 1.406 1.688 .669 .694 5-1/8 8-1/2 11-34 15-1/8 0.625 0.938 1.250 2.562 1.875 .742 .767 5-1/4 8-1/2 11-34 15-34 0.750 1.125 1.286 2.652 1.052 1.052 <td< td=""><td>1/4 (.250)-20</td><td>0.250</td><td>0.375</td><td>0.500</td><td>0.625</td><td>0.750</td><td>.310</td><td>.330</td><td>3-3/8</td><td>5-3/4</td><td>~</td><td>10-3/8</td><td>12-3/4</td></td<>	1/4 (.250)-20	0.250	0.375	0.500	0.625	0.750	.310	.330	3-3/8	5-3/4	~	10-3/8	12-3/4
0.375 0.562 0.750 0.938 1.125 .452 .472 4.378 7-1/4 10 12-7/8 0.438 0.656 0.875 1.094 1.312 5.26 .551 4-1/2 7-38 10-1/4 13-1/8 0.500 0.750 1.000 1.250 1.500 .597 .652 4-7/8 7-7/8 11 14-1/8 0.652 0.844 1.125 1.406 1.688 .669 .694 5-1/8 8-1/4 11-1/2 14-3/4 0.625 0.938 1.250 1.875 2.250 .881 .906 5-1/8 8-1/2 11-3/4 15 0.875 1.112 1.750 2.188 2.625 1.052 6-1/4 10 13-3/4 17-1/2 1.000 1.500 2.000 2.500 3.000 1.166 6-3/8 10-1/8 14 17-3/4 1.125 1.688 2.250 2.812 3.750 1.143 1.483 7	5/16 (.3125)- 18	0.312	0.469	0.625	0.781	0.938	.380	.400	4	9/5-9	9-1/4	11-7/8	14-5/8
0.438 0.656 0.875 1.094 1.312 526 551 4-1/2 7-38 10-1/4 13-1/8 0.500 0.750 1.000 1.250 1.500 529 694 5-1/8 7-7/8 11 14-1/8 0.522 0.844 1.125 1.406 1.688 .669 .694 5-1/8 8-1/4 11-1/2 14-3/4 0.625 0.938 1.250 2.562 1.875 742 767 5-1/4 8-1/2 11-3/4 15 0.750 1.125 1.500 1.875 2.250 .881 .906 5-7/8 9-3/8 15 16-1/2 0.875 1.125 1.750 2.188 2.625 1.022 1.052 6-1/4 10 13-34 17-1/2 1.000 1.500 2.500 3.000 1.166 1.196 6-1/8 9-7/8 17-1/2 1.250 1.875 2.500 3.125 3.750 1.443 1.443 1.443 1	3/8 (.3750)- 16	0.375	0.562	0.750	0.938	1.125	.452	.472	4-3/8	7-1/4	10	12-7/8	15-3/4
0.560 0.750 1.000 1.250 1.500 .597 .622 4-7/8 7-7/8 11 14-1/8 0.562 0.844 1.125 1.406 1.688 .669 .694 5-1/8 8-1/4 11-1/2 14-3/4 0.625 0.938 1.250 2.562 1.875 .742 .767 5-1/4 8-1/2 11-3/4 15 0.750 1.125 1.500 1.875 2.250 .881 .906 5-7/8 9-3/8 13 16-1/2 0.875 1.125 1.750 2.188 2.625 1.052 1.052 6-1/4 10 13-3/4 17-1/2 1.000 1.500 2.000 2.500 3.000 1.166 1.196 6-3/8 10-1/8 14 17-1/2 1.125 1.688 2.250 2.812 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.250 2.062 2.750 3.438 4.125 1.598	7/16 (.4375)- 14	0.438	0.656	0.875	1.094	1.312	.526	.551	4-1/2	7-3/8	10-1/4	13-1/8	16-1/8
0.562 0.844 1.125 1.406 1.688 .669 .694 5-1/8 8-1/4 11-1/2 14-3/4 0.625 0.938 1.250 2.562 1.875 .742 .767 5-1/4 8-1/2 11-3/4 15 0.750 1.125 1.500 1.875 2.250 .881 .906 5-7/8 9-3/8 13 16-1/2 0.875 1.125 1.750 2.188 2.625 1.022 1.052 6-1/4 10 13-34 17-1/2 1.000 1.500 2.000 2.500 3.000 1.166 1.196 6-3/8 10-1/8 14 17-3/4 1.125 1.688 2.250 2.812 3.375 1.315 1.355 6-1/8 9-7/8 13-5/8 17-1/2 1.250 1.875 2.500 3.125 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.375 2.062 2.750 3.438 4.125 1.543	1/2 (.5000)-	0.500	0.750	1.000	1.250	1.500	.597	.622	4-7/8	7-7/8	11	14-1/8	17-1/8
0.625 0.938 1.250 2.562 1.875 .742 .767 5-1/4 8-1/2 11-3/4 15 0.750 1.125 1.500 1.875 2.250 .881 .906 5-7/8 9-3/8 13 16-1/2 0.875 1.125 1.750 2.188 2.625 1.022 1.052 6-1/4 10 13-3/4 17-1/2 1.000 1.500 2.000 2.500 3.000 1.166 1.196 6-3/8 10-1/8 14 17-1/2 1.125 1.688 2.250 2.812 3.375 1.315 1.355 6-1/8 9-7/8 13-5/8 17-1/2 1.250 1.875 2.500 3.125 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.375 2.062 2.750 3.438 4.125 1.598 1.643 6-1/2 10-1/2 14-3/8 18-3/8	9/16 (.5625)- 12	0.562	0.844	1.125	1.406	1.688	699.	.694	5-1/8	8-1/4	11-1/2	14-3/4	17-7/8
0.750 1.125 1.500 1.875 2.250 .881 .906 5-7/8 9-3/8 13 16-1/2 0.875 1.312 1.750 2.188 2.625 1.022 1.052 6-1/4 10 13-3/4 17-1/2 1.000 1.500 2.000 2.500 3.000 1.166 1.196 6-3/8 10-1/8 14 17-3/4 1.125 1.688 2.250 2.812 3.375 1.315 1.355 6-1/8 9-7/8 13-5/8 17-1/2 1.250 1.875 2.500 3.125 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.375 2.062 2.750 3.438 4.125 1.598 1.643 6-1/2 10-1/2 14-3/8 18-3/8	5/8 (.6250)- 11	0.625	0.938	1.250	2.562	1.875	.742	.767	5-1/4	8-1/2	11-3/4	15	18-3/8
0.875 1.312 1.750 2.188 2.625 1.022 1.052 6-1/4 10 13-3/4 17-1/2 1.000 1.500 2.000 2.500 3.000 1.166 1.196 6-3/8 10-1/8 14 17-3/4 1.125 1.688 2.250 2.812 3.375 1.315 1.355 6-1/8 9-7/8 13-5/8 17-1/2 1.250 1.875 2.500 3.125 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.375 2.062 2.750 3.438 4.125 1.598 1.643 6-1/2 10-1/2 14-3/8 18-3/8	3/4 (.7500)- 10	0.750	1.125	1.500	1.875	2.250	.881	906	5-7/8	9-3/8	13	16-1/2	20-1/8
1.000 1.500 2.000 2.500 3.000 1.166 1.196 6-3/8 10-1/8 14 17-3/4 1.125 1.688 2.250 2.812 3.375 1.315 1.355 6-1/8 9-7/8 13-5/8 17-1/2 1.250 1.875 2.500 3.125 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.375 2.062 2.750 3.438 4.125 1.598 1.643 6-1/2 10-1/2 14-3/8 18-3/8	9-(05/8) 8//	0.875	1.312	1.750	2.188	2.625	1.022	1.052	6-1/4	10	13-3/4	17-1/2	21-1/4
1.125 1.688 2.250 2.812 3.375 1.315 1.355 6-1/8 9-7/8 13-5/8 17-1/2 1.250 1.875 2.500 3.125 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.375 2.062 2.750 3.438 4.125 1.598 1.643 6-1/2 10-1/2 14-3/8 18-3/8	1 (1.0000)-8	1.000	1.500	2.000	2.500	3.000	1.166	1.196	8/6-9	10-1/8	14	17-3/4	21-5/8
1.250 1.875 2.500 3.125 3.750 1.443 1.483 7 11-1/4 15-3/8 19-1/2 1.375 2.062 2.750 3.438 4.125 1.598 1.643 6-1/2 10-1/2 14-3/8 18-3/8	1-1/8 (1.1250)-7	1.125	1.688	2.250	2.812	3.375	1.315	1.355	6-1/8	8/L-6	13-5/8	17-1/2	21-1/4
1.375 2.062 2.750 3.438 4.125 1.598 1.643 6-1/2 10-1/2 14-3/8 18-3/8	1-1/4 (1.2500)-7	1.250	1.875	2.500	3.125	3.750	1.443	1.483	7	11-1/4	15-3/8	19-1/2	23-3/4
	1-3/8 (1.3750)-6	1.375	2.062	2.750	3.438	4.125	1.598	1.643	6-1/2	10-1/2	14-3/8	18-3/8	22-1/4

Table 9-2. Helical Coil Screw Thread Inserts, Standard and Screw-Locking - Continued

		Insert Nominal Lo	ominal Len	ength "L"*		Free Outside Diameter	utside leter		Number of	Number of Free Coils ±1/4 Coil	s ±1/4 Coil	
Nominal Thread Size	1 Dia.	1 1/2 Dia.	2 Dia.	2 1/2 Dia.	3 Dia.	Min.	Max.	1 Dia.	1 1/2 Dia.	2 Dia.	2 1/2 Dia.	3 Dia.
1-1/2 (1.5000)- 6	1.500	2.250	3.000	3.750	4.500	1.727	1.772	7-1/4	11-1/2	15-7/8	20-1/8	24-1/2
					D	Unified Fine						
3 (.099)-56	0.099	0.148	0.198	0.248	0.297	.131	.146	3-3/8	5-5/8	8	10-3/8	12-5/8
4 (.112)-48	0.112	0.168	0.224	0.280	0.336	.147	.162	3-3/8	5-5/8	2-1/8	10-1/4	12-1/2
6 (.138)-40	0.138	0.207	0.276	0.345	0.414	.173	.193	3-1/2	9	8-3/8	10-3/4	13-1/4
8 (.164)-36	0.164	0.246	0.328	0.410	0.492	.204	.224	3-7/8	6-1/2	9-1/8	11-5/8	14-1/4
10 (.190)-32	0.190	0.285	0.380	0.475	0.570	.236	.256	4-1/8	8/L-9	9-1/2	12-1/4	14-7/8
1/4 (.2500)- 28	0.250	0.375	0.500	0.625	0.750	.306	.326	5	8-1/4	11-3/8	14-1/2	17-5/8
5/16 (.3125)- 24	0.312	0.469	0.625	0.781	0.938	.380	.400	5-1/2	8-7/8	12-1/4	15-5/8	19
3/8 (.3750)- 24	0.375	0.562	0.750	0.938	1.125	.448	.468	8/L-9	11	15	19-1/8	23-1/8
7/16 (.4375)- 20	0.438	959:0	0.875	1.094	1.312	.524	.549	9/5-9	10-5/8	14-5/8	18-1/2	22-1/2
1/2 (.5000)-	0.500	0.750	1.000	1.250	1.500	.592	.617	7-7/8	12-3/8	16-7/8	21-3/8	25-7/8
9/16 (.5625)- 18	0.562	0.844	1.125	1.406	1.688	999:	.691	8	12-1/2	17-1/8	21-3/4	26-1/4
5/8 (.6250)- 18	0.625	0.938	1.250	1.562	1.875	.733	.758	6	14-1/8	19-1/4	24-1/4	29-3/8
3/4 (.7500)- 16	0.750	1.125	1.500	1.875	2.250	.876	.901	9-3/4	15-1/8	20-5/8	26	31-1/2
7/8 (.8750)- 14	0.875	1.312	1.750	2.188	2.625	1.021	1.051	8/L-6	15-1/2	21-1/8	26-5/8	32-1/4
1 (1.0000)-14	1.000	1.500	2.000	2.500	3.000	1.156	1.186	11-1/2	17-7/8	24-1/4	30-5/8	37
1 (1.0000)-12	1.000	1.500	2.000	2.500	3.000	1.169	1.199	8/5-6	15	20-1/2	26	31-1/2
1-1/8 (1.1250)-12	1.125	1.688	2.250	2.812	3.375	1.304	1.334	11-1/8	17-1/4	23-3/8	29-1/2	35-3/4
1-1/4 (1.2500)-12	1.250	1.875	2.500	3.125	3.750	1.439	1.469	12-1/2	19-3/8	26-1/4	33	39-7/8

Table 9-2. Helical Coil Screw Thread Inserts, Standard and Screw-Locking - Continued

						Free O	Free Outside					
		Insert No	nsert Nominal Length "L"*	gth "L"*		Dian	Diameter		Number of	Number of Free Coils ±1/4 Coil	s ±1/4 Coil	
Nominal		1 1/2		2 1/2					1 1/2		2 1/2	
Thread Size	1 Dia.	Dia.	2 Dia.	Dia.	3 Dia.	Min.	Мах.	1 Dia.	Dia.	2 Dia.	Dia.	3 Dia.
1-3/8	1.375	2.062	2.750	3.438	4.125	1.575	1.610	13-3/4	21-3/8	8/L-87	36-1/2	44
(1.3750)-12												
1-1/2	1.500	2.250	3.000	3.750	4.500	1.710	1.745	15-1/4	23-1/2	31-5/8	39-7/8	48-1/8
(1.5000)-12												
Non-Stock Items Available On Special Order Only	s Available	On Special	Order Only	Are Shown In Bold	In Bold							

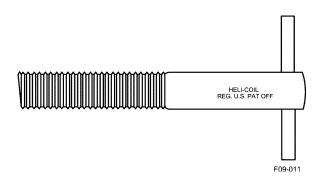


Figure 9-11. Type III, Class 2, Style B Threaded Mandrel Type

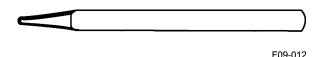
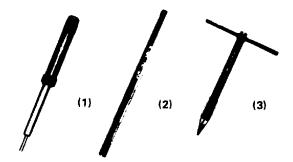


Figure 9-12. Type III, Class 2, Style A Mandrel Type

9.6 TANG REMOVAL INSTRUCTIONS.

- a. Tangs should be removed from inserts in through hole installations. Select proper tang break-off tool from Table 9-3. Place the punch of the tool in the installed insert and let the punch contact the tang. (See Figure 9-14.)
- b. In the case of the 4156 series tool, the tang is snapped off clean by striking the top of the punch a


- sharp blow with a hammer. In blind holes, the tang may be removed in the same manner if enough hole depth is provided below the tang with the insert installed.
- c. These instructions also apply to the series 3690 tang break-off tools except the preloaded sleeve is pressed down to release the punch, eliminating the use of the hammer.
- d. The tang may also be removed in 9/16" and larger diameter assemblies by grasping it firmly with long-nose pliers and bending it slightly up and down without disturbing the last coil of the insert. It will break off cleanly without a burr.

9.7 GAGING OF ASSEMBLED INSERT.

The installed insert need not be gaged; it is inspected by the manufacturer to established tolerances. If the tapped hole is gaged after tapping, the installed insert will automatically be within the thread tolerance. The insert may not always seat itself when first installed; however, when a bolt or stud is installed and tightened, the insert will find its proper place and seat itself. Accuracy of the finished thread is dependent upon the accuracy of the tapped hole.

9.8 INSERT REMOVAL INSTRUCTIONS.

If it should be desired to remove an insert, select the correct size extracting tool listed in Table 9-3 and place the blade of the tool into the hole so that one side of the blade is a quarter-turn from the end of the insert. (See Figure 9-15.) Strike the head of the tool lightly with a hammer to dig the blade into the top coil of the insert. Bearing down hard on the handle of the tool, turn it slowly counterclockwise, firmly maintaining pressure as the insert backs out. (See Figure 9-16.) Proper removal of the insert does not damage the tapped thread.

(1) Tang Break-off Tool, Automatic, 3690 Series
(2) Tang Break-off Tool, Rod Type, 4156 Series (3) Extracting Tool
F09-013

Figure 9-13. Helical Coil Tang Break-Off Tools and Extracting Tod

Table 9-3. Helical Coil Insert Tapped Hole and Tooling Data

				1								
Jata			Ex- tract- ing Tool No.		1227	1227	1227	1227	1227	1227	1227	1227
tions [Break-Off Tool No.		Man- ual		4156	4156	4156 -04	4156	4156	4156	4156	4156
Installa	Brea Tool		Au- to- matic		3695 -02	3695 -02	3695	3695 -04	3695 -06	3695	3695	3695
Gages and Installations Data			In- sert- ing Tool No.		551-02	551- 031	7551- 04	7551- 05	7551- 06	7551-2	7551-3	7551-1
* G			Thread Plug Gages		1688- 02	1688- 031	1688- 04	1688- 05	1688- 06	1688-2	1688-3	1688-1
	h "L"	Minor Diameter (After Tapping)	Мах.		.0961	.1104	.1252	.1373	.1527	.1781	.2080	.2340
	t Lengt	Minor Diamet (After Tapping	Min.		6680.	.1036	.1175	.1305	.1448	.1708	.1990	.2250
ig Data	= Inser	Pitch Diameter	Max.	se	6860.	.1140	.1299	.1430	.1601	.1862	.2192	.2453
Class 38 Tapping Data	Thread	Pitch Diamet	Min	Unified Coarse	9260.	.1126	.1283	.1413	.1583	.1843	.2170	.2430
lass 38	Tapped		Tap Major Dia. Max.	Unifie	.1117	.1289	.1473	.1603	.1817	.2077	.2475	.2735
*	Depth Full Tapped Thread = Insert Length "L"		Fin. Bott. Tap No.		02CBB	031CBB	04CBB	05CBB	06CBB	2CBB	3C8B	1CBB
	Min. De		Fin. Plug Tap No.		02CPB	031CPB	04CPB	05CPB	06CPB	2CPB	3CPB	1CPB
	epth		For Bott. Taps		.045	.052	.063	.063	.078	.078	.104	.104
Data	Min. Depth = Insert Length "L" +		For Plug Taps		860.	.115	.138	.138	.172	.172	.229	.229
Drilling Data	sted		Steel Mag- nesi- um Plastic		No. 41 (.0960)	7/64 (.1094)	No. 31 (.1200)	No. 29 (.1360)	No. 25 (.1495)	No. 16 (.1770)	No. 5 (.2055)	No. 1 (.2280)
	Suggested Drill Size		Alumi- num		3/32 (.0938)	No. 36 (.1065)	No. 31 (.1200)	No. 30 (.1290)	No. 26 (.1470)	No. 17 (.1730)	13/64 (.2031)	No. 1 (.2280)
			Nomi- nal Thread Size		2 (.086) - 56	3 (.099) - 48	4 (.112) - 40	5 (.125) - 40	6 (.138) - 32	8 (.164) - 32	10 (.190) - 24	12 (.216) - 24

Table 9-3. Helical Coil Insert Tapped Hole and Tooling Data - Continued

_				1							
ata			Ex- tract- ing Tool No.	1227 -6	1227	1227 -6	1227	1227	1227 -16	1227	1227
ations D	Break-Off Tool No.		Man- ual	4156 -4	4156 -5	4156 -6	4156 -7	4156 -8			
Install	Brea Too		Au- to- matic	3695	3695	3695	3695	3695			
* Gages and Installations Data			sert- ing Tool No.	7551-4	7551-5	7551-6	7551-7	7551-8	3724-9	3724- 10	3724- 12
ີ່ *			Thread Plug Gages	1688-4	1688-5	1688-6	1688-7	1688-8	1688-9	1688-	1688- 12
	th "L"	Minor Diameter (After Tapping)	Max.	.2704	.3342	.3987	.4639	.5273	.5918	.6564	.7838
	rt Lengt	Minor Diamet (After Tappin	Min.	.2608	.3245	.3885	.4530	.5166	.5806	.6447	.7716
* Class 38 Tapping Data	esul = I	Pitch Diameter	Max.	.2851	.3515	.4189	.4875	.5537	.6208	.6885	.8196
3 Tappir	Threac	Pit Dian	Min.	.2825	.3486	.4156	.4839	.5499	.6167	.6841	.8149
Class 38	Tapped		Tap Major Dia. Max.	.3187	.3884	.4602	.5343	.6042	.6751	.7477	.8850
*	in. Depth Full Tapped Thread = Insert Length "L"		Fin. Bott. Tap No.	4CBB	5CBB	6CBB	7CBB	8CBB	4187-9	10187	10187
	Min. De		Fin. Plug Tap No.	4CPB	5CPB	6CPB	7CPB	8CPB	187-9	8187- 10	8187- 12
	epth		For Bott. Taps	.125	.139	.156	.179	.192	.208	.227	.250
Data	Min. Depth = Insert Length "L" +		For Plug Taps	.275	.306	.344	.393	.423	.458	.500	.550
Drilling Data	sted Size		Steel Mag- nesi- um Plastic	H (.2660)	Q (.3320)	X (.3970)	29/64 (.4531)	17/32 (.5312)	19/32 (.5938)	21/32 (.6562)	25/32 (.7812)
	Suggested Drill Size		Alumi- num	H (.2660)	Q (.3320)	X (.3970)	29/64 (.4531)	33/64 (.5156)	37/64 (.5781)	21/32 (.6562)	25/32 (.7812)
			Nomi- nal Thread Size	1/4 (.250) - 20	5/16 (.3125) -18	3/8 (.3750) -16	7/16 (.4375) -14	1/2 (.5000) -13	9/16 (.5625) -12	5/8 (.6250) -11	3/4 (.7500) -10

Table 9-3. Helical Coil Insert Tapped Hole and Tooling Data - Continued

<u> </u>			1					ĺ		ĺ		
		Ex- tract- ing Tool No.	1227 -16	1227	1227 -24	1227 24	1227 -24	1227 -24		1227 -06	1227	
k-Off No.		Man- ual					* *			4156	4156	
Brea		Au- to- matic					* *			3695 -02	3695	
		sert- ing Tool No.	3724- 14	3724- 16	3724- 18	3724- 20	3724- 22	3724- 24		7552- 03	7552-	
		Thread Plug Gages	1688- 14	1688- 16	1688- 18	1688-	1688-	1688- 24		1694- 03	1694-	
h "L"	or neter ter sing)	Max.	.9119	1.0421	1.1730	1.2980	1.4310	1.5560		.1086	.1229	
t Lengt	Min Diam (Af Tapp	Min.	0668.	1.0271	1.1559	1.2809	1.4110	1.5360		.1029	.1166	
= Inser	ch neter	Max.	.9522	1.0868	1.2239		1.4900	1.6151	o)	9111.	.1271	
Thread	Pit Dian	Min	.9471	1.0812	1.2178		1.4832	1.6082	ied Fine	.1106	.1256	
Tapped		Tap Major Dia. Max.	1.0247	1.1681	1.3171	1.4421	1.5982	1.7232	Unii	.1247	1419	
pth Full		Fin. Bott. Tap No.	10187	10187	10187	10187	10187	10187		03FBB	041FBB	
Min. De		Fin. Plug Tap No.	8187- 14	8187- 16	8187- 18	8187- 20	8187- 22	8187- 24		03FPB	041FPB	
epth = ert h "L"		For Bott. Taps	.278	.313	.357	.357	.417	.417		.045	.052	
Min. Double Ins		For Plug Taps	.611	889.	.786	.786	.917	.917		860.	.115	
sted Size		Steel Mag- nesi- um Plastic	29/32 (.9062)	1-1/32 (1.0312)	1- 11/64 (1.1719)	1- 19/64 (1.2969)	1- 27/64 (1.4219)	1- 35/64 (1.5469)		No. 36 (.1065)	No. 31 (.1200)	
Sugge Drill (Alumi- num	29/32 (.9062)	1-1/32 (1.0312)	1-11/64 (1.1719)	1-19/64 (1.2969)	1-27/64 (1.4219)	1-35/64 (1.5469)		No. 37 (.1040)	No. 31 (.1200)	
		Nomi- nal Thread Size	7/8 (.8750) -9	1 (1.0000) -8	1-1/8 (1.1250) -7	1-1/4 (1.2500) -7	1-3/8 (1.3750) -6	1-1/2 (1.5000) -6		3 (.099) - 56	4 (.112) - 48	
	Min. Depth = Insert Break-Off Depth Full Tapped Thread = Insert Length "L" Tool No.	Min. Depth = Insert Length "L" + Min. Depth Full Tapped Thread = Insert Length "L" Minor Diameter Pitch (After Diameter Diameter Diameter Diameter	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Minor Diameter Minor Diameter Tapping) In- Fin. Fin. Fin. Fin. Fin. Tap Max. Min. Min. </th <th>Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Break-Off Tool No. Steel Fin. Fin. Tap Tap Tap Tap Tap Tap Aurical matrical matri</th> <th>Suggested</th> <th>Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Diameter (Affer Diameter Tapping) Insert Choice (Affer Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Tapping) Thread ing Sert Tapping) Thread ing Sert Tapping) Thread In</th> <th>Suggested Drill Size Hin. Depth Full Tapped Thread = Insert Length "L". Insert Length "</th> <th>Suggested Insert Length "L" bring histor Langth "L" L" L" L" L" L" L" L"</th> <th>Suggested Drill Size Min. Depth = Langth "L". Import Langth "L". Imp</th> <th>Suggested Insert <th cols<="" th=""><th> Suggested Lingth "L" Min. Depth = Fin. Fi</th></th></th>	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Break-Off Tool No. Steel Fin. Fin. Tap Tap Tap Tap Tap Tap Aurical matrical matri	Suggested	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Diameter (Affer Diameter Tapping) Insert Choice (Affer Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Man. Diameter Tapping) Thread ing Sert Tapping) Thread ing Sert Tapping) Thread ing Sert Tapping) Thread In	Suggested Drill Size Hin. Depth Full Tapped Thread = Insert Length "L". Insert Length "	Suggested Insert Length "L" bring histor Langth "L" L" L" L" L" L" L" L"	Suggested Drill Size Min. Depth = Langth "L". Import Langth "L". Imp	Suggested Insert Insert <th cols<="" th=""><th> Suggested Lingth "L" Min. Depth = Fin. Fi</th></th>	<th> Suggested Lingth "L" Min. Depth = Fin. Fi</th>	Suggested Lingth "L" Min. Depth = Fin. Fi

Table 9-3. Helical Coil Insert Tapped Hole and Tooling Data - Continued

		Ex- tract- ing Tool No.	1227 -06	1227 -06	1227 -6	1227 -6	1227 -6	1227 -6	1227 -16	1227 -16
k-Off I No.		Man- ual	4156 -06	4156	4156	4156 -4	4156	4156 -6	4156	4156
Brea Too		Au- to- matic	3695 -06	3695 -2	3695	3695	3692-	3692- 6	3692-	3692-
		sert- ing Tool No.	7552- 06	7552-2	75523	7552-4	7552-5	7552-6	7552-7	7552-8
		Thread Plug Gages	1694- 06	1694-2	1694-3	1694-4	1694-5	1694-6	1694-7	1694-8
th "L"	nor neter fter ping)	Мах.	.1503	.1771	.2041	.2646	.3288	.3910	.4561	.5186
rt Leng	Min Diar (A Tap	Min.	.1435	.1701	.1968	.2577	.3215	.3840	.4483	.5108
esu = p	tch neter	Max.	.1560	.1840	.2123	.2754	.3421	.4047	.4731	.5357
d Thread	Pi ⁻ Diar	Min.	.1543	.1821	.2103	.2732	.3395	.4020	.4700	.5325
Таррес		Tap Major Dia. Max.	.1733	.2032	.2337	.2995	.3700	.4325	.5062	.5687
pth Full		Fin. Bott. Tap No.	06FBB	2FBB	3FBB	4FBB	5FBB	6FBB	7FBB	8FBB
Min. De		Fin. Plug Tap No.	06FPB	2FPB	ЗҒРВ	4FPB	SFPB	6FPB	7FPB	8FPB
epth = ert h "L"		For Bott. Taps	.063	690.	.078	680.	.104	.104	.125	.125
Min. D Ins Lengt		For Plug Taps	.138	.153	.172	.196	.229	.229	.275	.275
sted Size		Steel Mag- nesi- um Plastic	No. 25 (.1495)	No. 16 (.1770)	13/64 (.2031)	17/64 (.2660)	21/64 (.3281)	25/64 (.3906)	29/64 (.4 531)	33/64 (.5156)
Sugge Drill 9		Alumi- num	No. 26 (.1470)	No. 17 (.1730)	No. 7 (.2010)	G (.2610)	21/64 (.3281)	25/64 (.3906)	29/64 (.4531)	33/64 (.5156)
		Nomi- nal Thread Size	6 (.138) - 40	8 (.164) - 36	10 (.190) - 32	1/4 (.2500) -28	5/16 (.3125 -24	3/8 (3750) - 24	7/16 (.4375) -20	1/2 (.5000) -20
	Min. Depth = Insert Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Tool No.	Min. Depth = Insert Length "L" + Min. Depth Full Tapped Thread = Insert Length "L" - Min. Depth Full Tapped Thread = Insert Length "L" - Diameter - Pitch - Diameter - Diameter - Diameter - Diameter - Diameter - Diameter	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Break-Off Tool No. Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Minor Diameter Tool No. Steel Steel Fin. Fin. Tap <	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Prich (After Tapping) In- Tapping) In- Steel Tapping) In- Steel Thread ing Rott. Tap Dia. Min. Max. Min. Max. Min. Max. Gages No. matic unalto ing Rott. Taps No. No. Max. Min. Max. Gages No. matic unalto ing Rott. Taps No. No. Max. Min. Max. Gages No. matic unalto ing Rott. Max. Min. Max. Gages No. matic unalto ing Rott. Max. Min. Max. Gages No. matic unalto ing Rott. Max. Min. Max. Gages No. matic unalto ing Rott. Max. Min. Max. Gages No. matic unalto ing Rott. Max. Min. Max. Gages No. matic unalto ing Rott. Max. Min. Max. Min. Max. Min. Max. Gages No. matic unalto ing Rott. Min. Max. Min. Min. Max. Min. Min. Max. Min. Min. Max. Min. Min. Min. Min. Min. Min. Min. Min	No. 17 No. 16 No. 18 No. 16 No. 18 N	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Minor Diameter Tapping) Insert Tapping Minor Max. Minor	Suggested Length "L" Min. Depth = Longth "L" Min. Depth Full Tapped Thread = Insert Length "L" Le	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Tool No. Listed Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Tool No. Listed Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Tapping) Insert Length "L" Tapping Tool No. Listed L" Tapping Tool No. Listed Tapped Thread Tapping Tool No. Listed Tapped Tapped Thread Tapping Tool No. Listed Tapped Tapped Thread L" Tapping Tapped Tool No. Listed Tapped Tapped Tapped Thread L" Tapping Tapped Tool No. Listed Tapped Tapped Tapped Tapped Tool No. Listed Tapped Tapped Tapped Tapped Tapped Tool No. Listed Tapped Tapped Tapped Tool No. Listed Tapped Tool No. Listed Tapped Tool No. Listed Tapped Tapped Tool No. Listed T	Suggested Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Min. Depth Full Tapped Thread = Insert Length "L" Minor Diameter Tapping) In-	Suggested Length "L" Depth Full Tapped Thread = Insert Length "L" Diameter Tapping) Line Length "L" Diameter Tapping) Line Length "L" Diameter Tapping) Line Length "L" Diameter Tapping) Line Length "L"
Table 9-3. Helical Coil Insert Tapped Hole and Tooling Data - Continued

\neg											
Data			Ex- tract- ing Tool No.	1227	1227	1227	1227	1227	1227	1227 -24	1227
ations [Break-Off Tool No.		Man- ual								
Install	Brea Too		Au- to- matic								
Gages and Installations			sert- ing Tool No.	535-9	535-10	535-12	535-14	535-16	535- 161	535-18	535-20
ڻ *			Thread Plug Gages	1694-9	1694- 10	1694- 12	1694- 14	1694- 16	1694- 161	1694- 18	1694- 20
	.h "L"	Minor Diameter (After Tapping)	Max.	.5826	.6451	.7720	.8994	1.0243	1.0281	1.1531	1.2781
	t Lengt	Minor Diamet (After Tapping	Min.	.5745	.6370	.7635	3068.	1.0155	1.0181	1.1431	1.2681
ig Data	= Inser	Pitch Diameter	Max.	.6020	.6646	.7945	.9257	1.0508	1.0589	1.1841	1.3092
Tappin	Thread	Pitch Diamet	Min.	9865.	.6611	.7906	.9214	1.0464	1.0542	1.1792	1.3042
Class 38 Tapping	Tapped		Tap Major Dia. Max.	.6384	.7009	.8352	.9718	1.0968	1.1126	1.2376	1.3626
*	Depth Full Tapped Thread = Insert Length "L"		Fin. Bott. Tap No.	43193- 9	10193	10193	10193	10193	10193	10193	10193
	Min. De		Fin. Plug Tap No.	38193- 9	8193 - 10	8193 - 12	8193 - 14	8193 - 16	8193 - 161	8193 - 18	8193 - 20
	epth		For Bott. Taps	.139	.139	.156	.179	.179	.208	.208	.208
Data	Min. Depth = Insert Length "L" +		For Plug Taps	.306	.306	.344	.393	.393	.458	.458	.458
Drilling Data	sted Size		Steel Mag- nesi- um Plastic	37/64 (.5781)	41/64 (.6406)	49/64 (.7656)	57/64 (.8906)	1-1/32 (1.0312)	1-1/32 (1.0312)	1-5/32 (1.1562)	1-9/32 (1.2812)
	Suggested Drill Size		Alumi- num	37/64 (.5781)	41/64 (.6406)	49/64 (.7656)	57/64 (.8906)	1-1/64 (1.0156)	1-1/64 (1.0156)	1 9/64 (1.1406)	1-17/64 (1.2656)
			Nomi- nal Thread Size	9/16 (.5625) -18	5/8 (.6250) -18	3/4 (.7500) -16	7/8 (.8750) -14	1 (1.0000) -14	1 (1.0000) -12	1-1/8 (1.1250) -12	1-1/4 (1.2500) -12

Table 9-3. Helical Coil Insert Tapped Hole and Tooling Data - Continued

	ľ							
ata			Ex- tract-	Tool	1227	-24	1227	-24
ations D	Break-Off Tool No.			Man-			* *	
Installa	Brea Tool			Au- to-	וומווכ		* *	
* Gages and Installations Data			In- sert-	Tool	535-22		535-24	
* G			i i	Thread Plug	1694-	22	1694-	24
	th "L"	Minor Diameter (After Tapping)		λCM	1.4031		1.5281	
	rt Leng	Mir Dian (A) Tapi		Zi.			1.6126 1.5542 1.5595 1.5181 1.5281	
ng Data	d = Inse	Pitch Diameter		M			1.5595	
3 Tappir	l Threac	Pit Dian		2			1.5542	
* Class 38 Tapping Data	Tapped		Тар	Major Dia.	1.4876		1.6126	
*	in. Depth Full Tapped Thread = Insert Length "L"		Fii.	Bott. Tap	0193 -	22	0193 -	24
	Min. De		Hi.	Plug Tap	8193 -	22	8193 -	24
	Min. Depth = Insert Length "L" +		1	For Bott.	ا عام .208		.208	
Data	Min. Dept Insert Length "		ļ		.458		.458	
Drilling Data	ssted		Steel Mag-	um Um	1-	13/32 (1.4062)	/	(1.5312)
	Suggested Drill Size			Alumi-	1-25/64		1-33/64	(1.5156)
			Nomi-	nal Thread	1-3/8		1-1/2	(1.5000)

* Part Numbers per CAGE 01556.

**For Sizes over 1/2" use long-nosed pliers. Bend tang up and down to snap off at notch.

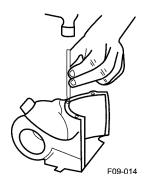


Figure 9-14. Tang Break-Off

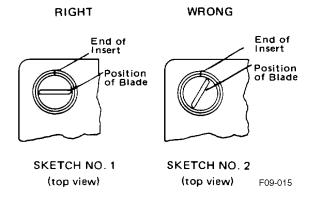


Figure 9-15. Positioning Extractor Blade

9.8.1 Oversize Inserts. Oversize Inserts, both free-running and Screw-Locking, are made of slightly larger wire and are identified by yellow marking on the tang and first coil. They are used to repair oversize insert assemblies

where an error has occurred in tapping for installation of inserts. Out-of-round tapped holes, tapered, and bell-mouth conditions may also be corrected by installing Oversize Inserts. Oversize Insert Repair Packs for each size are shown in Table 9-14. Each pack contains a special oversize bottoming tap and a quantity of 1 1/2 and 2 diameter length Standard and Screw-Locking Inserts. See Table 9-5 for individual items.

9.8.2 Twinserts. Twinserts consist of two inserts: an outer insert, always free-running; and an inner insert, which may be either free-running or Screw-Locking, depending on the application. Twinserts are recommended for restoring screw thread insert tapped holes that are stripped, offcenter, or damaged. In addition, they should be used when the oversize condition is beyond the corrective range of the Oversize Insert. Twinsert assemblies will restore the thread within a Class 2B fit. Follow Twinsert installation procedure in Table 9-6. Twinsert taps and tools are listed in Table 9-7.

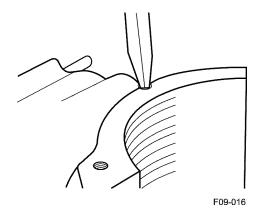


Figure 9-16. Extracting Insert

Table 9-4. Oversize Insert Installation

Number	Operation Description
10	Determine first whether Standard or Screw-Locking Insert is involved.
20	If necessary remove insert from assembly and clean out hole.
30	Retap with Oversize tap.
40	Install selected Oversize Insert with correct inserting tool for desired thread size, and break off tang.
50	Check assembly with appropriate standard thread gage. If hole is still oversize, remove insert and repair with a Twinsert assembly, following procedure in Table 9-6.

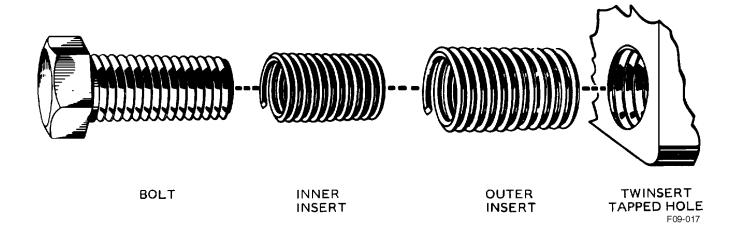


Figure 9-17. Helical Coil Screw Thread or Screw-Locking Twinset Assembly

Table 9-5. Oversize Screw Thread and Screw-Locking Inserts and Taps***

			Insert Nor	n. Length*		
Nominal Thread Size	Screw Thread Insert Part Number*	Screw-Lock Insert Part Number*	1 1/2 Dia.	2 Dia.	Oversize Bottom Tap Part Number	Approximate Oversize Correction**
			Unified Coar	rse	•	
4-40	8185-04CN	3885-04CN	.168	.224	56187-04-2	.0034
5-40	8185-05CN	3885-05CN	.188	.250	56187-05-2	.0034
6-32	8185-06CN	3885-06CN	.207	.276	56187-06-2	.0040
8-32	8185-2CN	3885-2CN	.246	.328	56187-2-2	.0040
10-24	8185-3CN	3885-3CN	.285	.380	56187-3-2	.0050
12-24	8185-1CN		.324	.432	56187-1-2	.0050
1/4-20	8185-4CN	3885-4CN	.375	.500	56187-4-2	.0060
5/16-18	8185-5CN	3885-5CN	.469	.625	56187-5-2	.0060
3/8-16	8185-6CN	3885-6CN	.562	.750	56187-6-2	.0066
7/16-14	8185-7CN	3885-7CN	.656	.875	56187-7-2	.0074
1/2-13	8185-8CN	3885-8CN	.750	1.000	56187-8-2	.0056
			Unified Fin	е		
6-40	8191-06CN	3891-06CN	.207	.276	56193-06-2	.0034
10-32	8191-3CN	3891-3CN	.285	.380	56193-3-2	.0040
1/4-28	8191-4CN	3891-4CN	.375	.500	56193-4-2	.0042
5/16-24	8191-5CN	3891-5CN	.469	.625	56193-5-2	.0050
3/8-24	8191-6CN	3891-6CN	.562	.750	56193-6-2	.0050
7/16-20	8191-7CN	3891-7CN	.656	.875	56193-7-2	.0060
1/2-20	8191-8CN	3891-8CN	.750	1.000	56193-8-2	.0060

^{*}Add length to complete part number (e.g., B185-4CN 0500).

^{**}Effective correction to oversize pitch diameter.

^{***}Part numbers per CAGE 01556.

Table 9-6. Twinsert Installation

Number	Operation Description	Reference
10	Drill minor diameter within minimum and maximum specifications. Drill to same depth as for original insert.	Table 9-8
20	Tap thread for Twinsert. Full tapped thread length should be the same as for original insert.	Table 9-8 and Table 9-9
30	Remove chips.	
40	Install outside Twinsert 1/4 to 1/2 pitch below surface with Twinsert inserting tool.	Paragraph 9.5.1
50	Break off outside Twinsert driving tang with tang break-off tool.	Paragraph 9.6
60	Install selected Standard or Screw-Locking Insert. Position end of insert flush with end of outside Twinsert, using the same installation tool that was used for the original Helical Coil Insert.	Paragraph 9.5.1
70	Break off insert driving tang with tang break-off tool.	Paragraph 9.6

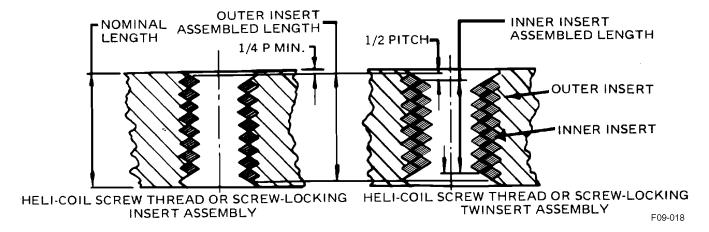


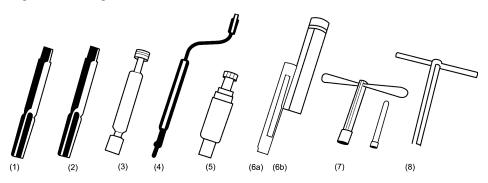
Figure 9-18. Cross-Sectional Views of Helical Coil Insert and Twinsert Assemblies



Figure 9-19. Top View of Outer and Inner Inserts (ends must be adjacent as shown)

Table 9-7. Twinsert Tool Numbers *

Nominal Size	Tap Part No.	Inserting Tool Part No.	Tang Break-Off Tool No.
Hommar Gize	•	nified Coarse	140.
2-56	3887-02	2698-02	4032-02
3-48	3887-031	2698-031	4032-04
4-40	3887-04	2698-04	4032-04
5-40	3887-05	2698-05	4032-05
6-32	3887-06	2698-06	4032-06
8-32	3887-2	2698-2	4032-2
10-24	3887-3	2698-3	4032-3
12-24	3887-1	2698-1	4032-1
1/4-20	3987-4	2698-4	4032-4
5/16-18	3987-5	2698-5	4032-5
3/8-16	3987-6	2698-6	4032-6
7/16-14	4087-7	2698-7	4032-7
1/2-13	4087-8	2698-8	4032-8
9/16-12	4087-9	2698-9	
5/8-11	4087-10	2698-10	
3/4-10	4087-12	2698-12	
	ι	Inified Fine	
4-48	3893-041	2705-041	4032-04
6-40	3893-06	2705-06	4032-06
8-36	3893-2	2705-3	4032-04
10-32	3893-3	2705-3	4032-3
1/4-28	3893-4	2705-4	4032-4
5/16-24	3893-5	2705-5	4032-5
3/8-24	3993-6	2705-6	4032-6
7/16-20	3993-7	2705-7	4032-7
1/2-20	3993-8	2705-8	4032-8
9/16-18	3993-9	2705-9	
5/8-18	3993-10	2705-10	
3/4-16	3993-12	2705-12	
Part numbers per CAGE	01556.		


Table 9-8. Twinsert Tapped Hole Dimensions

			Coarse Series	Class 2B			
		ia. After ping	Suggested		Tap Major Dia.	Pitch	n Dia.
Nominal Thread Size	Min.	Max.	Alum.	Steel	Max.	Min.	Max.
2-56	.1131	.1184	32 (.1160)	32 (.1160)	.1349	.1208	.1220
3-48	.1306	.1362	30 (.1285)	29 (.1360)	.1559	.1396	.1410
4-40	.1500	.1568	24 (.1520)	23 (.1540)	.1798	.1608	.1625
5-40	.1630	.1692	19 (.1660)	18 (.1695)	.1928	.1738	.1755
6-32	.1854	.1927	12 (.1890)	11 (.1910)	.2223	.1989	.2008
8-32	.2114	.2181	3 (.2130)	7/32 (.2138)	.2483	.2249	.2269
10-24	.2531	.2611	"F" (.2570)	"G" (.2610)	.3016	.2711	.2734
12-24	.2791	.2871	9/32 (.2812)	9/32 (.2812)	.3276	.2971	.2995
1/4-20	.3258	.3346	21/64 (.3281)	"Q" (.3320)	.3836	.3474	.3502
5/16-18	.3966	.4057	"X" (.3970)	"Y" (.4040)	.4605	.4207	.4240
3/8-16	.4697	.4789	15/32 (.4688)	15/32 (.4688)	.5414	.4968	.5005
7/16-14	.5458	.5558	35/64 (.5469)	9/16 (.5625)	.6271	.5767	.5808
1/2-13	.6165	.6265	5/8 (.6250)	5/8 (.6250)	.7041	.6498	.6543
9/16-12	.6888	.6997	11/16 (.6875)	45/64 (.7031)	.7833	.7249	.7297
5/8-11	.7628	.7728	49/64 (.7656)	49/64 (.7656)	.8658	.8022	.8074
3/4-10	.9015	.9135	29/32 (.9062)	29/32 (.9062)	1.0149	.9448	.9505
	,		Fine Series (Class 2B			
					Тар		
		ia. After	0	Duill Cine	Major	Disale	D:-
Non-land	тар	ping	Suggested	Drill Size	Dia.	Pitch	Dia.
Nominal Thread	B.A.i.	Max	A I	Ctool	Max	B.A.:	May
Size	Min.	Max.	Alum.	Steel	Max.	Min.	Max.
3-56	.1266	.1319	30 (.1285)	30 (.1285)	.1479	.1338	.1350
4-48	.1436	.1492	26 (.1470)	26 (.1470)	.1689	.1526	.1541
6-40	.1760	.1822	15 (.1800)	14 (.1820)	.2058	.1868	.1886
10-32	.2374	.2441	"C" (.2420)	"D" (.2460)	.2743	.2509	.2530
1/4-28	.3041	.3110	5/16 (.3125)	5/16 (.3125)	.3459	.3196	.3219
5/16-24	.3756	.3826	"V" (.3770)	"V" (.3770)	.4241	.3936	.3964
3/8-24	.4381	.4451	7/16 (.4375)	7/16 (.4375)	.4866	.4561	.4590
7/16-20	.5132	.5210	33/64 (.5156)	33/64 (.5156)	.5711	.5349	.5383
1/2-20	.5758	.5836	37/64 (.5781)	37/64 (.5781)	.6336	.5974	.6010
9/16-18	.6466	.6547	41/64 (.6406)	21/32 (.6562)	.7105	.6707	.6746
5/8-18	.7092	.7173	45/64 (.7031)	23/32 (.7188)	.7730	.7332	.7372
3/4-16	.8447	.8532	27/32 (.8438)	55/64 (.8594)	.9164	.8718	.8763

9.9 SPARK PLUG THREAD SIZES.

- 9.9.1 <u>Instructions</u>. Following are instructions for repair of stripped 14 and 18mm spark plug threads using Helical Coil Spark Plug Inserts. Helical Coil 18-1.5mm inserts comply with MS9018 and MS9071:
 - a. Drill out the tapped 14 or 18mm damaged threads using drill size suggested in Table 9-10, keeping within the drilled hole limits shown in the table. If necessary, change drill to another size to meet limits. If Helical Coil Spark Plug Inserts were used originally and are to be replaced by new ones, remove the old ones by lifting the top coil, which is staked, from the cylinder head with a tool such as a scriber or a sharp-bladed screwdriver. Then use the extracting tool listed in Table 9-10, following instructions in paragraph 9.8. After removing the insert, use a Helical Coil Finishing Tap in the threaded hole to remove any burrs. If conditions warrant, use the oversize tap and install Oversize Inserts.
 - b. Tap with the 14 or 18 mm finishing tap (roughing tap optional).
 - Remove any chips. Blow them out and clean the threads thoroughly.
 - d. Gage tapped threads with appropriate gage.
 - e. Install the correct insert with inserting tool listed in Table 9-10, using the method described in paragraph 9.5.1 on installing inserts; however, the serrated end of the coil should be 1 to 1 1/4 pitch below the top surface of the hole for satisfactory staking of the serrated coil. If the insert has been driven deeper than this, drive it all the way through the hole and start it again. No portion of the insert should extend into the combustion chamber.
 - f. Remove the tang. Use a pair of long-nose pliers: Grasp tang near the notch, and, with an up-and-down bending motion, being careful not to remove

- the last coil of the insert from the tapped thread, break off the tang and discard it.
- g. Expand the insert with the correct expanding tool selected from Table 9-10 and screw it into the installed insert as far as it will go. Set the adjustment nut to permit adequate expanding action. Tap the head of the plunger with a small hammer until the insert is firmly seated in the tapped threads of the spark plug hole. Draw out the plunger by turning down the adjustment nut, then back out the body of the expanding tool.
- h. Gage the assembly with a conventional 14 or 18 mm gage. If the pitch diameter is too small, use the expander again, resetting the adjustment nut for additional expansion if necessary. When, gaging, if the pitch diameter of the assembled insert is found to be too large, the insert may be replaced by an oversize increment insert.
- i. Offset and stake the serrated portion of the insert. The offset and staking tool (Table 9-10) is a combination tool, the offset portion of which is used to embed the teeth of the serrated coil of the insert into the parent material, and the staking part being used to anchor the teeth in that position. Screw the offsetting portion of the tool all the way into the insert until the run-out thread of the tool has engaged the top coil of the insert. Using a wrench, continue to turn the offsetting tool (Figure 9-21) until the scribed index line on the shank has moved clockwise approximately 1/4" past the end of the insert. A rapid increase in torque will be simultaneously evident, which assures that the end of the top coil is sufficiently offset.
- j. Slip the sleeve or staking portion of the offset and staking tool over the offsetting tool still in position as described at the end of step i (Figure 9-22). Tap the sleeve lightly with a hammer, rotating it between taps, to further anchor the serrated section of the insert into the parent material.

(1) Roughing Tap (2) Finishing Tap (3) Plug Gage (4) Inserting Tool (5) Expanding Tool (6a) Offsetting Tool (6b) Staking Sleeve (7) Spot-Facing Tool (8) Extracting Tool

Figure 9-20. Spark Plug Tools and Gages

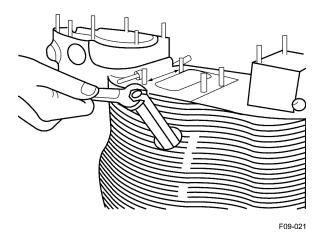


Figure 9-21. Using Offsetter

k. The face of the hole on which the spark plug gasket is to rest should be inspected for misalignment and corrected for rough or high spots, which can be removed with a spot-facing tool (Figure 9-23, Table 9-10) in the following manner: Remove the expanding mandrel from the cutter sleeve of the spot-facing tool with the mandrel in a collapsed position. Install the threaded portion 2 or 3 turns below the top of the insert and tighten the nut at the top of the mandrel, locking it securely into the installed insert. Place the cutter over the mandrel and rotate the cutter until the bearing surface around the threaded hole is square with the installed Spark Plug Insert.

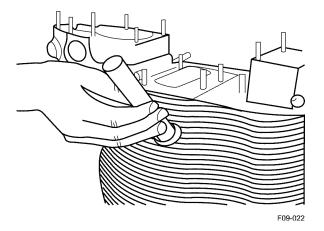


Figure 9-22. Mounting Staking Sleeve

9.10 TAPERED PIPE THREAD SIZES.

9.10.1 <u>Instructions</u>. Damaged or stripped tapered pipe threads are repaired and replaced with the tools and inserts listed in Table 9-11 and the tools are also pictured in Figure 9-24.

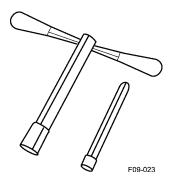


Figure 9-23. Spot-Facer

- a. Determine the original tapered pipe thread size and use the recommended drill (Table 9-11) for opening the hole.
- Ream the drilled hole within indicated limits by using the correct listed tapered reamer.
- c. Use an STI Taper Pipe Thread Tap for the required thread size. Tap the thread to the depth permitted by wire wrapped around the thread of the tap.
- d. Blow out chips. Clean the hole thoroughly, removing all chips and foreign matter.
- e. Gaging tapered pipe threads is different from gaging straight threads and involves three plug gages per thread size, as shown in Table 9-11: a thread gage to check the tapered threads at the larger end of the taper, a thread gage to check the threads at the small end of the taper, and a plain tapered plug gage to check the thread truncation or minor thread diameter. Gaging procedure conforms to conventional taper pipe thread practice.
- f. Gage by using the 330 and 331 thread gages, which have three steps or shoulders ground on the gage. When using the 330 gage to check the taper threads at the larger end of the tapped hole, the gage may be assembled in the tapped thread up to the Basic step or notch, plus or minus one turn. After a reading is obtained with the 330 gage, the 331 gage is screwed into the tapped hole to check the smaller end. The reading of the 331 gage must correspond to the reading obtained on the 330 gage plus or minus one-half turn in order to have an acceptable assembly, provided the 331 gage does not vary from its Basic reading by more than plus or minus one turn.

Table 9-9. Helical Coil Screw Thread and Screw-Locking Twinserts

					5 	Unified Coarse	se					
				Insert Length* (L)	ngth* (L)		Outside	Outside Diameter		Number of Free Coils	Free Coils	
Nomi-												
Thread Size	Inser	Insert Part Number*	1-1/2 Dia.	2 Dia.	2-1/2 Dia.	3 Dia.	Min.	Max.	1-1/2 Dia.	2 Dia.	2-1/2 Dia.	3 Dia.
					-	Outer Insert						
2-56	238	2385-02	.129	.172	.215	.258	.131	.146	5-1/4	7-1/2	8/2-6	11-7/8
3-48	2385-031	-031	.148	.198	.248	.297	.157	.175	4-7/8	7	6	11-1/8
4-40	2385-04	5-04	.168	.224	.280	.336	.173	.193	4-3/4	8/L-9	8-1/8	11
5-40	2385-05	5-05	.188	.250	.312	.375	.186	.206	5-5/8	2-1/8	10-1/8	12-1/2
6-32	2385-06	90-9	.207	.276	.345	.414	.215	.235	4-3/4	6-3/4	8-3/4	10-7/8
8-32	2385-2	5-2	.246	.328	.410	.492	.241	.261	9	8-3/8	10-7/8	13-1/4
10-24	238	2385-3	.285	.380	.475	.570	.294	.314	5	7-1/8	9-1/4	11-3/8
12-24	2385-1	5-1	.324	.432	.540	.648	.321	.341	2-7/8	8-3/8	10-3/4	13-1/8
1/4-20	2385-4	5-4	.375	.500	.625	.750	.374	396	5-5/8	8	10-3/8	12-3/4
5/16-18	238	2385-5	.469	.625	.781	.938	.454	.474	8/2-9	9-1/4	11-7/8	14-1/2
3/8-16	238	2385-6	.562	.750	.938	1.125	.536	.556	7-1/8	10	12-3/4	15-5/8
7/16-14	238	2385-7	959.	.875	1.094	1.312	.622	.647	7-1/4	10-1/8	13-1/8	16
1/2-13	238	2385-8	.750	1.000	1.250	1.500	.700	.725	2-1/8	10-7/8	14	17
9/16-12	238	2385-9	.844	1.125	1.406	1.688	.780	.790	8-1/4	11-3/8	14-5/8	17-7/8
5/8-11	238:	2385-10	.938	1.250	1.562	1.875	.863	088.	8-3/8	11-5/8	14-7/8	18-1/8
3/4-10	238:	2385-12	1.125	1.500	1.875	2.250	1.014	1.039	9-1/4	12-7/8	16-1/2	20
					Ur	Unified Coarse	se					
		•				Inner Insert						
	Screw Thread*	Screw- Locking*										
2-56	4485-02	4685-02	.111	.154	.197	.240	.110	911.	4-1/4	6-1/2	8-3/4	10-7/8
3-48	4485-031	4685-031	.127	.177	.227	.276	.128	.139	4-1/8	6-1/4	8-1/2	10-5/8
4-40	4485-04	4685-04	.143	.199	.255	.311	.144	.159	3-7/8	5-7/8	2-1/8	10
5-40	4485-05	4685-05	.163	.225	.288	.350	.158	.173	4-5/8	8/L-9	9-1/8	11-3/8
6-32	4485-06	4685-06	.176	.245	.314	.383	.178	.193	3-3/4	5-3/4	7-3/4	8/L-6
8-32	4485-2	4685-2	.215	.297	.379	.461	.205	.220	5	7-3/8	9-3/4	12-1/8

Table 9-9. Helical Coil Screw Thread and Screw-Locking Twinserts - Continued

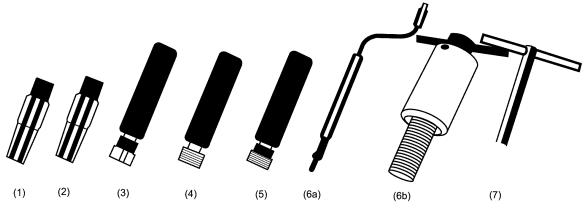
			3 Dia.		10-3/8	12-1/8	11-5/8	13-1/2	14-3/4	15	16	16-7/8	17-1/8	19		12-3/8	13-3/8	15	17-1/2	19	23-1/8	22-3/8	26	26-1/4	29-3/8	31-3/8			11-5/8	12-3/8	14
	Free Coils		2-1/2 Dia.		8-1/4	9-3/4	8/8-6	10-7/8	11-7/8	12-1/8	13	13-5/8	13-7/8	15-1/2		10-1/8	10-7/8	12-1/4	14-3/8	15-5/8	19	18-1/2	21-3/8	21-5/8	24-1/4	25-7/8			8/8-6	8/L-6	11-1/4
	Number of Free Coils		2 Dia.		6-1/8	7-3/8	7	8-1/4	6	9-1/4	8/L-6	10-3/8	10-5/8	11-7/8		7-3/4	8-1/2	9-1/2	11-1/4	12-1/4	15	14-1/2	16-7/8	17	19-1/8	20-1/2			7	7-1/2	8-5/8
	-		1-1/2 Dia.		4	4-7/8	4-5/8	2-5/8	6-1/8	9/8-9	8/L-9	7-1/4	7-3/8	8-3/8		5-1/2	9	6-3/4	8-1/8	8-7/8	10-7/8	10-1/2	12-1/4	12-3/8	14	15			4-3/4	5-1/8	2-7/8
	Jiameter		Мах.		.259	.285	.330	.400	.472	.551	.622	.694	792.	906.		.196	.228	.300	.376	.458	.526	.619	289.	692.	.836	.992			.162	.193	.256
96	Outside Diameter		Min.		.244	.270	.310	.380	.452	.526	.597	699:	.742	.881		.176	.208	.280	.356	.438	.506	.594	.662	.744	.811	296.	-		.147	.173	.236
Unified Coarse			3 Dia.	Inner Insert	.528	909:	.700	.882	1.062	1.241	1.423	1.605	1.784	2.150	Outer Insert	.336	.414	.570	.750	.938	1.125	1.312	1.500	1.688	1.875	2.250	Unified Fine	Inner Insert	.315	.389	.539
'n	ngth* (L)		2-1/2 Dia.		.433	.498	.575	.726	.875	1.022	1.173	1.323	1.471	1.775	0	.280	.345	475	.625	.781	.938	1.094	1.250	1.406	1.562	1.875	n	-	.259	.320	444.
	Insert Length* (L)		2 Dia.		.338	.390	.450	695.	889.	.804	.923	1.042	1.159	1.400		.224	.276	.380	.500	.625	.750	.875	1.000	1.125	1.250	1.500			.203	.251	.349
	•		1-1/2 Dia.		.243	.282	.325	.413	.500	.585	.673	.761	.847	1.025		.168	.207	.285	.375	.469	.562	959.	.750	.844	.938	1.125			.147	.182	.254
	•	ļ	Part oer*		4685-3	4685-1	4685-4	4685-5	4685-6	4685-7	4685-8	4685-9	4685-10	4685-12		.041	90-	[-3	1-4	-5	9-1	1-7	8- <u> </u>	6-1	-10	-12			4691-041	4691-06	4691-3
			Insert Part Number*		4485-3	4485-1	4485-4	4485-5	4485-6	4485-7	4485-8	4485-9	4485-10	4485-12		2391-041	2391-06	2391-3	2391-4	2391-5	2391-6	2391-7	2391-8	2391-9	2391-10	2391-12			4491-041	4491-06	4491-3
		Nomi- nal	Thread Size		10-24	12-24	1/4-20	5/16-18	3/8-16	7/16-14	1/2-13	9/16-12	5/8-11	3/4-10		4-48	6-40	10-32	1/4-28	5/16-24	3/8-24	7/16-20	1/2-20	9/16-18	5/8-18	3/4-16			4-48	6-40	10-32

Table 9-9. Helical Coil Screw Thread and Screw-Locking Twinserts - Continued

					U	Unified Coarse	se					
				Insert Length* (L	ngth* (L)		Outside	Outside Diameter		Number of Free Coils	Free Coils	
Nomi- nal	2	<u>†</u>	7		2-170				97		0,170	
Size	Num	Number*	Dia.	2 Dia.	2-1/2 Dia.	3 Dia.	Min.	Мах.	Dia.	2 Dia.	2-1/2 Dia.	3 Dia.
						Inner Insert	+					
1/4-28	4491-4	4691-4	.339	.464	685.	.714	306.	.326	7-1/8	10-1/4	13-3/8	16-1/2
5/16-24	4491-5	4691-5	.427	.583	.740	968.	.380	.400	7-7/8	11-1/4	14-5/8	18
3/8-24	4491-6	4691-6	.521	.708	968:	1.083	.448	.468	10	14	18-1/8	22-1/8
7/16-20	4491-7	4691-7	909.	.825	1.044	1.262	.524	.549	8/5-6	13-1/2	17-1/2	21-3/8
1/2-20	4491-8	4691-8	.700	.950	1.200	1.450	.592	.617	11-1/4	15-7/8	20-3/8	24-7/8
9/16-18	4491-9	4691-9	788	1.069	1.350	1.632	999:	.691	11-1/2	16-1/8	20-5/8	25-1/4
5/8-18	4491-10	4691-10	.882	1.194	1.506	1.819	.733	.758	13-1/8	18-1/8	23-1/4	28-3/8
3/4-16	4491-12	4691-12	1.063	1.438	1.813	2.188	928.	.901	14-1/8	19-5/8	25-1/8	30-1/2
* Include	the length of	* Include the length of the insert as a suffix to the	a suffix to t	he part numl	ber, e.g., 449	1-4CN 050C), part numbe	part number, e.g., 4491-4CN 0500, part numbers per CAGE 01556.	E 01556.			

Table 9-10. Spark Plug Insert Installation and Tool Data

18- 1.5 Mm +.025 Over- size	Long	683	9018	506.	.925	.723	9-1/2		23/32	.718	.818	.7773	.8244	.772	2-22	2-97
18-1.5 Mm +.020 Over- size	Long	689	9018 -	306.	.925	.728	9-1/2		23/32	.718	.813	.7723	.8194	.772	2-22	2-95
18-1.5 Mm +.015 Over- size	Long	8	9018 -	905	.925	.733	9-1/2		23/32	.718	808.	.7673	.8144	.772	2-22	2-82
5 Mm versize	Short	237	9016 -	885	506:	.718	4-3/8		23/32	.718	.803	7623	6608	.423	2-22	57
18-1.5 Mm +.010 Oversize	Long	cay	9018 -	1 '	6.	7L	9-1/2		23/	L'	 	9 <i>T</i> .	08.	277.	7-7	2-57
18-1.5 Mm +.005 Oversize	Short	788	9018 -	885	905	.723	4-3/8		23/32	.718	798	.7573	8049	.423	2-22	2-56
18-1. 	Long	689	9018 -	1 '	<u>6</u> .	.T.	9-1/2		23,	<i>T.</i>	7.	27.	08.	.772	2-	2-
18-1.5 Mm +.003 Oversize	Short	337	9018 -	885	506	.725	4-3/8		23/32	.718	.796	.7553	8029	.423	2-22	2-55
18-1. -1.003 C	Long	289	9018 -	1 '	6.	L'	9-1/2		23,	L'	<i>L</i> :	27.)8:	<i>211</i> .	2-	2-
18-1.5 Mm	Short	VEE	9018 -	.885	.905	.728	4-3/8		23/32	.718	.793	.7523	7994	.423	2-22	2-21
18-1.	Fong	E89	9018 -	1 -	6.	T.	9-1/2		23,	L'	7.	27.	9Z.	<i>211</i> :	2-3	2
14-1. <u>2</u> 5 Mm	Short	978	* 137	.678	869:	.566	5-1/2		9/16	.562	.613	.5892	6218	.420	137-12	-11
14-1.2	Long	350	* 137	1 -	9.	λ: Λ	8/L-5		/6	ν. γ	9:	35.	79.	.433	137	137-11
Nomi- nal Size	Reach	As- sem- bled	MS Num-	Min.	Max.	Min.	(Ap-	prox.)		Min.	Min.	Min.	Max.	Min.	* Part No.	* Part No.
				Outside Dia.		Inside Dia.	No. Of	Coils	Suggested Drill Size	Drill Hole Dia.	Tapped Thread Major Diameter	Tapped Thread Pitch Diameter	Finishing Tap Major Diameter	Length Full Tapped Thread	Roughing Tap	ng Tap
				Free Insert					Suggest Size	Drill H	Tapped Major I	Tapped Pitch D	Finishing Tap Major Diamet	Length Full Tapped Thr	Roughi	Finishing Tap


Table 9-10. Spark Plug Insert Installation and Tool Data - Continued

Nomi- nal Size 14-1. Reach Long	25 Mm Short Lo	18-1.5 Mm ong Short	18-1.5 Mm +.003 Oversize Long Short	Mm versize Short	18-1.5 Mm +.005 Oversize Long Short	Mm versize Short	18-1.5 Mm +.010 Oversize Long Short	i Mm versize Short	18-1.5 Mm +.015 Over- size Long	18-1.5 Mm +.020 Over- size Long	18- 1.5 Mm +.025 Over- size Long
.359 .346	j j	683 .334	.683	.334	.683	.334	.683	.334	.683	689	.683
* 137		9018 - 9018 - 01 05	9018 -	9018 - 06	9018 - 03	9018 - 07	9018 - 04	9016 - 08	9018 - 09	9018 - 10	9018 -11
137-2		2-1	2-58	8.	2-59	6	2-0	2-60	2-83	96-7	2-98
4889-14	۷	4889-18	4889-18	-18	4889-18	-18	4889-18	-18	1889	6881	1889
436		422	422	2	422	2	422	2	422	422	422
468		520	520	0	520	0	520	0.	520	520	520
		831	831	1	831	1	831	.1	831	831	831
1227-16	,	1227-16	1227-16	-16	1227-16	-16	1227	1227-16	1227 - 16	1227 - 16	1227 -16

** Ratchet type inserting tool also available.

Table 9-11. Taper Pipe Thread Insert Installation and Tool Data

		Nominal Size	1/8-27	1/4-18	3/8-18	1/2-14	3/4-14	1-11-1/2	1-1/4- 11-	1-1/2-
		Basic Insert Lgth. As- sembled	.273	.394	.407	.534	.553	.661	.681	.681
		* Insert Part No.	327-2	327-4	327-6	327-8	327-12	327-16	327-20	327-24
				_	Dimensional Data					
Free Insert	Outside Dia.	Min.	.486	.655	.803	1.005	1.232	1.540	1.912	2.170
		Мах.	.511	089.	.828	1.035	1.262	1.575	1.947	2.205
	Number of Free Coils	±1/4 Turn (Approx.)	5-1/8	5	5-1/4	5-3/8	5-5/8	5-1/2	5-3/4	5-7/8
Suggested Drill Size	Orill Size		U (.3680)	31/64 (.4844)	5/8 (.625)	25/32 (.7812)	63/64 (.9844)	1-1/4 (1.2500)	1-19/32 (1.5937)	1-13/16 (1.8125)
Drilled Hole	Drilled Hole Depth-Minimum	un	19/32	27/32	27/32	1-1/16	1-1/16	1-5/16	1-11/32	1-11/32
				Gage an	Gage and Tool Part Numbers	Jumbers				
Reaming	Taper Reamer	* Part No.	334-2	334-4	334-6	334-8	334-12	334-16	334-20	334-24
Tapping	Tap	* Part No.	328-2	328-4	328-6	328-8	328-12	328-16	328-20	328-24
Gaging	Plain Taper Plug Gage	* Part No.	332-2	332-4	332-6	332-8	332-12	332-16	332-20	332-24
	Thread Plug Gage (Large End)	* Part No.	330-2	330-4	330-6	330-8	330-12	330-16	330-20	330-24
	Thread Plug Gage (Small End)	* Part No.	331-2	331-4	331-6	331-8	331-12	331-16	331-20	331-24
Hand Inserting Tool	ing Tool	* Part No.	3371-2	3371-4	3371-6	3371-8	3371-12	3371-16	3371-20	3371-24
Extracting Tool	Fool	* Part No.	1227-16	1227-16	1227-16	1227-16	1227-24	1227-24	1227-32	1227-32
* Part numb	* Part numbers per CAGE 01556.	01556.								

(1) Reamer (2) Tap (3) Plain Taper Gage (4) La Thread Plug Gage (5) La Thread Plug Gage (6a) Inserting Tool (Prewinder type) (6b) Inserting Tool (Non-captive mandrel type) (7) Extracting Tool

Figure 9-24. Taper Pipe Thread Tools and Gages

- g. Use the plain tapered plug gage for checking the tapered thread minor diameter or thread truncation. There are six steps on this gage marked B and Bt (basic size), MX and MXt (maximum limit), and MN and MNt (minimum limit). When the 330 gage reading is Basic, the plain taper plug gage must read between the basic limits of B and Bt. When the 330 gage reading is basic plus one turn, or the maximum limit, the plain taper plug must read between the maximum limits of MX and MXt. This procedure agrees with standard practice for conventional tapered pipe threads. Tapered pipe threads may be checked by using only the 330 thread plug gage when gaging practice must be reduced to minimum requirements.
- h. Install insert by inserting with correct Inserting Tool listed in Table 9-11, using the method described in paragraph 9.5.1 on installing inserts for the specific type of tool for the size being repaired. Locate the top coil of the insert 1/4 to 1/2 turn below the top surface of the work.
- i. To remove tang, use a pair of long-nose pliers. Grasp tang near the notch and with an up-and-down bending motion, being careful not to remove the last coil of the insert from the tapped thread, break off the tang.

9.11 THREAD REPAIR PACKS.

9.11.1 Available Packs and Kits.

a. Field Service Thread Repair Kits are available meeting MIL-T-21309 specifications in Unified Coarse and Unified Fine thread series, spark plug, oversize, Twinsert, taper pipe thread, and Stud-Lock.

- b. This equipment is useful for each weapon system and each group of support equipment that must be disassembled and reassembled in the field for either periodic reliability check or for training personnel assigned to their operation, maintenance, and repair. Instructions are included with each Pack and Kit.
- c. Tools and inserts are packaged in standard module metal boxes as listed in Table 9-12. Several of these module boxes for each size may be stored in the compartmentalized Portable Tool Box: 22 in. long x 8 in. wide x 9 in. deep, with two racks, eight flat dividers, and six "T" dividers as shown in Figure 9-25 (FSN 5140-935-0718).
- d. Both Unified Coarse and Unified Fine Packs, for all sizes, are listed in Table 9-13, with authorized contents shown.

9.11.2 Oversize Insert Packs. Oversize Insert Repair Packs for each size are shown in Table 9-14. Each pack contains special oversize bottoming tap(s) (sizes 1/4" and under have two taps) and a quantity of 1 1/2 and 2 diameter length Standard (free-running), and Screw-Locking.

9.11.3 Twinsert Packs.

a. Twinsert Repair Packs are listed in Table 9-15. A Twinsert assembly consists of two inserts: an outer insert which is always a free-running type, and an inner insert which may be either free-running or screw-locking. Twinserts are installed in an oversize tapped hole produced with a special Twinsert tap.

Table 9-12. Metal Module Boxes

Box Size No.	FSN	Description
1	5140-935-4519	Tool Box Module:
		8-5/8" long x 7-3/8" wide x 2-15/16" deep
2	5140-935-4518	Tool Box Module:
		8-5/8" long x 7-3/8" wide x 1-15/16" deep
3	5140-935-0719	Tool Box Module:
		8-5/8" long x 7-3/8" wide x 1-7/16" deep
4	5140-935-0720	Tool Box Module:
		8-5/8" long x 3-5/8" wide x 15/16" deep

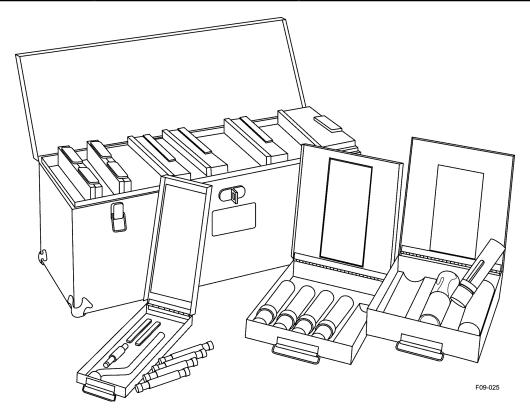


Figure 9-25. Picture from CAGE 01556

Table 9-13. Thread Repair Packs

				Insert Length (L)	ength				
Thread	National Stock No.	* Pack Part	Insert Qty. Each Styles	1 1/2 Dia	c ei ei	* Tap Part	* Insert Tool Part No	* Tang Break-Off Tool Part	* Ex- tracting Tool Part
				Unified	_				
2 (.086)-56		4131-02-1	15	.129	.172	02CPA	551-02	4156-02	1227-02
3 (.099)-48		4131-031-1	15	.148	.198	031CPA	551-031	4156-03	1227-06
4 (.112)-40	054-7506	4131-04-1	15	.168	.224	04CPB	7551-04	4156-04	1227-06
5 (.125)-40	054-7524	4131-05-1	15	.188	.250	05CPB	7551-05	4156-05	1227-06
6 (.138)-32	054-7507	4131-06-1	10	.207	.276	06CPB	7551-06	4156-06	1227-06
8 (.164)-32	935-0730	4131-2-1	10	.246	.328	2CPB	7551-2	4156-2	1227-06
10 (.190)-24	935-0731	4131-3-1	10	.285	.380	3CPB	7551-3	4156-3	1227-6
12 (.216)-24	054-7526	4131-1-1	10	.324	.432	1CPB	7551-1	4156-1	1227-6
1/4 (.2500)- 20	935-0732	4131-4-1	10	.375	.500	4CPB	7551-4	4156-4	1227-6
5/16 (.3125)- 18	935-0733	4131-5-1	∞	.469	.625	SCPB	7551-5	4156-5	1227-6
3/8 (.3750)- 16	935-0734	4131-6-1	∞	.562	.750	6CPB	7551-6	4156-6	1227-6
7/16 (.4375)- 14	054-7503	4131-7-1	9	959.	.875	7CPB	7551-7	4156-7	1227-16
1/2 (.5000)-	051-5024	4131-8-1	9	.750	1.000	8CPB	7551-8	4156-8	1227-16
9/16 (.5625)- 12	059-4829	4131-9-1	5	.844	1.125	187-9	3724-9	FOR SIZES	1227-16
5/8 (.6250)-	054-7514	4131-10-1	5	.938	1.250	8187-10	3724-10	9/16 &	1227-16
3/4 (.7500)- 10	051-5025	4131-12-1	4	1.125	1.500	8187-12	3724-12	OVER USE	1227-16
9-(05/8) 8//	054-7515	4131-14-1	4	1.312	1.750	8187-14	3724-14	LONG-NOSE	1227-16
1 (1.0000)-8	051-5026	4131-16-1	4	1.500	2.000	8187-16	3724-16	PLIERS	1227-16
1 1/8 (1.1250)-7	054-7527	4131-18-1	3	1.688	2.250	8187-18	3724-18		1227-24

Table 9-13. Thread Repair Packs - Continued

				Insert Length (L)	ength .				
Thread Size	National Stock No. 5180-00-	* Pack Part No.	Insert Qty. Each Styles Length	1 1/2 Dia.	2 Dia.	* Tap Part No.	* Insert Tool Part No.	* Tang Break-Off Tool Part No.	* Ex- tracting Tool Part No.
1 1/4 (1.2500)-7	054-7528	4131-20-1	3	1.875	2.500	8187-20	3724-20		1227-24
1 3/8 (1.3750)-6	051-5027	4131-22-1	3	2.062	2.750	8187-22	3724-22		1227-24
1 1/2 (1.5000)-6	051-5030	4131-24-1	3	2.250	3.000	8187-24	3724-24		1227-24
				Unifie	Unified Fine				
4 (.112)-48		4132-041-1	15	.168	.224	041FPA	7552-041	4156-04	1227-06
6 (.138)-40	054-7525	4132-06-1	10	.207	.276	06FPB	7552-06	4156-06	1227-06
8 (.164)-36		4132-2-1	10	.246	.328	2FPB	7552-2	4156-2	1227-06
10 (.190)-32	935-0735	4132-3-1	10	.285	.380	3FPB	7552-3	4156-3	1227-6
1/4 (.2500)- 28	935-0736	4132-4-1	10	.375	.500	4FPB	7552-4	4156-4	1227-6
5/16 (.3125)- 24	935-0737	4132-5-1	8	.469	.625	5FPB	7552-5	4156-5	1227-6
3/8 (.3750)- 24	822-05	4132-6-1	8	.562	.750	6FPB	7552-6	4156-6	1227-6
7/16 (.4375)- 20	6820-586	4132-7-1	9	959.	.875	7FPB	7552-7	4156-7	1227-16
1/2 (.5000)- 20	054-7505	4132-8-1	9	.750	1.000	8FPB	7552-8	4156-8	1227-16
9/16 (.5625)- 18	054-7516	4132-9-1	5	.844	1.125	38193-9	535-9	FOR SIZES	1227-16
5/8 (.6250)- 18	054-7512	4132-10-1	5	.938	1.250	8193-10	535-10	9/16 &	1227-16
3/4 (.7500)- 16	054-7513	4132-12-1	4	1.125	1.500	8193-12	535-12	OVER USE	1227-16
7/8 (.8750)- 14	054-7519	4132-14-1	4	1.312	1.750	8193-14	535-14	LONG-NOSE	1227-16

Table 9-13. Thread Repair Packs - Continued

	* Ex- tracting Tool Part No.	1227-16	1227-16	1227-24	1227-24	1227-24	1227-24	
	* Tang Break-Off Tool Part No.	PLIERS						-Locking Inserts.
	* Insert Tool Part No.	535-16	535-161	535-18	535-20	535-22	535-24	NOTES: 1. Packs 1/4" and smaller have two taps. 2. Packs 1/2" through 1" contain only 1 1/2 diameter standard and Screw-Locking Inserts. 3. Packs over 1" contain only 1 1/2 diameter Standard Inserts.
	* Tap Part No.	8193-16	8193-161	8193-18	8193-20	8193-22	8193-24	NOTES: 1. Packs 1/4" and smaller have two taps. 2. Packs 1/2" through 1" contain only 1 1/2 diameter standard 3. Packs over 1" contain only 1 1/2 diameter Standard Inserts.
ength.	2 Dia.	2.000	2.000	2.250	2.500	2.750	3.000	ave two ta
Insert Length (L)	1 1/2 Dia.	1.500	1.500	1.688	1.875	2.062	2.250	d smaller h ough 1" cc contain or
	Insert Qty. Each Styles Length	4	4	3	8	3	3	NOTES: 1. Packs 1/4" and smaller have two taps. 2. Packs 1/2" through 1" contain only 1 3. Packs over 1" contain only 1 1/2 dian
	* Pack Part No.	4132-16-1	4132-161-1	4132-18-1	4132-20-1	4132-22-1	4132-24-1	
	National Stock No. 5180-00-	054-7521	054-7520	054-7522	054-7523	051-5028	054-7529	*Part numbers per CAGE 01556.
	Thread Size	1 (1.0000)- 14	1 (1.0000)-	1 1/8 (1.1250)-12	1 1/4 (1.2500)-12	1 3/8 (1.3750)-12	1 1/2 (1.5000)-12	*Part numbers J

b. Twinsert Packs contain a quantity of 1 1/2 diameter length insert sets, an inserting tool for the outer insert, a tang break-off tool for the outer insert, and special Twinsert tap(s). Tools to install the inner inserts are available in regular UNC and UNF Packs. Two diameter length Twinsert sets may be ordered separately.

9.11.4 <u>Taper Pipe Thread Packs</u>. Two types of Helical Coil Pipe Thread Repair Packs are available. Pack A is recommended for use in repairing ANPT and NPT pipe thread assemblies in which wire thread inserts were not previously installed. This Pack contains a taper reamer, a screw thread insert taper tap (wired), a plain taper plug gage, an L_1 thread plug gage, an L_3 thread plug gage, an inserting tool, an extracting tool, and a quantity of Pipe Thread Inserts. Pack B is used to repair pipe thread

assemblies in which the previously installed Helical Coil Insert is damaged and requires replacement. This Pack contains a tap, an inserting tool, an extracting tool, and a quantity of Pipe Thread Inserts. Detailed installation instructions are furnished in each Pack.

9.12 <u>AUTOMOTIVE AND AIRCRAFT SPARK</u> PLUG PACKS.

Two types of Helical Coil Spark Plug Inserts and tools are available for repairing damaged or stripped spark plug threads in engine cylinder heads. Non-serrated inserts (Table 9-17) are used for automotive, industrial, marine, and all other gasoline engines except aircraft. Serrated Spark Plug Inserts, listed in Table 9-18, are used exclusively for aircraft engine repair.

Table 9-14. Oversize Packs

Thread Size (NC)	Inserts Per Pack*	Oversize **Pack Part No.	Thread Size (Nf)	Inserts Per Pack*	Pack Part ** No.
4-40	60	3167-04-1			
5-40	60	3167-05-1			
6-32	40	3167-06-1	6-40	40	3169-06-1
8-32	40	3167-2-1			
10-24	40	3167-3-1	10-32	40	3169-3-1
12-24	40	3167-1-1			
1/4-20	40	3167-4-1	1/4-28	40	3169-4-1
5/16-18	32	3167-5-1	5/16-24	32	3169-5-1
3/8-16	32	3167-6-1	3/8-24	32	3169-6-1
7/16-14	24	3167-7-1	7/16-20	24	3169-7-1
1/2-13	24	3167-8-1	1/2-20	24	3169-8-1

^{*}Each Pack contains an equal number of 1 1/2 dia. Standard Inserts, 2 dia. Standard Inserts, 1 1/2 dia. Screw-locking Inserts.

^{**}Part numbers per CAGE 01556.

Table 9-15. Twinsert Packs

Thread Size (NC)	No. Of Insert Sets* Per Pack	Pack Part No. **	Thread Size (NF)	No. Of Insert Sets* Per Pack	Pack Part No. **
4-40	25	4146-04-1			
5-40	25	4146-05-1			
6-32	25	4146-06-1	6-40	25	4147-06-1
8-32	25	4146-2-1			
10-24	25	4146-3-1	10-32	25	4147-3-1
12-24	25	4146-1-1			
1/4-20	25	4146-4-1	1/4-28	25	4147-4-1
5/16-18	20	4146-5-1	5/16-24	20	4147-5-1
3/8-16	15	4146-6-1	3/8-24	15	4147-6-1
7/16-14	10	4146-7-1	7/16-20	10	4147-7-1
1/2-13	10	4146-8-1	1/2-20	10	4147-8-1
9/16-12	5	4146-9-1	9/16-18	5	4147-9-1
5/8-11	4	4146-10-1	5/8-18	4	4147-10-1
3/4-10	4	4146-12-1	3/4-16	4	4147-12-1

^{*}A set consists of 1 outer Insert and 2 inner Inserts - one Standard (free-running) and one Screw-Locking (internal locking).

Table 9-16. Taper Pipe Thread Repair Packs

Size	Type "A" Part No. *	Type "B" Part No. *	Insert Part Number *	Inserts Per Pack
1/8-27	4148-2-1	4149-2-1	327-2	10
1/4-18	4148-4-1	4149-4-1	327-4	10
3/8-18	4148-6-1	4149-6-1	327-6	10
1/2-14	4148-8-1	4149-8-1	327-8	10
3/4-14	4148-12-1	4149-12-1	327-12	10
1-11 1/2	4148-16-1	4149-16-1	327-16	5
1 1/4-11 1/2	4148-20-1	4149-20-1	327-20	5
1 1/2-11 1/2	4148-24-1	4149-24-1	327-24	5
*Part numbers per C	CAGE 01556.			

Table 9-17. Automotive Spark Plug Packs: 14-1.25mm and 18-1.5mm

				Spark I	Plug Insert*
Size	Pack Part No. **	Tap Part No. **	Tool Part No. **	Plug Reach	Insert Part No. **
14-1.25mm	4194 (NSN 5180-00-935-4600)	1030-14	4889-14	3/8	512
				7/16	513
				1/2	513-13
				3/4	513-10

^{**}Part numbers per CAGE 01556.

Table 9-17. Automotive Spark Plug Packs: 14-1.25mm and 18-1.5mm - Continued

				Spark I	Plug Insert*
Size	Pack Part No. **	Tap Part No. **	Tool Part No. **	Plug Reach	Insert Part No. **
18-1.5mm	4195 (NSN 5180-00-494-8156)	1030-18	4889-18	27/64	514
				1/2	514-6

^{*14 -1.25}mm pack contains 6 of each reach Insert, tap, and tool.

Table 9-18. Aviation Spark Plug Packs: 14-1.25mm and 18-1.5mm

Size	Basic Pack Part No. ***	Plug Reach	Assembled Length	Insert Part No. ***
14-1.25mm*	4260-14-1 (NSN 5180-00- 935-4553)	Long	.359	137-22
		Short	.346	137-23
18-1.5mm**	4260-18-1 (NSN 5180-00- 935-4552)	Long	.683	2-50
		Short	.334	2-52

^{* 14-1.25}mm pack contains 15 inserts, short and long reach; inserting tool; tap; offset-staking tool; and extracting tool.

9.13 <u>STUD-LOCKING INSERTS - UNIFIED</u> COARSE AND UNIFIED FINE.

9.13.1 General Description. Higher torque inserts for studs are an extension of the Screw-Lock Insert and are designed to provide stud assembly torques complying with AS1229 and AS3080 standards as well as ANS1B1.12 values for interference stud fits. The stud locking torque is controlled within the range shown in Table 9-19 for a minimum of three cycles of installing and removing the stud. A new stud may be used for each cycle; in practice, however, the same stud can be reinstalled until the torque falls below minimum, at which point the installation of a new stud will increase the locking torque because the wear is primarily on the stud. The locking torque for step studs (which have the "nut end" one size smaller than the "stud end" or "fast end") is also shown in Table 9-19. Compliance with AS1229 and AS3080 standards presumes installation in magnesium with Class 3A steel (RC26-32) studs

(per MIL-S-7742 (UN) or MIL-S-8879 (UNJ)) and cadmium plated per AMS2400. When using these studs, no additional lubrication is required. When using studs and parent materials other than as specified in AS1229, it may be necessary to determine that the torque values meet the desired results. Class 5 interference fit (UNC) studs may be used because of the resilient locking chords; however, the driving torque will be higher than for Class 3A studs but will still conform to ANSIB1.12 and H28 values when a lubricant such as MIL-T-5544 type grease is applied to the stud. Tapped hole preparation is identical to that for Standard and Screw-Locking Insert assemblies. The class of fit should be 3B. Installation tools for Stud-Locking Inserts have a reduced pitch diameter to accommodate the deeper grip coil configuration. All other tools are the same as for Standard and Screw-Locking Inserts. Packs, complete for each size are available and are listed in Table 9-20.

^{18-1.5}mm pack contains 10 of each reach Insert, tap, and tool.

^{**}Part numbers per CAGE 01556.

^{** 18-1.5}mm pack contains 10 inserts each, short and long reach; inserting tool; tap; offset-staking tool; expanding tool; spot-face tool; extracting tool; Helical Coil Thread Plug Gage; and standard thread plug gage.

^{***}Part numbers per CAGE 01556.

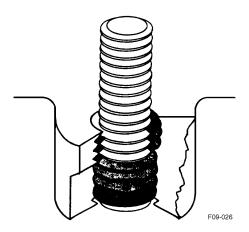


Figure 9-26. Assembled Stud-Locking Insert and Stud

Table 9-19. Stud-Locking Torque

	Strai	Straight Studs Per As	Per As 1229-1	7		Step 5	Step Studs Per As 1229-2	1229-2		Instal Too	Installation Tooling
Nominal Thread Size	Insert Part Number *	Part	Maximum Locking Torque	Mini- mum Break- away	Insert Part Number **	Part er **	Maximum Locking Torque	Minimum Break- away Torgue	Nut End Thread Size	Hand	Power (F.E.
10 (.190)-24	3758-3CN	0285	45 lbf-in	23 lbf-in						5551 -3	5651-3
10 (.190)-32	3759-3CN	0380								5552-3	5652-3
		0475									,
		0220									
1/4 (.250)- 20	3758-4CN	0375	06	52	5758-4CN	0375	45 lbf-in.	23 lbf-in	10-24	5551-4	5651-4
1/4 (.250)- 28	3759-4CN	0200			5759-4CN	0200			10-32	5552-4	5652-4
		0625				0625					
5/16	3758-5CN	0469	180	105	5758-5CN	0469	06	52	1/4-20	5551-5	5651 -
5/16	3759-5CN	0625			5759-5CN	0625			1/4-28	5552-5	5652-5
		0781 0938				0781 0938					
3/8 (.375)- 16	3758-6CN	0562	240	140	2758-6CN	0562	180	105	5/16-18	5551-6	5651-6
3/8 (.375)- 24	3759-6CN	0220			5759-6CN	0750			5/16-24	5552-6	5652-6
		0938 1125				0938 1125					
7/16	3758-7CN	9590	300	175	2758-7CN	9590	240	140	3/8-16	5551-7	5651-7
7/16	3759-7CN	0875			5759-7CN	0875			3/8-24	5552-7	5652-7
,		1094				1094					

Table 9-19. Stud-Locking Torque - Continued

	Stra	ight Studs	Straight Studs Per As 1229-1			Step (Step Studs Per As 1229-2	1229-2		Instal Toc	Installation Tooling
Nominal Thread Size	Insert Part Number *	Part oer *	Maximum Locking Torque	Mini- mum Break- away Torque	Insert Part Number **	Part er **	Maximum Locking Torque	Minimum Break- away Torque	Nut End Thread Size	Hand	Power (F.E.
1/2 (.500)-	3758-8CN	0750	450	260	5758-8CN	0750	300	175	7/16-14	5551-8	5651-8
1/2 (.500)- 20	3759-8CN	1000			5759-8CN	1000			7/16-20	5552-8	5652-8
		1250				1250					
		1500				1500					

For Identification:

* 3758 and 3759 series Inserts are dyed green.

**5758 and 5759 series Inserts are dyed lavender.

NOTE: Insert and Installation Tooling Part numbers per CAGE 01556. Non-stock items; available on special order.

Bold Numbers Denote Non-Stock Items; Available On Special Order.

Table 9-20. Stud-Locking Insert Repair Packs

Thread Size Part No. Length Thread Size Part No. Length 10 (.190)-24 4151-3-1 25 1/4 (.2500) - 4151-4-1 25 1/8 (.3125) - 4151-5-1 20 3/8 (.3750)-16 4151-5-1 20 7/16 (.4375) - 4151-8-1 15 10 (.190)-32 4152-3-1 25 1/4 (.2500)-28 4152-4-1 25 3/8 (.3750)-24 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 1/2 (.5000)-20 4152-8-1 15 1/2 (.5000)-20 4152-8-1 15 **Part numbers per CAGE 01556. ***Packs 1/4" and smaller contain 2 taps, part num				-			
4151-3-1 4151-4-1 4151-6-1 4151-6-1 4151-7-1 4152-3-1 4152-4-1 4152-4-1 4152-6-1 4152-6-1 4152-8-1 per CAGE 01556.	* Insert Size	1 1/2 Dia	2 Dia	Tap Part	Inserting Tool Part	Tang Break- Off Tool Part No. *	Extracting Tool Part
10 (.190)-24 4151-3-1 25 1/4 (.2500) - 4151-4-1 25 20 5/16 (.3125)- 4151-5-1 25 1/8 3/8 (.3750)-16 4151-6-1 20 7/16 (.4375)- 4151-7-1 20 1/2 (.5000)-13 4151-8-1 15 1/4 (.2500)-28 4152-3-1 25 5/16 (.3125)- 4152-4-1 25 3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-6-1 20 1/2 (.5000)-20 4152-8-1 15 3/8 (.3750)-24 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15		B	Coarse				
1/4 (.2500) - 4151-4-1 25 20 5/16 (.3125) 4151-5-1 25 18 3/8 (.3750)-16 4151-6-1 20 7/16 (.4375) 4151-7-1 20 1/2 (.5000)-13 4151-8-1 15 10 (.190)-32 4152-3-1 25 1/4 (.2500)-28 4152-3-1 25 5/16 (.3125) 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 1/2 (.5000)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15 3/8 (.3750)-20 4152-8-1 15	3758-3CN	.285	.380	3CBB	5551-3	4156-3	1227-6
5/16 (.3125)- 4151-5-1 25 18 3/8 (.3750)-16 4151-6-1 20 7/16 (.4375)- 4151-7-1 20 1/2 (.5000)-13 4151-8-1 15 1/4 (.2500)-28 4152-3-1 25 5/16 (.3125)- 4152-4-1 25 5/16 (.3125)- 4152-5-1 20 7/16 (.4375)- 4152-6-1 20 1/2 (.5000)-20 4152-8-1 15 **Part numbers per CAGE 01556. **Packs 1/4" and smaller contain 2 taps, part num	3758-4CN	.375	.500	4CBB	5551-4	4156-4	1227-6
3/8 (.3750)-16 4151-6-1 20 7/16 (.4375)- 4151-7-1 20 14 (.5000)-13 4151-8-1 15 10 (.190)-32 4152-3-1 25 1/4 (.2500)-28 4152-4-1 25 5/16 (.3125)- 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-6-1 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556.	3758-5CN	.469	.625	5CBB	5551-5	4156-5	1227-6
7/16 (.4375)- 4151-7-1 20 14 1/2 (.5000)-13 4151-8-1 15 10 (.190)-32 4152-3-1 25 1/4 (.2500)-28 4152-4-1 25 5/16 (.3125)- 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-6-1 20 1/2 (.5000)-20 4152-8-1 15 **Part numbers per CAGE 01556. ***Packs 1/4" and smaller contain 2 taps, part num	3758-6CN	.562	.750	6CBB	5551-6	4156-6	1227-6
1/2 (.5000)-13 4151-8-1 15 10 (.190)-32 4152-3-1 25 1/4 (.2500)-28 4152-4-1 25 5/16 (.3125)- 4152-5-1 25 3/8 (.3750)-24 4152-5-1 20 7/16 (.4375)- 4152-7-1 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556. **Packs 1/4" and smaller contain 2 taps, part num	3758-7CN	959.	.875	7CBB	5551-7	4156-7	1227-16
10 (.190)-32 4152-3-1 25 1/4 (.2500)-28 4152-4-1 25 5/16 (.3125)- 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-7-1 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556.	3758-8CN	.750	1.000	8CBB	5551-8	4156-8	1227-16
10 (.190)-32 4152-3-1 25 1/4 (.2500)-28 4152-4-1 25 5/16 (.3125)- 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-7-1 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556.		Unified Fine	Fine				e e
1/4 (.2500)-28 4152-4-1 25 5/16 (.3125)- 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-7-1 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556.	3759-3CN	.285	.380	3FBB	5552-3	4156-3	1227-6
5/16 (.3125)- 4152-5-1 25 3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-7-1 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556. **Part numbers mailer contain 2 taps, part num	3759-4CN	.375	.500	4FBB	5552-4	4156-4	1227-6
3/8 (.3750)-24 4152-6-1 20 7/16 (.4375)- 4152-7-1 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556. **Packs 1/4" and smaller contain 2 taps, part num	3759-5CN	.469	.625	SFBB	5552-5	4156-5	1227-6
7/16 (.4375)- 4152-7-1 20 20 1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556. **Packs 1/4" and smaller contain 2 taps, part num	3759-6CN	.562	.750	6FBB	5552-6	4156-6	1227-6
1/2 (.5000)-20 4152-8-1 15 *Part numbers per CAGE 01556. **Packs 1/4" and smaller contain 2 taps, part num	3759-7CN	959.	.875	7FBB	5552-7	4156-7	1227-16
*Part numbers per CAGE 01556. **Packs 1/4" and smaller contain 2 taps, part nun	3759-8CN	.750	1.000	8FBB	5552-8	4156-8	1227-16
	mbers per CAGE 0	1556.					

Table 9-21. Helical Coil Screw Thread Inserts

		Part N	umber		
Size	Length	Heli-Coil	Military Standard No.	National Stock No.	Your Reference
	<u>, </u>		Coarse - Free Runn		
2 (.086)-56	.086	1185-02CN 0086	MS122095	5340-00-850-6847	
2 (.086)-56	.129	1185-02CN 0129	MS122135	5340-00-850-6848	
2 (.086)-56	.172	1185-02CN 0172	MS122175	5340-00-834-8372	
2 (.086)-56	.215	1185-02CN 0215	MS122215		
2 (.086)-56	.258	1185-02CN 0258	MS122255	5340-01-051-0589	
3 (.099)-48	.099	1185-031CN 0099	MS122115		
3 (.099)-48	.148	1185-031CN 0148	MS122155	5340-00-623-4854	
3 (.099)-48	.198	1185-031CN 0198	MS122195	5340-00-137-3025	
3 (.099)-48	.248	1185-031CN 0248	MS122235		
3 (.099)-48	.297	1185-031CN 0297	MS122275		
4 (.112)-40	.112	1185-04CN 0112	MS122076	5340-00-826-4023	
4 (.112)-40	.168	1185-04CN 0168	MS122116	5340-00-842-5920	
4 (.112)-40	.224	1185-04CN 0224	MS122156	5340-00-223-0677	
4 (.112)-40	.280	1185-04CN 0280	MS122196	5340-00-664-4157	
4 (.112)-40	.336	1185-04CN 0336	MS122236	5340-00-660-1513	
5 (.125)-40	.125	1185-05CN 0125	MS122077	5340-00-058-4137	
5 (.125)-40	.188	1185-05CN 0188	MS122117	5340-00-619-3138	
5 (.125)-40	.250	1185-05CN 0250	MS122157	5340-00-928-9816	
5 (.125)-40	.312	1185-05CN 0312	MS122197		
5 (.125)-40	.375	1185-05CN 0375	MS122237		
6 (.138)-32	.138	1185-06CN 0138	MS122078	5340-00-843-0003	
6 (.138)-32	.207	1185-06CN 0207	MS122118	5340-00-734-5525	
6 (.138)-32	.276	1185-06CN 0276	MS122158	5340-00-825-4826	
6 (.138)-32	.345	1185-06CN 0345	MS122198	5340-00-200-7755	
6 (.138)-32	.414	1185-06CN 0414	MS122238	5340-00-061-4793	
8 (.164)-32	.164	1185-2CN 0164	MS122079	5340-00-368-4708	
8 (.164)-32	.246	1185-2CN 0246	MS122119	5340-00-479-9197	
8 (.164)-32	.328	1185-2CN 0328	MS122159	5340-00-473-3887	
8 (.164)-32	.410	1185-2CN 0410	MS122199	5340-00-721-7906	
8 (.164)-32	.492	1185-2CN 0492	MS122239	5340-00-291-3479	
10 (.190)-24	.190	1185-3CN 0190	MS122080	5340-00-290-4482	
10 (.190)-24	.285	1185-3CN 0285	MS122120	5340-00-597-3304	
10 (.190)-24	.380	1185-3CN 0380	MS122160	5340-00-551-7614	
10 (.190)-24	.475	1185-3CN 0475	MS122200	5340-00-597-3305	
10 (.190)-24	.570	1185-3CN 0570	MS122240	5340-00-291-3482	
12 (.216)-24	.216	1185-1CN 0216		5340-00-969-6086	
12 (.216)-24	.324	1185-1CN 0324		5340-00-863-8119	
12 (.216)-24	.432	1185-1CN 0432		5340-00-863-8118	
12 (.216)-24	.540	1185-1CN 0540			
12 (.216)-24	.648	1185-1CN 0648			

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part N	lumber		
Size	Length	Heli-Coil	Military Standard No.	National Stock No.	Your Reference
1/4 (.2500)-20	.250	1185-4CN 0250	MS122081	5340-00-200-7224	11010101100
1/4 (.2500)-20	.375	1185-4CN 0375	MS122121	5340-01-030-6854	
1/4 (.2500)-20	.500	1185-4CN 0500	MS122121	5340-00-286-2458	
1/4 (.2500)-20	.625	1185-4CN 0625	MS122201	5340-00-290-4515	
1/4 (.2500)-20	.750	1185-4CN 0750	MS122241	5340-00-290-4489	
5/16 (.3125)-18	.312	1185-5CN 0312	MS122082	5340-00-290-4550	
5/16 (.3125)-18	.469	1185-5CN 0469	MS122122	5340-00-290-4521	
5/16 (.3125)-18	.625	1185-5CN 0625	MS122162	5340-00-290-4520	
5/16 (.3125)-18	.781	1185-5CN 0781	MS122202	5340-00-290-4490	
5/16 (.3125)-18	.938	1185-5CN 0938	MS122242	5340-00-820-9629	
3/8 (.3750)-16	.375	1185-6CN 0375	MS122083	5340-00-331-4774	
3/8 (.3750)-16	.562	1185-6CN 0562	MS122123	5340-00-290-4518	
3/8 (.3750)-16	.750	1185-6CN 0750	MS122163	5340-00-990-7157	
3/8 (.3750)-16	.938	1185-6CN 0938	MS122203	5340-00-290-4492	
3/8 (.3750)-16	1.125	1185-6CN 1125	MS122243	5340-00-682-1453	
7/16 (.4375)-14	.438	1185-7CN 0438	MS122084	5340-01-019-7177	
7/16 (.4375)-14	.656	1185-7CN 0656	MS122124	5340-00-290-4506	
7/16 (.4375)-14	.875	1185-7CN 0875	MS122164	5340-00-598-5638	
7/16 (.4375)-14	1.094	1185-7CN 1094	MS122204	5340-00-993-7229	
7/16 (.43751-14	1.312	1185-7CN 1312	MS122244	5340-00-993-8194	
1/2 (.5000)-13	.500	1185-8CN 0500	MS122085	5340-00-290-4505	
1/2 (.5000)-13	.750	1185-8CN 0750	MS122125	5340-00-290-4504	
1/2 (.5000)-13	1.000	1185-8CN 1000	MS122165	5340-00-990-7158	
1/2 (.5000)-13	1.250	1185-8CN 1250	MS122205	5340-00-855-0802	
1/2 (.5000)-13	1.500	1185-8CN 1500	MS122245	5340-00-603-0365	
9/16 (.5625)-12	.562	1185-9CN 0562	MS122086	5340-00-993-7237	
9/16 (.5625)-12	.844	1185-9CN 0844	MS122126	5340-00-518-7744	
9/16 (.5625)-12	1.125	1185-9CN 1125	MS122166	5340-00-993-7245	
9/16 (.5625)-12	1.406	1185-9CN 1406	MS122206	5340-00-726-9499	
9/16 (.5625)-12	1.688	1185-9CN 1688	MS122246	5340-00-993-8196	
5/8 (.6250)-11	.625	1185-10CN 0625	MS122087	5340-00-682-1666	
5/8 (.6250)-11	.938	1185-10CN 0938	MS122127	5340-00-290-4494	
5/8 (.6250)-11	1.250	1185-10CN 1250	MS122167	5340-00-807-3488	
5/8 (.6250)-11	1.562	1185-10CN 1562	MS122207	5340-00-993-7231	
5/8 (.6250)-11	1.875	1185-10CN 1875	MS122247	5340-01-033-3126	
3/4 (.7500)-10	.750	1185-12CN 0750	MS122088	5340-00-290-4503	
3/4 (.7500)-10	1.125	1185-12CN 1125	MS122128	5340-00-045-2812	
3/4 (.7500)-10	1.500	1185-12CN 1500	MS122168	5340-00-721-8356	
3/4 (.7500)-10	1.875	1185-12CN 1875	MS122208	5340-00-826-7864	
3/4 (.7500)-10	2.250	1185-12CN 2250	MS122248	5340-00-993-8197	
7/8 (.8750)-9	.875	1185-14CN 0875	MS122089	5340-00-993-7236	
7/8 (.8750)-9	1.312	1185-14CN 1312	MS122129	5340-00-682-2216	

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part N	lumber		
Size	Length	Heli-Coil	Military Standard No.	National Stock No.	Your Reference
7/8 (.8750)-9	1.750	1185-14CN 1750	MS122169	5340-00-664-8332	Helefellee
7/8 (.8750)-9	2.188	1185-14CN 2188	MS122209	5340-00-993-7232	
7/8 (.8750)-9	2.625	1185-14CN 2625	MS122249	5340-00-993-8198	
1 (1.0000)-8	1.000	1185-16CN 1000	MS122090	5340-00-200-2414	
1 (1.0000)-8	1.500	1185-16CN 1500	MS122130	5340-00-530-5603	
1 (1.0000)-8	2.000	1185-16CN 2000	MS122170	5340-00-993-7246	
1 (1.0000)-8	2.500	1185-16CN 2500	MS122210	5340-00-993-7233	
1 (1.0000)-8	3.000	1185-16CN 3000	MS122250	5340-00-993-8199	
1-1/8 (1.1250)-7	1.125	1185-18CN 1125	MS122091		
1-1/8 (1.1250)-7	1.688	1185-18CN 1688	MS122131		
1-1/8 (1.1250)-7	2.250	1185-18CN 2250	MS122171		
1-1/8 (1.1250)-7	2.812	11B5-18CN 2812	MS122211		
1-1/8 (1.1250)-7	3.375	1185-18CN 3375	MS122251		
1-1/4 (1.2500)-7	1.250	1185-20CN 1250	MS122092		
1-1/4 (1.2500)-7	1.875	1185-20CN 1875	MS122132		
1-1/4 (1.2500)-7	2.500	1185-20CN 2500	MS122172		
1-1/4 (1.2500)-7	3.125	1185-20CN 3125	MS122212		
1-1/4 (1.2500)-7	3.750	1185-20CN 3750	MS122252		
1-3/8 (1.3750)-6	1.375	1185-22CN 1375	MS122093		
1-3/8 (1.3750)-6	2.062	1185-22CN 2062	MS122133		
1-3/8 (1.3750)-6	2.750	1185-22CN 2750	MS122173		
1-3/8 (1.3750)-6	3.438	1185-22CN 3438	MS122213		
1-3/8 (1.3750)-6	4.125	1185-22CN 4125	MS122253		
1-1/2 (1.5000)-6	1.500	1185-24CN 1500	MS122094	5340-00-059-2379	
1-1/2 (1.5000)-6	2.250	1185-24CN 2250	MS122134		
1-1/2 (1.5000)-6	3.000	1185-24CN 3000	MS122174		
1-1/2 (1.5000)-6	3.750	1185-24CN 3750	MS122214		
1-1/2 (1.5000)-6	4.500	1185-24CN 4500	MS122254		
		Standard Unifie	d Fine - Free Runnir	ng	
3 (.099)-56	.099	1191-03CN 0099	MS124670		
3 (.099)-56	.148	1191-03CN 0148	MS124710		
3 (.099)-56	.198	1191-03CN 0198	MS124750		
3 (.099)-56	.248	1191-03CN 0248	MS124790		
3 (.099)-56	.297	1191-03CN 0297	MS124830		
4 (.112)-48	.112	1191-041CN 0112	MS124671		
4 (.112)-48	.168	1191-041CN 0168	MS124711		
4 (.112)-48	.224	1191-041CN 0224	MS124751		
4 (.112)-48	.280	1191-041CN 0280	MS124791		
4 (.112)-48	.336	1191-041CN 0336	MS124831		
6 (.138)-40	.138	1191-06CN 0138	MS124653	5340-00-045-3553	
6 (.138)-40	.207	1191-06CN 0207	MS124693	5340-00-982-7842	
6 (.138)-40	.276	1191-06CN 0276	MS124733	5340-00-045-3555	

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part N	lumber		
Size	Length	Heli-Coil	Military Standard No.	National Stock No.	Your Reference
6 (.138)-40	.345	1191-06CN 0345	MS124773	5340-00-726-3547	
6 (.138)-40	.414	1191-06CN 0414	MS124813	5340-00-833-7459	
8 (.164)-36	.164	1191-2CN 0164	MS124654	5340-01-022-9232	
8 (.164)-36	.246	1191-2CN 0246	MS124694	5340-00-097-6337	
8 (.164)-36	.328	1191-2CN 0328	MS124734	5340-00-141-6688	
8 (.164)-36	.410	1191-2CN 0410	MS124774		
8 (.164)-36	.492	1191-2CN 0492	MS124814		
10 (.190)-32	.190	1191-3CN 0190	MS124655	5340-00-986-2929	
10 (.190)-32	.285	1191-3CN 0285	MS124695	5340-00-597-3302	
10 (.190)-32	.380	1191-3CN 0380	MS124735	5340-00-290-4480	
10 (.190)-32	.475	1191-3CN 0475	MS124775	5340-00-597-3306	
10 (.190)-32	.570	1191-3CN 0570	MS124815	5340-00-663-3267	
1/4 (.250)-28	.250	1191-4CN 0250	MS124656	5340-00-286-6600	
1/4 (.250)-28	.375	1191-4CN 0375	MSI24696	5340-00-291-3484	
1/4 (.250)-28	.500	1191-4CN 0500	MS124736	5340-00-290-4497	
1/4 (.250)-28	.625	1191-4CN 0625	MS124776	5340-00-290-4502	
1/4 (.250)-28	.750	1191-4CN 0750	MS124816	5340-00-290-4501	
5/16 (.3125)-24	.312	1191-5CN 0312	MS124657	5340-00-045-2676	
5/16 (.3125)-24	.469	1191-5CN 0469	MS124697	5340-00-291-3495	
5/16 (.3125)-24	.625	1191-5CN 0625	MS124737	5340-00-514-2321	
5/16 (.3125)-24	.781	1191-5CN 0781	MS124777	5340-00-680-3131	
5/16 (.3125)-24	.938	1191-5CN 0938	MS124817	5340-00-291-3483	
3/8 (.3750)-24	.375	1191-6CN 0375	MS124658	5340-00-291-3493	
3/8 (.3750)-24	.562	1191-6CN 0562	MS124698	5340-00-291-3492	
3/8 (.3750)-24	.750	1191-6CN 0750	MS124738	5340-01-031-4286	
3/8 (.3750)-24	.938	1191-6CN 0938	MS124778	5340-00-597-3328	
3/8 (.3750)-24	1.125	1191-6CN 1125	MS124818	5340-00-291-3491	
7/16 (.4375)-20	.438	1191-7CN 0438	MS124659	5340-00-421-1189	
7/16 (.4375)-20	.656	1191-7CN 0656	MS124699	5340-00-634-7860	
7/16 (.4375)-20	.875	1191-7CN 0875	MS124739	5340-00-290-4511	
7/16 (.4375)-20	1.094	1191-7CN 1094	MS124779	5340-00-993-8180	
7/16 (.4375)-20	1.312	1191-7CN 1312	MS124819	5340-00-993-7207	
1/2 (.5000)-20	.500	1191-8CN 0500	MS124660	5340-00-598-5634	
1/2 (.5000)-20	.750	1191-8CN 0750	MS124700	5340-00-291-3488	
1/2 (.5000)-20	1.000	1191-8CN 1000	MS124740	5340-01-011-6864	
1/2 (.5000)-20	1.250	1191-8CN 1250	MS124780	5340-00-290-4507	
1/2 (.5000)-20	1.500	1191-8CN 1500	MS124820	5340-00-845-1982	
9/16 (.5625)-18	.562	1191-9CN 0562	MS124661	5340-00-290-5144	
9/16 (.5625)-18	.844	1191-9CN 0844	MS124701	5340-00-291-3487	
9/16 (.5625)-18	1.125	1191-9CN 1125	MS124741	5340-00-200-7223	
9/16 (.5625)-18	1.406	1191-9CN 1406	MS124781	5340-00-810-9943	
9/16 (.5625)-18	1.688	1191-9CN 1688	MS124821	5340-00-291-3486	

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part N	lumber		
Size	Length	Heli-Coil	Military Standard No.	National Stock No.	Your Reference
5/8 (.6250)-18	.625	1191-10CN 0625	MS124662	5340-00-598-5643	
5/8 (.6250)-18	.938	1191-10CN 0938	MS124702	5340-00-530-7948	
5/8 (.6250)-18	1.250	1191-10CN 1250	MS124742	5340-00-597-5157	
5/8 (.6250)-18	1.562	1191-10CN 1562	MS124782	5340-00-993-8181	
5/8 (.6250)-18	1.875	1191-10CN 1875	MS124822	5340-00-993-7209	
3/4 (.7500)-16	.750	1191-12CN 0750	MS124663	5340-00-141-6710	
3/4 (.7500)-16	1.125	1191-12CN 1125	MS124703	5340-00-655-7971	
3/4 (.7500)-16	1.500	1191-12CN 1500	MS124743	5340-00-200-7222	
3/4 (.7500)-16	1.875	1191-12CN 1875	MS124783	5340-00-993-8182	
3/4 (.7500)-16	2.250	1191-12CN 2250	MS124823	5340-00-993-7210	
7/8 (.8750)-14	.875	1191-14CN 0875	MS124664	5340-00-598-5644	
7/8 (.8750)-14	1.312	1191-14CN 1312	MS124704	5340-00-045-2848	
7/8 (.8750)-14	1.750	1191-14CN 1750	MS124744	5340-00-993-8183	
7/8 (.8750)-14	2.188	1191-14CN 2188	MS124784		
7/8 (.8750)-14	2.625	1191-14CN 2625	MS124824	5340-00-993-7211	
1 (1.00001-14	1.000	1191-16CN 1000	MS124665	5340-00-045-2868	
1 (1.0000)-14	1.500	1191-16CN 1500	MS124705	5340-00-993-7250	
1 (1.0000)-14	2.000	1191-16CN 2000	MS124745	5340-00-993-7257	
1 (1.0000)-14	2.500	1191-16CN 2500	MS124785	5340-00-993-8184	
1 (1.0000)-14	3.000	1191-16CN 3000	MS124825	5340-00-993-7212	
1 (1.0000)-12	1.000	1191-161CN 1000	MS124651	5340-00-044-4971	
1 (1.0000)-12	1.500	1191-161CN 1500	MS124691		
1 (1.0000)-12	2.000	1191-161CN 2000	MS124731		
1 (1.0000)-12	2.500	1191-161CN 2500	MS124771		
1 (1.0000)-12	3.000	1191-161CN 3000	MS124811		
1-1/8 (1.1250)-12	1.125	1191-18CN 1125	MS124666	5340-00-598-5599	
1-1/8 (1.1250)-12	1.688	1191-18CN 1688	MS124706		
1-1/8 (1.1250)-12	2.250	1191-18CN 2250	MS124746	5340-00-059-2386	
1-1/8 (1.1250)-12	2.812	1191-18CN 2812	MS124786		
1-1/8 (1.1250)-12	3.375	1191-18CN 3375	MS124826		
1-1/4 (1.2500)-12	1.250	1191-20CN 1250	MS124667	5340-00-200-4033	
1-1/4 (1.2500)-12	1.875	1191-20CN 1875	MS124707	5340-00-558-3435	
1-1/4 (1.2500)-12	2.500	1191-20CN 2500	MS124747		
1-1/4 (1.2500)-12	3.125	1191-20CN 3125	MS124787		
1-1/4 (1.2500)-12	3.750	1191-20CN 3750	MS124827		
1-3/8 (1.3750)-12	1.375	1191-22CN 1375	MS124668		
1-3/8 (1.3750)-12	2.062	1191-22CN 2062	MS124708		
1-3/8 (1.3750)-12	2.750	1191-22CN 2750	MS124748		
1-3/8 (1.3750)-12	3.438	1191-22CN 3438	MS124788		
1-3/8 (1.3750)-12	4.125	1191-22CN 4125	MS124828		
1-1/2 (1.5000)-12	1.500	1191-24CN 1500	MS124669	5340-00-836-1941	
1-1/2 (1.5000)-12	2.250	1191-24CN 2250	MS124709		

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part N	lumber		
Size	Length	Heli-Coil	Military Standard No.	National Stock No.	Your Reference
1-1/2 (1.5000)-12	3.000	1191-24CN 3000	MS124749		
1-1/2 (1.5000)-12	3.750	1191-24CN 3750	MS124789		
1-1/2 (1.5000)-12	4.500	1191-24CN 4500	MS124829		
		Lock Insert	s - Unified Coarse		
2 (.086)-56	.086	3585-02CN 0086	21209-C0210	5340-00-855-7892	
2 (.086)-56	.129	3585-02CN 0129	21209-C0215	5340-00-215-0248	
2 (.086)-56	.172	3585-02CN 0172	21209-C0220	5340-00-462-4226	
2 (.086)-56	.215	3585-02CN 0215	21209-C0225	5340-00-716-6615	
2 (.086)-56	.258	3585-02CN 0258	21209-C0230	5340-01-044-3522	
3 (.099)-48	.099	3585-031CN 0099	21209-C0310		
3 (.099)-48	.148	3585-031CN 0148	21209-C0315		
3 (.099)-48	.198	3585-031CN 0198	21209-C0320	5340-01-021-1751	
3 (.099)-48	.248	3585-031CN 0248	21209-C0325		
3 (.099)-48	.297	3585-031CN 0297	21209-C0330		
4 (.112)-40	.112	3585-04CN 0112	21209-C0410	5340-00-263-8728	
4 (.112)-40	.168	3585-04CN 0168	21209-C0415	5340-00-631-7894	
4 (.112)-40	.224	3585-04CN 0224	21209-C0420	5340-00-827-4024	
4 (.112)-40	.280	3585-04CN 0280	21209-C0425	5340-00-631-7889	
4 (.112)-40	.336	3585-04CN 0336	21209-C0430	5340-00-721-7849	
5 (.125)-40	.125	3585-05CN 0125	21209-C0510		
5 (.125)-40	.188	3585-05CN 0188	21209-C0515	5340-00-863-8121	
5 (.125)-40	.250	3585-05CN 0250	21209-C0520	5340-00-863-8120	
5 (.125)-40	.312	3585-05CN 0312	21209-C0525		
5 (.125)-40	.375	3585-05CN 0375	21209-C0530		
6 (.138)-32	.138	3585-06CN 0138	21209-C0610	5340-00-245-5195	
6 (.138)-32	.207	3585-06CN 0207	21209-C0615	5340-00-815-4930	
6 (.138)-32	.276	3585-06CN 0276	21209-C0620	5340-00-558-8826	
6 (.138)-32	.345	3585-06CN 0345	21209-C0625	5340-00-213-8727	
6 (.138)-32	.414	3585-06CN 0414	21209-C0630	5340-00-008-7100	
8 (.164)-32	.164	3585-2CN 0164	21209-C0810	5340-00-631-7891	
8 (.164)-32	.246	3585-2CN 0246	21209-C0815	5340-00-815-4929	
8 (.164)-32	.328	3585-2CN 0328	21209-C0820	5340-00-721-6936	
8 (.164)-32	.410	3585-2CN 0410	21209-C0825	5340-00-215-0249	
8 (.164)-32	.492	3585-2CN 0492	21209-C0830	5340-00-079-9570	
10 (.190)-24	.190	3585-3CN 0190	21209-C1-10	5340-00-589-5335	
10 (.190)-24	.285	3585-3CN 0285	21209-C1-15	5340-00-680-3762	
10 (.190)-24	.380	3585-3CN 0380	21209-C1-20	5340-00-990-8643	
10 (.190)-24	.475	3585-3CN 0475	21209-C1-25	5340-01-004-9794	
10 (.190)-24	.570	3585-3CN 0570	21209-C1-30		
12 (.216)-24	.216	3585-1CN 0216	21209-C2-10		
12 (.216)-24	.324	3585-1CN 0324	21209-C2-15	5340-00-863-8116	
12 (.216)-24	.432	3585-1CN 0432	21209-C2-20	5340-00-863-8113	

Table 9-21. Helical Coil Screw Thread Inserts - Continued

Size Length Heli-Coil Military Standard No. National Stock No. Your Reference 12 (216)-24 .640 3585-ICN 0540 21209-C2-25 12 (216)-24 .648 3585-ICN 0648 21209-C2-30 14 (2500)-20 .250 3585-ICN 0648 21209-C2-30 5340-00-999-1181 1/4 (2500)-20 .250 3585-4CN 0750 21209-C4-10 5340-00-754-0847 1/4 (2500)-20 .500 3585-4CN 0500 21209-C4-20 5340-00-754-0847 1/4 (2500)-20 .500 3585-4CN 0500 21209-C4-25 5340-00-721-8352 1/4 (2500)-20 .550 3585-4CN 0500 21209-C4-25 5340-00-721-8352 1/4 (2500)-20 .550 3585-4CN 0750 21209-C4-25 5340-00-202-3319 5/16 (3125)-18 .312 3585-5CN 0350 21209-C5-10 5340-00-205-3119 5/16 (3125)-18 .625 3585-5CN 0625 21209-C5-15 5340-00-825-6938 5/16 (3125)-18 .625 3585-5CN 0625 21209-C5-20 5340-00-825-6938 5/16 (3125)-18 .938 3585-5CN 0625 21209-C5-20 5340-00-825-6938 5/16 (3125)-18 .535 .5365-5CN 0625 21209-C5-20			Part N	lumber		
12 (.216)-24		_				
12 (216)-24					No.	Reference
1/4 (.2500)-20	` ′					
1/4 (.2500)-20						
1/4 (2500)-20						
1/4 (.2500)-20	` · · · ·					
1/4 (.2500)-20	` ′	.500	3585-4CN 0500	21209-C4-20	5340-00-721-8352	
5/16 (.3125)-18 .312 3585-5CN 0312 21209-C5-10 5340-00-205-3119 5/16 (.3125)-18 .469 3585-5CN 0469 21209-C5-15 5340-00-803-5574 5/16 (.3125)-18 .625 3585-5CN 0625 21209-C5-20 5340-00-825-6938 5/16 (.3125)-18 .781 3585-5CN 0781 21209-C5-25 5340-00-825-6938 5/16 (.3125)-18 .938 3585-5CN 0938 21209-C5-30 3440-00-210-3935 3/8 (.3750)-16 .375 3585-6CN 0375 21209-C6-10 5340-00-754-1976 3/8 (.3750)-16 .562 3585-6CN 0750 21209-C6-20 5340-00-781-1976 3/8 (.3750)-16 .750 3585-6CN 0750 21209-C6-20 5340-00-812-1894 3/8 (.3750)-16 .938 3585-6CN 038 21209-C6-25 5340-01-048-6353 3/8 (.3750)-16 .1125 3585-6CN 038 21209-C6-25 5340-01-048-6353 3/8 (.3750)-14 .438 3585-7CN 0438 21209-C7-10 5340-00-701-3811 7/16 (.4375)-14 .875 3585-7CN 0875 21209-C7-20 5340-00-723-6775 7/16 (.4375)-1	1/4 (.2500)-20	.625	3585-4CN 0625	21209-C4-25		
5/16 (.3125)-18 .469 3585-5CN 0469 21209-C5-15 5340-00-803-5574 5/16 (.3125)-18 .625 3585-5CN 0625 21209-C5-20 5340-00-825-6938 5/16 (.3125)-18 .781 3585-5CN 0781 21209-C5-25 5340-00-825-6938 5/16 (.3125)-18 .938 .3585-5CN 0938 21209-C5-30 338 (.3750)-16 .375 .3585-6CN 0375 21209-C6-10 .5340-00-210-3935 338 (.3750)-16 .562 .3585-6CN 0562 21209-C6-15 .5340-00-754-1976 3/8 (.3750)-16 .750 .3585-6CN 0750 21209-C6-20 .5340-00-812-1894 3/8 (.3750)-16 .938 .3585-6CN 0750 21209-C6-25 .5340-00-812-1894 3/8 (.3750)-16 .938 .3585-6CN 0750 21209-C6-25 .5340-00-812-1894 3/8 (.3750)-16 .125 .3585-6CN 0750 21209-C6-25 .5340-00-812-1894 3/8 (.3750)-16 .125 .3585-6CN 0750 21209-C6-25 .5340-00-812-1894 3/8 (.3750)-14 .438 .3585-7CN 0438 21209-C7-20 .5340-00-812-1894 3/8 (.3750)-14 .438 .3585-7CN 0656 21209-C7-10 .5340-00-701-3811 .716 (.4375)-14 .875 <t< td=""><td>1/4 (.2500)-20</td><td>.750</td><td>3585-4CN 0750</td><td>21209-C4-30</td><td>5340-01-013-8609</td><td></td></t<>	1/4 (.2500)-20	.750	3585-4CN 0750	21209-C4-30	5340-01-013-8609	
5/16 (.3125)-18 .625 3585-5CN 0625 21209-C5-20 5340-00-825-6938 5/16 (.3125)-18 .781 3585-5CN 0781 21209-C5-25 5340-00-825-6938 5/16 (.3125)-18 .938 3585-5CN 0938 21209-C5-30 378 (.3750)-16 .375 3585-6CN 0375 21209-C6-10 5340-00-210-3935 378 (.3750)-16 .562 3585-6CN 0562 21209-C6-15 5340-00-754-1976 5340-00-754-1976 378 (.3750)-16 .750 3585-6CN 0750 21209-C6-20 5340-00-754-1976 5340-00-812-1894 378 (.3750)-16 .938 3585-6CN 0750 21209-C6-20 5340-00-812-1894 378 (.3750)-16 .938 3585-6CN 0938 21209-CC-30 5340-01-048-6353 376 (.4375)-14 .438 3585-7CN 0875 21209-C7-15 5340-00-701-3811 5716 (.4375)-14 .875 3585-7CN 10875 21209-C7-25 5340-00-723-6775 7716 (.4375)-14	5/16 (.3125)-18	.312	3585-5CN 0312	21209-C5-10	5340-00-205-3119	
5/16 (.3125)-18 .781 3585-5CN 0781 21209-C5-25 21209-C5-30 5/16 (.3125)-18 .938 3585-5CN 0938 21209-C6-10 5340-00-210-3935 3/8 (.3750)-16 .375 3585-6CN 0375 21209-C6-15 5340-00-754-1976 3/8 (.3750)-16 .562 3585-6CN 0750 21209-C6-20 5340-00-812-1894 3/8 (.3750)-16 .938 3585-6CN 0938 21209-C6-25 3340-00-812-1894 3/8 (.3750)-16 .938 3585-6CN 0125 21209-C6-25 3340-00-812-1894 3/8 (.3750)-16 .938 3585-6CN 0938 21209-C7-30 5340-01-048-6353 7/16 (.4375)-14 .438 3585-7CN 0438 21209-C7-10 5340-01-048-6353 7/16 (.4375)-14 .875 3585-7CN 0675 21209-C7-15 5340-00-701-3811 7/16 (.4375)-14 1.094 3585-7CN 1094 21209-C7-25 5340-00-723-6775 7/16 (.4375)-14 1.312 3585-RN 0500 21209-C8-10 5340-00-814-9865 1/2 (.5000)-13 .500 3585-8CN 1000 21209-C8-15 5340-00-812-1900 1/2 (.5000)-13 <td>5/16 (.3125)-18</td> <td>.469</td> <td>3585-5CN 0469</td> <td>21209-C5-15</td> <td>5340-00-803-5574</td> <td></td>	5/16 (.3125)-18	.469	3585-5CN 0469	21209-C5-15	5340-00-803-5574	
5/16 (.3125)-18 .938 3585-5CN 0938 21209-C5-30 3/8 (.3750)-16 .375 3585-6CN 0375 21209-C6-10 5340-00-210-3935 3/8 (.3750)-16 .562 3585-6CN 0562 21209-C6-15 5340-00-754-1976 3/8 (.3750)-16 .750 3585-6CN 0750 21209-C6-20 5340-00-812-1894 3/8 (.3750)-16 .938 3585-6CN 0938 21209-C6-25 340-01-048-6353 7/16 (.4375)-14 .438 3585-6CN 1125 21209-C7-10 5340-01-048-6353 7/16 (.4375)-14 .656 3585-7CN 0438 21209-C7-15 5340-00-701-3811 7/16 (.4375)-14 .875 3585-7CN 0656 21209-C7-15 5340-00-701-3811 7/16 (.4375)-14 1.094 3585-7CN 1094 21209-C7-25 5340-00-723-6775 7/16 (.4375)-14 1.094 3585-8CN 0500 21209-C7-20 5340-00-814-9865 1/2 (.5000)-13 .500 3585-8CN 1000 21209-C8-15 5340-00-812-1900 1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 5340-00-812-1900 1/2 (.5000)-13 1.500	5/16 (.3125)-18		3585-5CN 0625		5340-00-825-6938	
3/8 (.3750)-16	5/16 (.3125)-18	.781	3585-5CN 0781	21209-C5-25		
3/8 (.3750)-16	5/16 (.3125)-18	.938	3585-5CN 0938	21209-C5-30		
3/8 (3750)-16	3/8 (.3750)-16	.375	3585-6CN 0375	21209-C6-10	5340-00-210-3935	
3/8 (.3750)-16	3/8 (.3750)-16	.562	3585-6CN 0562	21209-C6-15	5340-00-754-1976	
3/8 (.3750)-16 1.125 3585-6CN 1125 21209-CC-30 5340-01-048-6353 7/16 (.4375)-14 .438 3585-7CN 0438 21209-C7-10 7/16 (.4375)-14 .656 3585-7CN 0656 21209-C7-15 5340-00-701-3811 7/16 (.4375)-14 .875 3585-7CN 0875 21209-C7-20 5340-00-723-6775 7/16 (.4375)-14 1.094 3585-7CN 1094 21209-C7-25 5340-00-723-6775 7/16 (.4375)-14 1.312 3585-7CN 1312 21209-C7-30 1/2 (.5000)-13 .500 3585-8CN 0500 21209-C8-10 1/2 (.5000)-13 .500 3585-8CN 0750 21209-C8-15 5340-00-814-9865 1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-25 5340-00-812-1900 1/2 (.5000)-13 1.500 3585-9CN 1500 21209-C8-30 5340-00-812-1900 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.406 3585-9CN 1688	3/8 (.3750)-16	.750	3585-6CN 0750	21209-C6-20	5340-00-812-1894	
7/16 (.4375)-14 .438 3585-7CN 0438 21209-C7-10 7/16 (.4375)-14 .656 3585-7CN 0656 21209-C7-15 5340-00-701-3811 7/16 (.4375)-14 .875 3585-7CN 0875 21209-C7-20 5340-00-723-6775 7/16 (.4375)-14 1.094 3585-7CN 1094 21209-C7-25 5340-00-723-6775 7/16 (.4375)-14 1.312 3585-7CN 1312 21209-C7-30 1/2 (.5000)-13 .500 3585-8CN 0500 21209-C8-10 1/2 (.5000)-13 .500 3585-8CN 0750 21209-C8-15 5340-00-814-9865 1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.500 3585-8CN 1250 21209-C8-25 5340-00-812-1900 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-25 5340-00-812-1900 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-812-1900 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-026-2017 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 5340-00-723-	3/8 (.3750)-16	.938	3585-6CN 0938	21209-C6-25		
7/16 (.4375)-14 .656 3585-7CN 0656 21209-C7-15 5340-00-701-3811 7/16 (.4375)-14 .875 3585-7CN 0875 21209-C7-20 5340-00-723-6775 7/16 (.4375)-14 1.094 3585-7CN 1094 21209-C7-25 5340-00-723-6775 7/16 (.4375)-14 1.312 3585-7CN 1312 21209-C7-30 21209-C7-30 1/2 (.5000)-13 .500 3585-8CN 0500 21209-C8-10 5340-00-814-9865 1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 5340-00-812-1900 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-25 5340-00-812-1900 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-30 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-20 5340-00-723-6776 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5340-00-772-4849 5/8 (.625	3/8 (.3750)-16	1.125	3585-6CN 1125	21209-CC-30	5340-01-048-6353	
7/16 (.4375)-14 .875 3585-7CN 0875 21209-C7-20 5340-00-723-6775 7/16 (.4375)-14 1.094 3585-7CN 1094 21209-C7-25 5340-00-723-6775 7/16 (.4375)-14 1.312 3585-7CN 1312 21209-C7-30 21209-C7-30 1/2 (.5000)-13 .500 3585-8CN 0500 21209-C8-10 5340-00-814-9865 1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 5340-00-812-1900 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-25 5340-00-812-1900 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C8-30 5340-00-812-1900 9/16 (.5625)-12 .844 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 1.406 3585-9CN 1125 21209-C9-25 5340-00-723-6776 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-25 5340-00-772-4849 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-811-9469 5/8 (.625	7/16 (.4375)-14	.438	3585-7CN 0438	21209-C7-10		
7/16 (.4375)-14	7/16 (.4375)-14	.656	3585-7CN 0656	21209-C7-15	5340-00-701-3811	
7/16 (.4375)-14 1.312 3585-7CN 1312 21209-C7-30 1/2 (.5000)-13 .500 3585-8CN 0500 21209-C8-10 1/2 (.5000)-13 .750 3585-8CN 0750 21209-C8-15 5340-00-814-9865 1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 5340-00-812-1900 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-30 21209-C8-30 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-25 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-811-9469 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	7/16 (.4375)-14	.875	3585-7CN 0875	21209-C7-20	5340-00-723-6775	
1/2 (.5000)-13 .500 3585-8CN 0500 21209-C8-10 1/2 (.5000)-13 .750 3585-8CN 0750 21209-C8-15 5340-00-814-9865 1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 21209-C8-25 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-30 21209-C9-10 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	7/16 (.4375)-14	1.094	3585-7CN 1094	21209-C7-25		
1/2 (.5000)-13 .750 3585-8CN 0750 21209-C8-15 5340-00-814-9865 1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 21209-C8-25 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-30 21209-C8-30 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	7/16 (.4375)-14	1.312	3585-7CN 1312	21209-C7-30		
1/2 (.5000)-13 1.000 3585-8CN 1000 21209-C8-20 5340-00-812-1900 1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-30 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	1/2 (.5000)-13	.500	3585-8CN 0500	21209-C8-10		
1/2 (.5000)-13 1.250 3585-8CN 1250 21209-C8-25 1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-30 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	1/2 (.5000)-13	.750	3585-8CN 0750	21209-C8-15	5340-00-814-9865	
1/2 (.5000)-13 1.500 3585-8CN 1500 21209-C8-30 9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	1/2 (.5000)-13	1.000	3585-8CN 1000	21209-C8-20	5340-00-812-1900	
9/16 (.5625)-12 .562 3585-9CN 0562 21209-C9-10 5340-00-026-2017 9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	1/2 (.5000)-13	1.250	3585-8CN 1250	21209-C8-25		
9/16 (.5625)-12 .844 3585-9CN 0844 21209-C9-15 5340-00-723-6776 9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	1/2 (.5000)-13	1.500	3585-8CN 1500	21209-C8-30		
9/16 (.5625)-12 1.125 3585-9CN 1125 21209-C9-20 9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	9/16 (.5625)-12	.562	3585-9CN 0562	21209-C9-10	5340-00-026-2017	
9/16 (.5625)-12 1.406 3585-9CN 1406 21209-C9-25 9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	9/16 (.5625)-12	.844	3585-9CN 0844	21209-C9-15	5340-00-723-6776	
9/16 (.5625)-12 1.688 3585-9CN 1688 21209-C9-30 5/8 (.6250)-11 .625 3585-1CCN 0625 21209-C1010 5340-00-772-4849 5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	9/16 (.5625)-12	1.125	3585-9CN 1125	21209-C9-20		
5/8 (.6250)-11	9/16 (.5625)-12	1.406	3585-9CN 1406	21209-C9-25		
5/8 (.6250)-11 .938 3585-10CN 0938 21209-C1015 5340-00-811-9469	9/16 (.5625)-12	1.688	3585-9CN 1688	21209-C9-30		
	5/8 (.6250)-11	.625	3585-1CCN 0625	21209-C1010	5340-00-772-4849	
5/8 (.6250)-11 1.250 3585-10CN 1250 21209-C1020 5340-00-812-1895	5/8 (.6250)-11	.938	3585-10CN 0938	21209-C1015	5340-00-811-9469	
	5/8 (.6250)-11	1.250	3585-10CN 1250	21209-C1020	5340-00-812-1895	
5/8 (.6250)-11 1.562 3585-10CN 1562 21209-C1025						
5/8 (.6250)-11 1.875 3585-10CN 1875 21209-C1030			3585-10CN 1875	21209-C1030		
3/4 (.7500)-10	3/4 (.7500)-10				5340-00-753-3497	
3/4 (.7500)-10	` ´					
3/4 (.7500)-10 1.500 3585-12CN 1500 21209-C1220 5340-00-800-1676						
3/4 (.7500)-10 1.875 3585-12CN 1875 21209-C1225	` · · · ·			i		
3/4 (.7500)-10 2.250 3585-12CN 2250 21209-C1230	` ´					

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part N	lumber		
Oi	1	Hali Oail	Military Standard	National Stock	Your
Size	Length	Heli-Coil	No.	No.	Reference
7/8 (.8750)-9	.875	3585-14CN 0875	21209-C1410	5240 00 724 1020	
7/8 (.8750)-9	1.312	3585-14CN 1312	21209-C1415	5340-00-724-1920	
7/8 (.8750)-9	1.750	3585-14CN 1750	21209-C1420		
7/8 (.8750)-9	2.188 2.625	3585-14CN 2188	21209-C1425		
7/8 (.8750)-9		3585-14CN 2625	21209-C1430		
1 (1.0000)-8	1.000	3585-16CN 1000	21209-C1610	5240 00 062 0111	
1 (1.0000)-8	1.500	3585-16CN 1500	21209-C1615	5340-00-863-8111	
1 (1.0000)-8	2.000	3585-16CN 2000	21209-C1620	5340-00-812-1897	
1 (1.0000)-8	2.500	3585-16CN 2500	21209-C1625		
1 (1.0000)-8	3.000	3585-16CN 3000	21209-C1630		
1-1/8 (1.1250)-7	1.125	3585-18CN 1125	21209-C1810		
1-1/8 (1.1250)-7	1.688	3585-18CN 1688	21209-C1815		
1-1/8 (1.1250)-7	2.250	3585-18CN 2250	21209-C1820		
1-1/8 (1.1250)-7	2.812	3585-18CN 2812	21209-C1825		
1-1/8 (1.1250)-7	3.375	3585-18CN 3375	21209-C1830		
1-1/4 (1.2500)-7	1.250	3585-20CN 1250	21209-C2010	5340-00-812-3008	
1-1/4 (1.2500)-7	1.875	3585-20CN 1875	21209-C2015		
1-1/4 (1.2500)-7	2.500	3585-20CN 2500	21209-C2020		
1-1/4 (1.2500)-7	3.125	3585-20CN 3125	21209-C2025		
1-1/4 (1.2500)-7	3.750	3585-20CN 3750	21209-C2030		
1-3/8 (1.3750)-6	1.375	3585-22CN 1375	21209-C2210		
1-3/8 (1.3750)-6	2.062	3585-22CN 2062	21209-C2215		
1-3/8 (1.3750)-6	2.750	3585-22CN 2750	21209-C2220		
1-3/8 (1.3750)-6	3.438	3585-22CN 3438	21209-C2225		
1-3/8 (1.3750)-6	4.125	3585-22CN 4125	21209-C2230		
1-1/2 (1.5000)-6	1.500	3585-24CN 1500	21209-C2410	5340-01-024-7198	
1-1/2 (1.5000)-6	2.250	3585-24CN 2250	21209-C2415		
1-1/2 (1.5000)-6	3.000	3585-24CN 3000	21209-C2420		
1-1/2 (1.5000)-6	3.750	3585-24CN 3750	21209-C2425		
1-1/2 (1.5000)-6	4.500	3585-24CN 4500	21209-C2430		
			rts - Unified Fine		
3 (.099)-56	.099	3591-03CN 0099	21209-F0310		
3 (.099)-56	.148	3591-03CN 0148	21209-F0315		
3 (.099)-56	.198	3591-03CN 0198	21209-F0320		
3 (.099)-56	.248	3591-03CN 0248	21209-F0325		
3 (.099)-56	.297	3591-03CN 0297	21209-F0330		
4 (.112)-48	.112	3591-041CN 0112	21209-F0410	5340-01-008-7714	
4 (.112)-48	.168	3591-041CN 0168	21209-F0415	5340-01-008-7715	
4 (.112)-48	.224	3591-041CN 0224	21209-F0420	5340-01-022-2325	
4 (.112)-48	.280	3591-041CN 0280	21209-F0425		
4 (.112)-48	.336	3591-041CN 0336	21209-F0430		
6 (.138)-40	.138	3591-06CN 0138	21209-F0610	5340-00-288-1921	

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part Number			
Size	Length	Heli-Coil	Military Standard No.	National Stock No.	Your Reference
6 (.138)-40	.207	3591-06CN 0207	21209-F0615	5340-00-480-3654	
6 (.138)-40	.276	3591-06CN 0276	21209-F0620	5340-00-813-2162	
6 (.138)-40	.345	3591-06CN 0345	21209-F0625		
6 (.138)-40	.414	3591-06CN 0414	21209-F0630		
8 (.164)-36	.164	3591-2CN 0164	21209-F0810	5340-01-009-7448	
8 (.164)-36	.246	3591-2CN 0246	21209-F0815	5340-00-324-9146	
8 (.164)-36	.328	3591-2CN 0328	21209-F0820		
8 (.164)-36	.410	3591-2CN 0410	21209-F0825		
8 (.164)-36	.492	3591-2CN 0492	21209-F0830		
10 (.190)-32	.190	3591-3CN 0190	21209-F1-10	5340-00-684-9501	
10 (.190)-32	.285	3591-3CN 0285	21209-F1-15	5340-00-800-7874	
10 (.190)-32	.380	3591-3CN 0380	21209-F1-20	5340-00-721-7653	
10 (.190)-32	.475	3591-3CN 0475	21209-F1-25	5340-00-229-4873	
10 (.190)-32	.570	3591-3CN 0570	21209-F1-30	5340-01-038-2467	
1/4 (.2500)-28	.250	3591-4CN 0250	21209-F4-10	5340-00-210-3920	
1/4 (.2500)-28	.375	3591-4CN 0375	21209-F4-15	5340-00-829-2141	
1/4 (.2500)-28	.500	3591-4CN 0500	21209-F4-20	5340-00-721-7498	
1/4 (.2500)-28	.625	3591-4CN 0625	21209-F4-25	5340-00-410-2476	
1/4 (.2500)-28	.750	3591-4CN 0750	21209-F4-30	5340-01-018-6037	
5/16 (.3125)-24	.312	3591-5CN 0312	21209-F5-10	5340-00-218-1518	
5/16 (.3125)-24	.469	3591-5CN 0469	21209-F5-15	5340-00-847-0734	
5/16 (.3125)-24	.625	3591-5CN 0625	21209-F5-20	5340-00-582-7256	
5/16 (.3125)-24	.781	3591-5CN 0781	21209-F5-25	5340-00-819-2448	
5/16 (.3125)-24	.938	3591-5CN 0938	21209-F5-30	5340-01-037-1101	
3/8 (.3750)-24	.375	3591-6CN 0375	21209-F6-10	5340-00-754-1817	
3/8 (.3750)-24	.562	3591-6CN 0562	21209-F6-15	5340-00-680-8768	
3/8 (.3750)-24	.750	3591-6CN 0750	21209-F6-20	5340-00-678-3311	
3/8 (.3750)-24	.938	3591-6CN 0938	21209-F6-25	5340-00-059-4685	
3/8 (.3750)-24	1.125	3591-6CN 1125	21209-F6-30		
7/16 (.4375)-20	.438	3591-7CN 0438	21209-F7-10	5340-00-716-9148	
7/16 (.4375)-20	.656	3591-7CN 0656	21209-F7-15	5340-00-678-3310	
7/16 (.4375)-20	.875	3591-7CN 0875	21209-F7-20	5340-00-619-4227	
7/16 (.4375)-20	1.094	3591-7CN 1094	21209-F7-25	5340-00-067-7814	
7/16 (.4375)-20	1.312	3591-7CN 1312	21209-F7-30		
1/2 (.5000)-20	.500	3591-8CN 0500	21209-F8-10	5340-00-803-7150	
1/2 (.5000)-20	.750	3591-8CN 0750	21209-F8-15	5340-00-678-3309	
1/2 (.5000)-20	1.000	3591-8CN 1000	21209-F8-20	5340-00-721-7915	
1/2 (.5000)-20	1.250	3591-8CN 1250	21209-F8-25		
1/2 (.5000)-20	1.500	3591-8CN 1500	21209-F8-30		
9/16 (.5625)-18	.562	3591-9CN 0562	21209-F9-10	5340-00-686-0152	
9/16 (.5625)-18	.844	3591-9CN 0844	21209-F9-15	5340-00-685-0693	
9/16 (.5625)-18	1.125	3591-9CN 1125	21209-F9-20	5340-00-726-8526	

Table 9-21. Helical Coil Screw Thread Inserts - Continued

		Part Number			
0:		Military Standard		National Stock	Your
Size	Length	Heli-Coil	No.	No.	Reference
9/16 (.5625)-18	1.406	3591-9CN 1406	21209-F9-25		
9/16 (.5625)-18	1.688	3591-9CN 1688	21209-F9-30	5240.00.015.0220	
5/8 (.6250)-18	.625	3591-10CN 0625	21209-F1010	5340-00-815-8338	
5/8 (.6250)-18	.938	3591-10CN 0938	21209-F1015	5340-00-834-8362	
5/8 (.6250)-18	1.250	3591-10CN 1250	21209-F1020		
5/8 (.6250)-18	1.562	3591-10CN 1562	21209-F1025		
5/8 (.6250)-18	1.875	3591-10CN 1875	21209-F1030		
3/4 (.7500)-16	.750	3591-12CN 0750	21209-F1210	5340-00-514-8478	
3/4 (.7500)-16	1.125	3591-12CN 1125	21209-F1215	5340-00-723-6780	
3/4 (.7500)-16	1.500	3591-12CN 1500	21209-F1220	5340-00-836-2941	
3/4 (.7500)-16	1.875	3591-12CN 1875	21209-F1225		
3/4 (.7500)-16	2.250	3591-12CN 2250	21209-F1230		
7/8 (.8750)-14	.875	3591-14CN 0875	21209-F1410	5340-00-985-6568	
7/8 (.8750)-14	1.312	3591-14CN 1312	21209-F1415	5340-00-068-1286	
7/8 (.8750)-14	1.750	3591-14CN 1750	21209-F1420	5340-01-014-4621	
7/8 (.8750)-14	2.188	3591-14CN 2188	21209-F1425		
7/8 (.8750)-14	2.625	3591-14CN 2625	21209-F1430		
1 (1.0000)-12	1.000	3591-161CN 1000	21209-F1610		
1 (1.0000)-12	1.500	3591-161CN 1500	21209-F1615	5340-00-045-0514	
1 (1.0000)-12	2.000	3591-161CN 2000	21209-F1620		
1 (1.0000)-12	2.500	3591-161CN 2500	21209-F1625		
1 (1.0000)-12	3.000	3591-161CN 3000	21209-F1630		
1-1/8 (1.1250)-12	1.125	3591-18CN 1125	21209-F1810	5340-01-048-6352	
1-1/8 (1.1250)-12	1.688	3591-18CN 1688	21209-F1815	5340-00-421-9354	
1-1/8 (1.1250)-12	2.250	3591-18CN 2250	21209-F1820		
1-1/8 (1.1250)-12	2.812	3591-18CN 2812	21209-F1825		
1-1/8 (1.1250)-12	3.375	3591-18CN 3375	21209-F1830		
1-1/4 (1.2500)-12	1.250	3591-20CN 1250	21209-F2010		
1-1/4 (1.2500)-12	1.875	3591-20CN 1875	21209-F2015		
1-1/4 (1.2500)-12	2.500	3591-20CN 2500	21209-F2020		
1-1/4 (1.2500)-12	3.125	3591-20CN 3125	21209-F2025		
1-1/4 (1.2500)-12	3.750	3591-20CN 3750	21209-F2030		
1-3/8 (1.3750)-12	1.375	3591-22CN 1375	21209-F2210		
1-3/8 (1.3750)-12	2.062	3591-22CN 2062	21209-F2215		
1-3/8 (1.3750)-12	2.750	3591-22CN 2750	21209-F2220		
1-3/8 (1.3750)-12	3.438	3591-22CN 3438	21209-F2225		
1-3/8 (1.3750)-12	4.125	3591-22CN 4125	21209-F2230		
1-1/2 (1.5000)-12	1.500	3591-24CN 1500	21209-F2410		
1-1/2 (1.5000)-12	2.250	3591-24CN 2250	21209-F2415		
1-1/2 (1.5000)-12	3.000	3591-24CN 3000	21209-F2420		
1-1/2 (1.5000)-12	3.750	3591-24CN 3750	21209-F2425		
1-1/2 (1.5000)-12	4.500	3591-24CN 4500	21209-F2430		

Table 9-22. Helical Coil 18-1.5mm

Part Description	National Stock No.	Military Standard
Long Reach - Length .683		
Standard Insert	5340-00-532-7727	9018-01
+.003 Oversize Insert	5340-00-037-5252	9018-02
+.005 Oversize Insert	5340-00-037-5253	9018-03
+.010 Oversize Insert	5340-00-597-5470	9018-04
+.015 Oversize Insert		9018-09
+.020 Oversize Insert		9018-10
+.025 Oversize Insert		9018-11
Short Reach - Length .334		
Standard Insert		9018-05
+.003 Oversize Insert		9018-06
+.005 Oversize Insert		9018-07
+.010 Oversize Insert		9018-08

Table 9-23. Helical Coil Stud-Locking Inserts

Size	Length	* Part No.	Aerospace Std. No.	National Stock No.
		Unified Coars	se	
10 (.190)-24	.285	3758-3CN 0285	*	
10 (.190)-24	.380	3758-3CN 0380		
10 (.190)-24	.475	37S83CN 0475		
10 (.190)-24	.570	37583CN 0570		
1/4 (.250)-20	.375	3758-4CN 0375		5340-01-014-7388
1/4 (.250)-20	.500	3758-4CN 0500		
1/4 (.250)-20	.625	3758-4CN 0625		
1/4 (.250)-20	.750	3758-4CN 0750		
5/16 (.312)-18	.469	3758-5CN 0469		5340-00-505-3634
5/16 (.312)-18	.625	3758-5CN 0625		5340-00-191-9407
5/16 (-312)-18	.781	3758-5CN 0781		5340-00-453-8736
5/16 (.312)-18	.938	3758-5CN 0938		
3/8 (.375)-16	.562	3758-6CN 0562		5340-01-014-7389
3/8 (.375)-16	.750	3758-6CN 0750		
3/8 (.375)-16	.938	3758-6CN 0938		5340-00-441-2383
3/8 (.375)-16	1.125	3758-6CN 1125		
7/16 (.438)-14	.656	3758-7CN 0656		
7/16 (.438)-14	.875	3758-7CN 0875		
7/16 (.438)-14	1.094	3758-7CN 1094		
7/16 (.438)-14	1.312	37587CN 1312		
1/2 (.500)-13	.750	3758-8CN 0750		
1/2 (.500)-13	1.000	3758-8CN 1000		
1/2 (.500)-13	1.250	3758-8CN 1250		
1/2 (.500)-13	1.500	3758-8CN 1500		

Table 9-23. Helical Coil Stud-Locking Inserts - Continued

	1		Aerospace Std.		
Size	Length	* Part No.	No.	National Stock No.	
Unified Fine					
10 (.190)-32	.285		AS 3080-03		
10 (.190)-32	.380		AS 3081-03		
10 (.190)-32	.475		AS 3082-03		
10 (.190)-32	.570		AS 3083-03		
1/4 (.250)-28	.375		AS 3080-04		
1/4 (.250)-28	.500		AS 3081-04		
1/4 (.250)-28	.625		AS 3082-04		
1/4 (.250)-28	.750		AS 3083-04		
5/16 (.312)-24	.469		AS 3080-05		
5/16 (.312)-24	.625		AS 3081-05		
5/16 (.312)-24	.781		AS 3082-05		
6/16 (.312)-24	.938		AS 3083-05		
3/8 (.375)-24	.562		AS 3080-06		
3/8 (.375)-24	.750		AS 3081-06		
3/8 (.375)-24	.938		AS 3082-06		
3/8 (.375)-24	1.125		AS 3083-06		
7/16 (.438)-20	.656		AS 3080-07		
7/16 (438)-20	.875		AS 3081-07		
7/16 (.438)-20	1.094		AS 3082-07		
7/16 (438)-20	1.312		AS 3083 07		
1/2 (.500)-20	.750		AS 3080-08		
1/2 (.500)-20	1.000		AS 3081-08		
1/2 (.500)-20	1.250		AS 3082-08		
1/2 (.500)-20	1.500		AS 3083-08		
*Use Part number per CAGE No. 01556 to order Unified Coarse Stud-Lock Inserts					

CHAPTER 10 PANEL AND QUICK-RELEASE FASTENERS

10.1 <u>PANEL AND QUICK-RELEASE</u> FASTENERS.

CAUTION

- To prevent fastener damage, use proper tools. (See Chapter 3 for driver selection.)
- To prevent damage to structure or fastener components, always use proper grip-length fasteners.
- To prevent damage to structure or fastener components, do not exceed manufacturer's recommended installation torque.
- To prevent damage to structure, do not allow screwdriver or wrench to slip out of driving recess.

These fasteners are used to secure cowling, plates, panels and doors which require quick and frequent removal and replacement. The primary difference between the 2 types of fasteners is their method of installation and load-carrying ability. Quick-release fasteners are not generally designed to carry primary structural loads. Quick-release fasteners are (as the name implies) easily installed and removed, generally with only a one-quarter turn of the stud. Panel fasteners are designed to carry structural loads and require several turns of the multiple lead screw for installation and release. Cautions apply to the usage of both types of fasteners.

10.2 <u>STRUCTURE ASSEMBLY USING PANEL AND QUICK-RELEASE FASTENERS.</u>

Ease of assembly as well as reduced damage to structure and fasteners can best be achieved by following the steps below:

- a. Be sure all studs are pulled out to the fully retracted position.
- b. Place panel in position and align studs with holes.

NOTE

DO NOT use studs as handles.

c. Push studs in and engage by hand before applying torque.

- d. Make sure that all of the fasteners in the panel are started before running down any of the fasteners in the pattern.
- e. Apply torque using the proper tools (see Chapter 3), in a smooth uniform manner. DO NOT snap load or over torque. See the dash 3 of the applicable System Technical Order for proper torque values.
- f. Check the installation for gaps, bulges, and misalignment. Should any be present, disassemble the unit, check studs and receptacles for proper operation, check alignment, and insure that no foreign material is present in the joint area - then reassemble.

10.3 <u>STRUCTURE DISASSEMBLY USING PANEL</u> AND QUICK-RELEASE FASTENERS.

Care should be taken when disassembling structure which is held in place with panel and quick-release fasteners. Damage to structure and fasteners can be avoided by following the steps shown below.

- a. Select the proper tool for the fastener recess. (See Chapter 3 for driver selection.)
- b. Back the fasteners out.
- c. Pull the studs out to the fully retracted position.
- d. Remove the panel. DO NOT USE the studs as handles.
- e. Check receptacles for damage.

10.4 QUICK-RELEASE FASTENERS.

There are three basic styles of quick-release fasteners available for aircraft use, covered here as Style I, Style II, and Style III. The flush-head, quick-release fastener is used on the exterior of aircraft; oval and winged head fasteners are used in the interior.

10.4.1 Style I Quick-Release Fastener.

CAUTION

To prevent fastener damage, use proper tools.

The Style I quick-release fastener consists of a stud assembly, a grommet, and a receptacle. There are two types of Style I fasteners used on aircraft. The light-duty type is

used on box doors and panels, plates, and light fairing sections, and a heavy-duty type is generally used on cowling and heavy fairing.

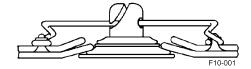


Figure 10-1. Style I Quick-Release Fastener

10.4.1.1 Removal and Replacement of Style I Quick-Release Fastener.

10.4.1.2 <u>Winged Type or Small Oval Head Type</u>. Style I quick-release fasteners, shown in Figure 10-1, are removed and replaced by Style I fastener tools. Winged type or small oval head type Style I fasteners should be removed as follows:

- a. Center damaged quick-release fastener over hole in anvil.
- b. Drive out old fastener as shown in detail A of Figure 10-2. The hole will be too large and will be dimpled on the wrong side after the damaged fastener has been driven out.

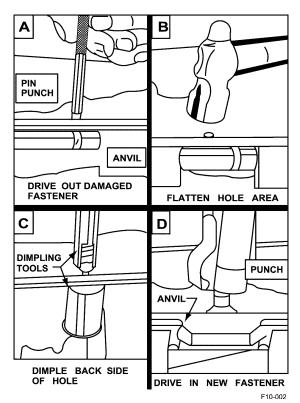


Figure 10-2. Removal and Replacement of Style I Quick-Release Fastener

- c. Flatten hole area as shown in detail B of Figure 10-2.
- Redimple back side of hole as shown in detail C of Figure 10-2.
- e. Drive in new quick-release fastener as shown in detail D of Figure 10-2.

10.4.1.3 <u>Heavy-Duty Style I</u>. Remove and replace flush-type, heavy-duty Style I quick-release fastener as follows:

- Remove grommet and damaged fastener by cutting away grommet as shown in Figure 10-3.
- b. Install new grommet and fastener by inserting fastener into grommet and flaring grommet as shown in Figure 10-4.

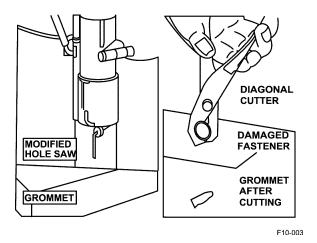


Figure 10-3. Removal of Flush-Type, Heavy-Duty, Style I Quick-Release Fastener

10.4.1.3.1 Repair of Heavy-Duty Style I Quick-Release Fastener Hole. When the hole is too badly damaged to permit reinstallation of the same size heavy-duty, Style I quick-release fastener, repair as follows:

- a. Drill hole in panel approximately 1/8-inch-larger diameter than required for fastener.
- b. Fabricate a plate approximately 1/1/2-inches square of same material and thickness as panel.
- c. Bevel edges of plate and dimple to dimension equal to thickness of plate and same diameter as hole in panel.

- d. Place plate on panel so that dimple fits into hole prepared in a above.
- e. Drill holes and secure plate to panel with rivets.
- Drill correct size hole in plate dimple that will accommodate fastener to be installed.
- g. Install grommet and fastener.

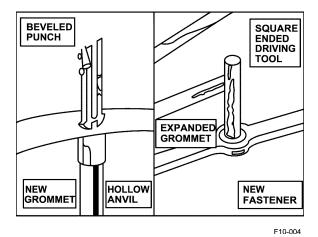


Figure 10-4. Replacement of Flush-Type, Heavy-Duty, Style I Quick-Release Fastener

10.4.2 Style II Quick-Release Fastener. The Style II quick-release fasteners covered in this section are used to secure aircraft cowling and fairing. The Style II fastener consists of three parts: a stud assembly, a grommet, and a receptacle. (See Figure 10-5.) There are two types of receptacles - the rigid and the floating. The rigid receptacle is not used to a great extent on cowling. When repair or replacement is necessary, the rigid receptacle should be replaced with a floating type. The receptacle shown in Figure 10-5 consists of an aluminum alloy forging mounted in a stamped sheet metal base. The forging has room for approximately 1/8-inch float. The receptacle is riveted to the panel support or panel. The grommet shown in Figure 10-5 is a flanged ring made to fit into a dimple in the outside panel. Grommets are furnished in various lengths to accommodate the varying thickness of panels. The stud assembly shown in Figure 10-5 consists of a stud, cross pin, spring, and spring cup. The stud assemblies are assembled at the factory and should not be disassembled. To install the stud assembly, compress the spring and insert the stud assembly into the grommet. Once installed in the grommet, the stud assembly cannot be removed unless the spring is again compressed. A Style II fastener assembly in the locked and unlocked position is shown in Figure 10-6 and Figure 10-7.

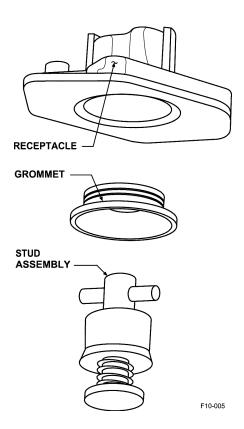


Figure 10-5. Style II Quick-Release Fastener

10.4.2.1 <u>Removal and Replacement of Style II</u> Quick-Release Fastener.

10.4.2.2 Style II Quick-Release Fastener Receptacle. If the panel or panel support is damaged, it may be necessary to install a new section on which the receptacle can be riveted. When it becomes necessary to replace the receptacle, proceed as follows:

- a. Remove damaged receptacle by drilling out rivets.
- b. Install new receptacle by riveting into place.

10.4.2.3 <u>Style II Quick-Release Fastener Grommet.</u> When it becomes necessary to replace a grommet, proceed as follows:

- a. Cut away old grommet or, by applying pressure from the top, press out old grommet, thus enlarging the dimple.
- b. Insert new grommet and press dimple back into its original shape.

10.4.3 <u>Style II Quick-Release Fastener Stud Assembly.</u> Insert stud assembly into grommet as follows:

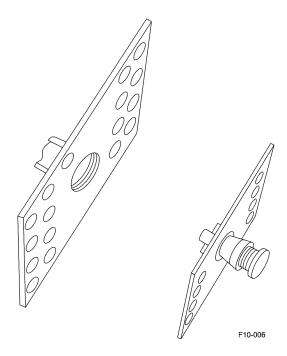


Figure 10-6. Style II Quick-Release Fastener, Unlocked Position

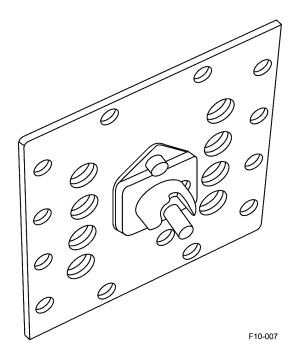


Figure 10-7. Style II Quick-Release Fastener, Locked Position

a. Compress spring of stud assembly. Pliers shown in Figure 10-8 are used for this operation; however, any pliers may be ground to a similar shape, or an improvised metal extractor may be used.

b. Insert stud assembly through grommet. Use the shortest stud assembly that will lock and unlock without binding. (See System TO for proper stud length.)

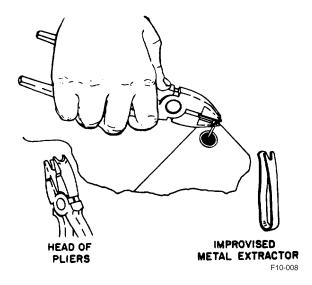


Figure 10-8. Style II Quick-Release Fastener Plier

10.4.4 Style III Quick-Release Fastener. The Style III fastener, shown in Figure 10-9, consists of three parts: a spring or stud receptacle, the stud, and the cross pin. These fasteners are manufactured in three sizes, 3/4-inch, 1-inch, and 1-3/8-inch. The size designation is based on the center distances between the receptacle rivet holes and the relative tensile strengths. These correspond to the general size designations of numbers 2, 5, and 7, respectively. (Refer to Table 10-1.) The two types of Style III receptacles used on aircraft are the rigid and floating types; they are shown in Figure 10-10. Both types are manufactured from highcarbon, heat-treated steel. The receptacles are riveted into place. An upper wing provides ejection of the stud when the fastener is unlocked and permits the cross pin to be held in a locked position between the upper wing, the cam, the stop, and the wing indention. The Type III studs shown in Figure 10-11 are manufactured of steel, case-hardened to eliminate excessive wear. The stud hole is reamed for a press fit of the cross pin in the stud hole. The cross pin shown in Figure 10-11 is made of chrome-vanadium steel, heat treated to provide maximum strength, wear, and holding power.

10.4.5 <u>Removal and Replacement of Style III</u> Quick-Release Fastener.

10.5 <u>STYLE III QUICK-RELEASE FASTENER</u> RECEPTACLE.

If the panel or sheet is damaged, it may be necessary to install a new section on which the receptacle can be installed. Receptacles shown in Figure 10-10 are riveted to the inner surface of the inner sheet. The rivets must be flush with the outer surface of the inner sheet. When installing receptacles, it is important that the correct size rivets be used. With 3/4-inch receptacle, use 3/32-inch rivets; with 1-inch receptacles, use 1/8 or 3/32-inch rivets; and with 1-3/8-inch receptacles, use 1/8-inch rivets. Receptacles with plain rivet holes may be replaced by receptacles with countersunk rivet holes. Remove and replace receptacles as follows:

- a. Drill out rivets, being careful not to damage the sheet or panel.
- b. Select the proper size and type receptacle and rivet in place. Make sure the correct size rivets are used.

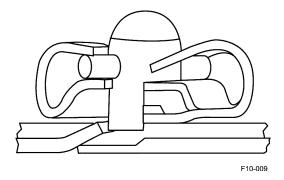


Figure 10-9. Style III Quick-Release Fastener

Table 10-1. Size Designations

Size	Stud Shank Diameter	Cross Pin Length
No. 2 (3/4-Inch)	11/64	0.313
No. 5 (1-Inch)	17/64	0.453
No. 7 (1-3/8-Inches)	5/16	0.600

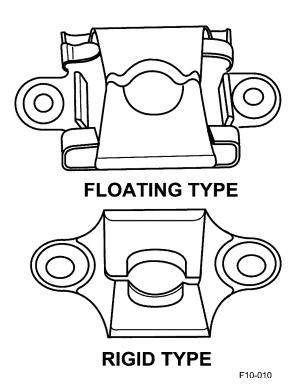


Figure 10-10. Style III Quick-Release Fastener Receptacles

10.6 STYLE III QUICK-RELEASE FASTENER STUD.

Remove and replace Style III studs as follows:

- a. Remove cross pin from stud. (See Figure 10-11.)
- b. Remove stud.

Do not reuse old cross pins or studs because the cross pin will not be sufficiently tight in the stud.

- c. Select correct stud size and length.
- d. Insert new stud into panel or sheet and insert new cross pin.

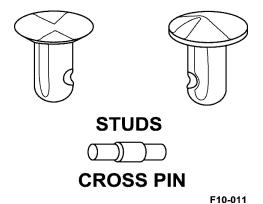


Figure 10-11. Style III Quick-Release Fastener Studs and Cross Pins

10.7 <u>STYLE III QUICK-RELEASE FASTENER</u> CROSS PINS.

The cross pins are removed either by clipping off or by pressing out. The cross pins for 1-3/8 and 1-inch studs are to be pressed out. The standard hand pliers shown in Figure 10-12 may be used for this operation. These pliers are available for each size Style III fastener. The cross pin for 3/4-inch studs may be clipped off. A method of inserting cross pins is shown in Figure 10-13.

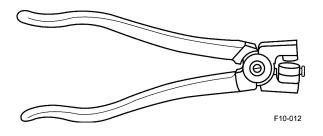


Figure 10-12. Hand Pliers for Removing Cross Pins

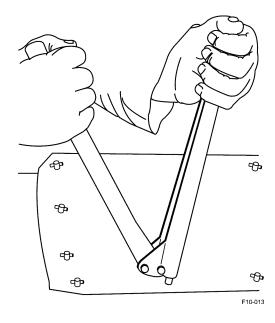


Figure 10-13. Inserting Cross Pin Using Hand Tool

10.8 <u>STYLE III QUICK-RELEASE FASTENER</u> <u>STUD SELECTION</u>.

Before the stud shown in Figure 10-11 can be installed, the sheet in which the stud is to be installed must be dimpled, if dimpling is required. There are two methods of dimpling: machine dimpling and hand dimpling, as shown in Figure 10-14 and Figure 10-15. Dimpling tools, as well as tool holders, are available for all sizes of Style III fasteners. If roundhead studs are not available, the outer sheet may be dimpled and a countersunk head stud substituted. Style III studs come in lengths varying ten-thousandths of an inch. When a new stud is to be installed, be sure that the proper length stud is selected. The stud length is stamped on the stud head. To determine correct stud length, proceed as follows:

- a. Select proper head type: flush head or winged.
- Determine total applicable thickness. Add thickness of inner (structure) and outer (panel, door, etc.) sheets, including gaskets and reinforcements, in thousandths of an inch. Add 0.010 inch to allow for wrinkling, warpage, etc.
- c. Take the nearest even 0.010 inch above the total obtained in b above. This total is the correct stud length to use.

NOTE

- An additional 0.020 inch must be added to the values obtained in step b above when selecting studs for number 2 floating receptacles. For numbers 5 and 7 floating receptacles, add 0.030 inch. (Refer to Table 10-2.)
- Sometimes severe warpage of wrinkling makes it difficult to engage the receptacle requiring a stud 0.010 or 0.020 inch longer.

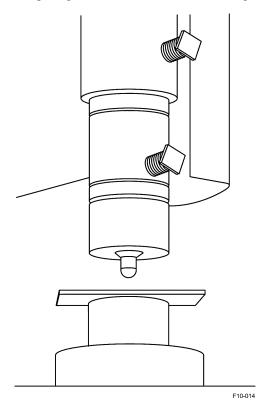


Figure 10-14. Machine Dimpling

10.8.1 Style III Quick-Release Fastener Maintenance. When a Style III fastener does not fasten properly and the stud length is known to be correct, excess misalignment is usually the cause. This condition can often be corrected by removing the panel and fastening the studs in a different sequence -- either fastening the difficult studs first, or by starting in the middle of the panel and working toward each end.

CAUTION

When replacing Style III studs, do not hammer the stud head because the cross pin may fracture the cam of the receptacle. Be sure the cross pin is centered in the stud.

a. In an extreme case of misalignment, a slightly larger stud hole may correct the condition. However, care must be used so that the stud holes do not exceed 27/64-inch for the number 7 stud, 5/16-inch for the number 5 stud, and 7/32 inch for the number 2 stud; otherwise the stud will fall out of the panel. If a rigid type receptacle is being used, a floating type may correct the condition. When floating type receptacles are used, it is necessary to enlarge the receptacle hole to 7/8-inch for the number 7 receptacle, 11/16-inch for the number 5 receptacle, and 15/32-inch for the number 2 receptacle. This will permit maximum float or misalignment takeup.

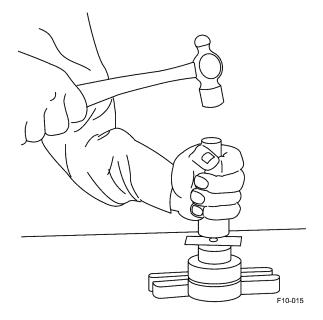


Figure 10-15. Hand Dimpling

Table 10-2. Example of Style III Quick-Release Fastener Stud Length Selection

	For All Stationary Receptacles	For No. 2 Floating Receptacles	For No. 5 and No. 7 Floating Receptacles
Inner Sheets	0.064	0.064	0.064
Outer Sheets	0.080	0.080	0.080
Reinforcement	0.016	0.016	0.016
Gasket	0.038	0.038	0.038
	0.198	0.198	0.198
Plus Allowance for Warpage, Wrinkling, etc.	0.010	0.010	0.010
Plus Allowance for Floating		0.020	0.030
Туре	0.208	0.228	0.238
Stud Length to be Used	0.210	0.230	0.240

10.9 OTHER QUICK-RELEASE FASTENERS.

There are numerous styles of quick-release fasteners that provide installation and removal in one-quarter turn. In general, they require a stud, some means of retaining the stud, and a receptacle.

10.9.1 <u>Dzus Panel Line Fasteners</u>. This type fastener provides a stud loaded in a cup (see Figure 10-16). The cup is retained in the upper panel by a flaring operation on the under side of the panel. The stud is retained by clinching the top of the cup to conform to the stud head profile. There are several receptacles available, all employing the spring wire principle shown in Figure 10-1. For installation of preassembled type PFSC 3 1/2 Panel Line Fasteners, use power tool P/N PT3 1/2A, NSN 5120-00-152-2275.

10.9.2 <u>Camloc Fasteners</u>. Camloc fasteners are semistructural type and are of relatively high strength. They are used in areas for access panels and inspection doors which are frequently removed and which do not carry primary aircraft structural stresses. The camloc fastener (see Figure 10-20) has three basic parts. The stud, the retaining ring and the receptacle. The stud is held in the access panel or door with the retaining ring, and the receptacle is riveted to the substructure. There are four types of receptacles used with the Camloc fastener. Two types used with the 4002 series shear-type fastener are 214-16, which is a rigid-type receptacle, and 244-16, which is a floating-type receptacle. Types 4R41-1 and 4R1-16 are used with the stressed-panel fastener, and are both floating-type receptacles.

10.9.3 <u>Paneloc Quarter-Turn Fasteners</u>. These fasteners are available in three sizes. They consist of a stud, retaining ring, and receptacle (see Figure 10-21). A shear washer is used when added strength is required. Table 10-3 presents a stud length selection table and typical installation instructions.

PANEL LINE

COMPONENTS

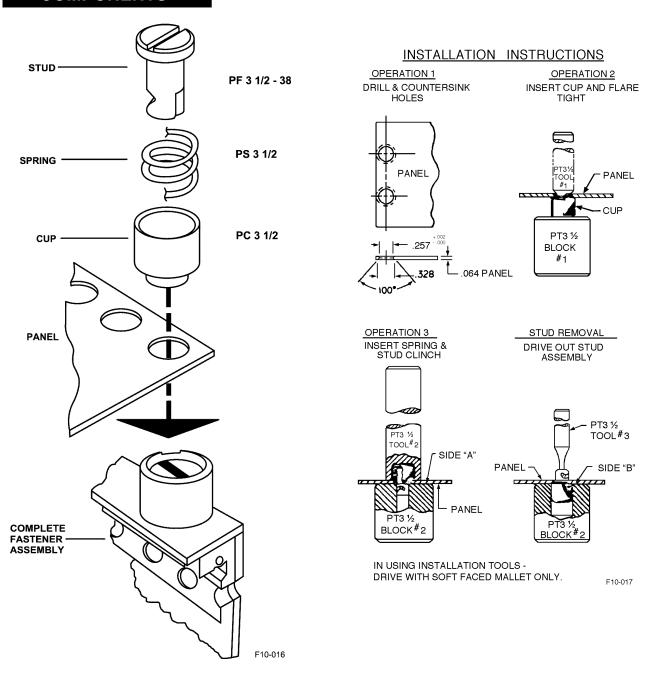


Figure 10-16. Typical Installation for Dzus PF 3 1/2-38 Stud, PC 3 1/2 Cup, and PS 3 1/2 Spring

Figure 10-17. Installation and Removal Instructions for Dzus PF 3 1/2-38 Stud, PC 3 1/2 Cup, and PS 3 1/2 Spring

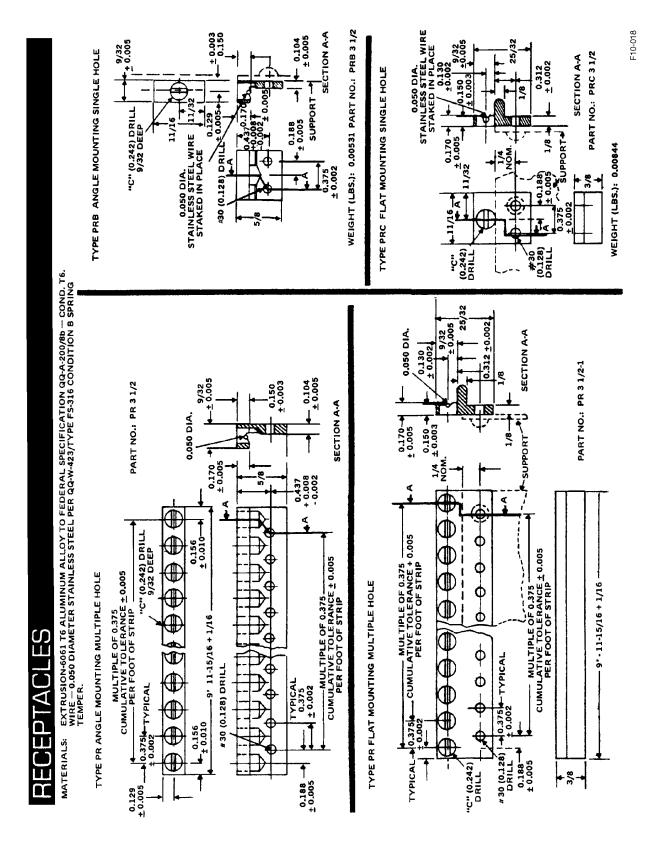


Figure 10-18. Receptacles

CAMLOC FASTENERS INSTALLATION AND REMOVAL

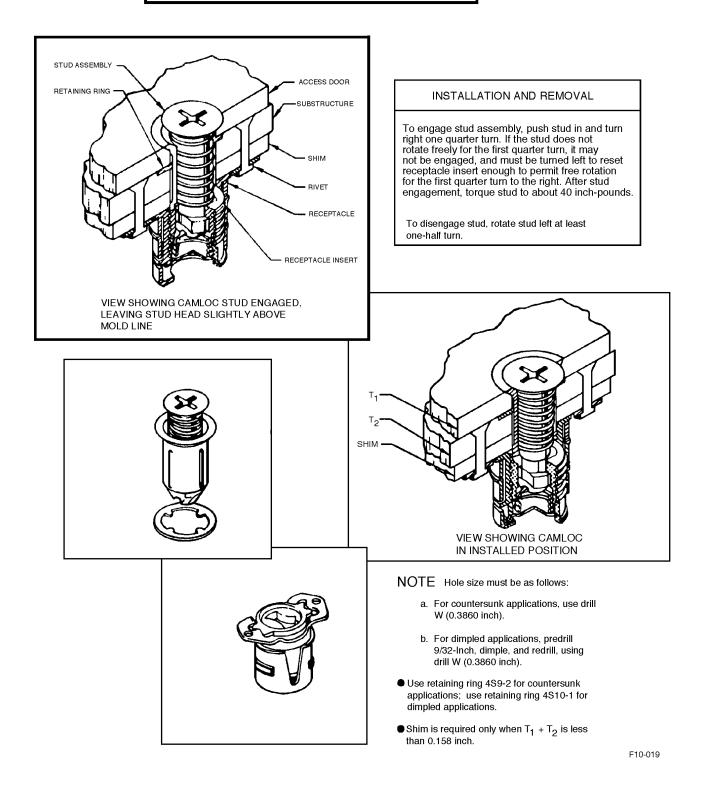


Figure 10-19. Camloc 4F Series Stressed Panel Fastener

CAMLOC FASTENERS INSTALLATION AND REMOVAL

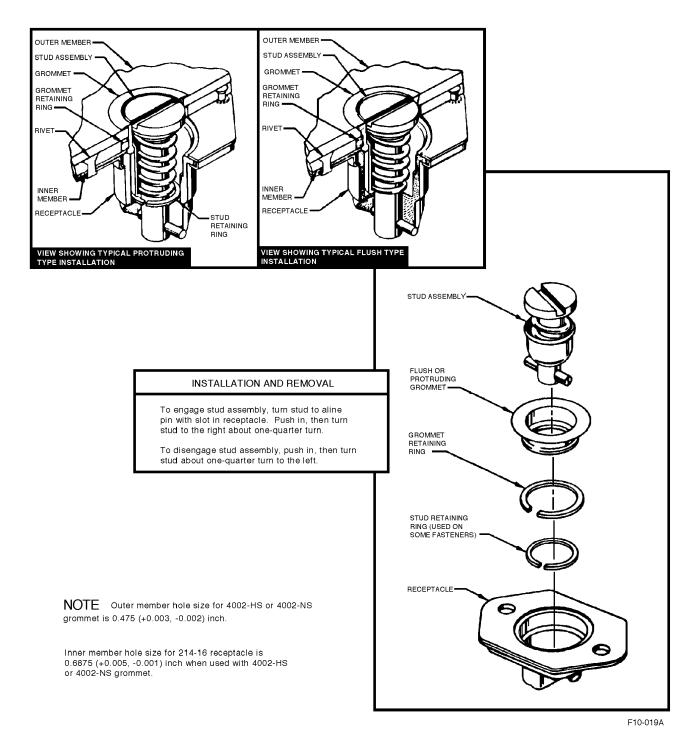


Figure 10-20. Camloc 4002 Series Fastener

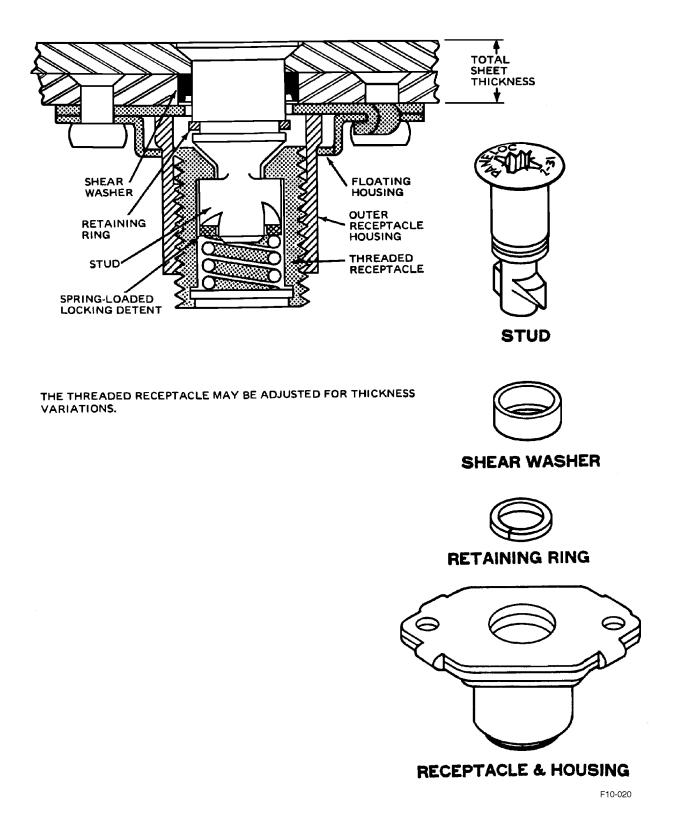


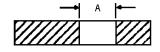
Figure 10-21. Paneloc Quarter-Turn Fasteners

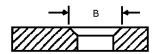
Table 10-3. Stud Length Selection, Installation, and Receptacle Installation for Paneloc Fasteners

	Total Sheet Thickne	ess			
Dash Number (Use as Suffix	Studs			Studs With Grommet Assemb	ly
to Stud Part No.)	No. 10	No. 1	No. 2	No. 1	No. 2
-3 Oval Head Only	0.000 - 0.060				
-6	0.060 - 0.090	0.040 - 0.102		0.040 - 0.060	
-9	0.090 - 0.125	0.071 - 0.133		0.071 - 0.101	
-12	0.125 - 0.160	0.102 - 0.165	0.078 - 0.203	0.102 - 0.133	0.078 - 0.158
-15	0.160 - 0.190	0.133 - 0.196		0.133 - 0.164	
-18	0.190 - 0.220	0.165 - 0.227	0.141 - 0.266	0.165 - 0.195	0.141 - 0.221
-21	0.220 - 0.250	0.196 - 0.258		0.196 - 0.226	
-25	0.250 - 0.280	0.227 - 0.290	0.203 - 0.328	0.227 - 0.258	0.203 - 0.283
-28	0.280 - 0.310	0.258 - 0.321		0.258 - 0.289	
-31	0.310 - 0.340	0.290 - 0.352	0.266 - 0.391	0.290 - 0.320	0.266 - 0.346
-34	0.340 - 0.370	0.321 - 0.383		0.321 -0.351	
-37	0.370 - 0.400	0.352 - 0.415	0.328 - 0.453	0.352 - 0.383	0.328 - 0.408
-40	0.400 - 0.430	0.383 - 0.446		0.383 - 0.414	
-43	0.430 - 0.470	0.415 - 0.477	0.391 - 0.516	0.415 - 0.445	0.391 - 0.471
-46	0.470 - 0.500	0.446 - 0.508		0.446 - 0.476	
-50	0.500 - 0.530	0.477 - 0.540	0.453 - 0.578	0.477 - 0.508	0.453 - 0.533

Stud Length Selection Table

The stud length dash number suffixes given above indicate total sheet thickness accommodated by each length. Each Paneloc high-performance fastener can be used over a wide range combining sheet and gasket thicknesses. Thus a 6200-18 No. 10 size flush-head stud may be used for high-performance fastening of systems with total sheet thicknesses ranging from 0.190 to 0.220 inch. A 57300-F1-18 No. 2 size flush-head stud accommodates combining thicknesses totaling from 0.141 to 0.266 inch.


Stud and Grommet Assemblies

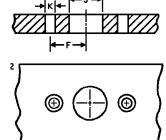

For thin sheet applications, flush-head studs are available with grommets providing six times as much support area. FLUSH

Stud Installation

1. Drill Outer Panel following "A" dimension.

2. Countersink for flush-head styles only using dimension "B" for appropriate stud size.

3. Insert Stud in Panel.


Table 10-3. Stud Length Selection, Installation, and Receptacle Installation for Paneloc Fasteners - Continued

- 4. If Shear Washer is used, drop it over the wings of the stud with its recess
- 5. Drop the retaining ring over wings of stud and push ring down until it snaps into retaining groove on stud.

Retaining Ring Attaching Tool

Installation can be accomplished without special tools. To facilitate the installation of retaining rings and speed up

				acilitate the inst Vational Stock N			
High Per- formance Stud Size	No. 10	No. 1	No. 2	No. 1 With Grommet	No. 1 With Grommet	No. 1 With MS Flush- head Bush- ing	No. 1 With MS Protruding- Head Bushing
Hole Diameter "A"	.192197	.251258	.314321	.500	.6094	.413	.413
Counter- sink Diam- eter "B"	.352357	.407422	.509524			.5312	
Attaching Tool Part No.	6219	RT4650-1	RT7300-1				
Standard Red	ceptacle Housing	g Installation		· —	¹ → 	•	
1. Drill holes	s per dimension	s given below.)	_ (
2. Countersing	nk rivet holes po	er dimensions g	iven below.	⊕ €			
					J →		

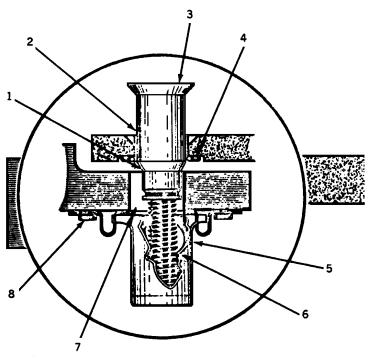
3. Attach with rivets.

Size	F	G	Н	J	K	
10	.375	3/16	.750 ±.002	.290/.285	.103/.098	
1	.438	3/16	.875 ±.005	.353/.346	.103/.098	
2	.500	7/32	1.000 ±.005	.415/.408	.135/.130	

10.9.4 Threaded Panel Fasteners.

CAUTION

- To prevent fastener damage, use proper tools.
- To prevent damage to structure or fastener components, always use proper grip-length fasteners.
- Inspect all fasteners for serviceable running torque prior to final torquing.
- To prevent damage to structure or fastener components, do not exceed manufacturer's recommended installation torque.
- To prevent damage to structure or fastener components, insure that proper counterbore size is provided for fastener retaining rings, or that proper thickness spacers are used. IN NO CASE shall a formed-in-place gasket substitute for a spacer.


Threaded panel fasteners are generally used in areas where structural loads must be transmitted through the fastened joint. The multiple-lead threads employed in these fasteners provide for quick operation in addition to increased vibration resistance and load-carrying capability. Generally these fasteners are made up of a stud, a stud retainer, and a receptacle held in place by rivets (See Figure 10-22). There are numerous styles of threaded panel fasteners available, many of which are self sealing; however, the cautions above apply to all.

10.9.4.1 <u>Threaded Panel Fastener Selection and</u> Installation. (See Figure 10-23 and Figure 10-24).

- a. Select fastener size and style.
- b. Determine thickness of upper and lower sheets.
- Select proper stud and receptacle based on thickness of sheets.
- d. Drill panel and substructure for diameter of stud selected.

NOTE

Countersink panel when using flush-head studs.

- 1. Stepped studs facilitate alignment.
- 2. Stud.
- 3. Flush or protruding head styles available with various recess configurations.
- 4. Stud retainer in counterbore.
- 5. Receptacle.
- 6. Multiple-lead threads.
- 7. Oversize hole in lower sheet for alignment.
- 8. Receptacle attachment rivets.

F10-022

Figure 10-22. Features of Threaded Panel Fastener

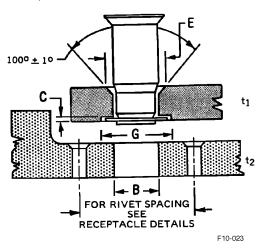
- e. Counterbore panel or substructure (depending upon fastener type) for retainer ring.
- f. Drill and countersink substructure for rivet attachment of receptacle.
- g. Attach receptacle.

- h. Insert stud in panel.
- i. Install retainer ring using appropriate installation

NOTE

Insure that proper retaining is used. DO NOT overexpand retainer ring.

- j. Position panel above mating structure and press all studs to the engaged position.
- k. Torque studs as specified.

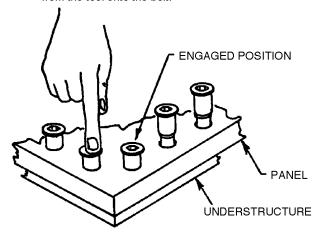

 Begin torquing at one point on the panel and continue in one or both directions.

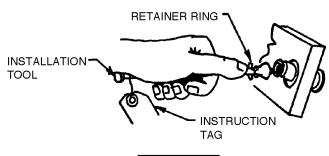
10.9.5 Threaded Panel Fastener Removal. The receptacle of a panel fastener is removed by drilling out the attachment rivets. The stud is removed by pulling off the retaining ring and withdrawing the stud from the panel.

10.9.6 Threaded Panel Fasteners - Maintenance. Problems with panel fasteners are generally caused by retainer rings. Proper selection, application, and treatment of retainer rings will reduce problems (See Figure 10-25). In some cases, formed-in-place gaskets are improperly used as spacers to form liquid seals. If used as spacers, the gaskets creep during usage and trap retainer rings.

PREPARATION INFORMATION

- Drill panel and substructure for diameter of stud selected. Countersink panel when using flush-head studs.
- Counterbore panel at faying surface for retainer ring to proper depth and remove burrs to insure proper operation. Counterbore substructure only when impractical to counterbore panel.
- 3. Mount receptacle over hole on underside of structure.




1. Insert the stud in the panel.

CAUTION

To maintain structural integrity of the panel, the correct type, size, and length bolts must be inserted in the proper locations.

- 2. Install retainer ring onto bolt using installation tool.
 - A. Use thumb and index finger to slide the retainer ring from the tool onto the bolt.

CAUTION

Do not expand retainer ring too much, since overexpansion will destroy the purpose of the retainer.

- 3. Position panel above mating structure and press all bolts to the engaged position.
- 4. Torque bolts as specified.

CAUTION

With thin panels, reduce tightening torque to prevent deformation of retainer ring counterbore.

Begin torquing at one point on the panel and continue in one or both directions.

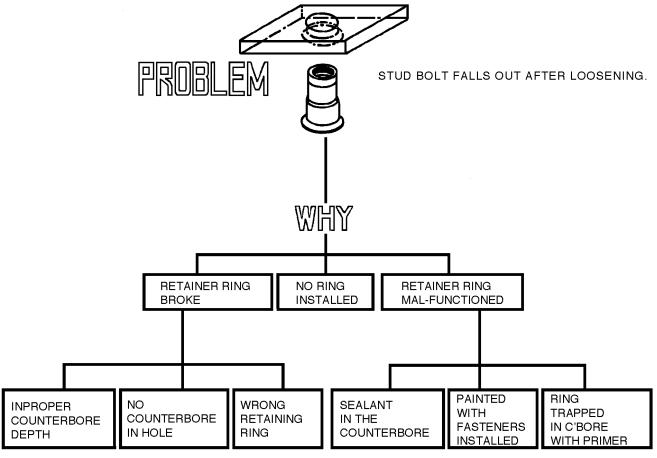
F10-024

Figure 10-24. Stud and Panel Installation

10.9.7 Milson Panel Fasteners.

CAUTION

In no case shall formed-in-place gaskets be substituted for a spacer.


The Milson panel fastener is available with both flush- and protruding-head studs and several receptacle configurations. Selection of Milson fasteners is shown in Figure 10-26, and hole preparation is shown in Figure 10-27. If for some reason it may be necessary to remove the barrel from the receptacle in order to facilitate repair, barrel removal and replacement procedures are shown in Figure 10-28.

10.9.8 Mil-Loc and Zip-Loc Panel Fasteners. The Mil-Loc and Zip-Loc panel fasteners function similarly to the Milson fastener except that serrated mating surfaces are

provided for the stud and receptacle to increase vibration resistance. Critical assembly dimensions are as shown in Figure 10-29, Figure 10-30, and Figure 10-31.

10.9.9 <u>Calfax Live-Lock Panel Fastener</u>. The Live-Lock panel fastener functions similarly to the Milson fastener except that serrated mating surfaces are provided for the standard receptacle to increase vibration resistance and several retaining rings are available. Critical assembly dimensions and data are as shown in Figure 10-32.

10.9.10 <u>Calfax Mark IV Panel Fastener</u>. The Mark IV panel fastener differs from most other types in that the receptacle is similar to a floating nut plate and the stud is retained in the panel by a grooved retaining ring held in place by a plug in the end of the stud (see Figure 10-33 and Figure 10-34). This fastener is not susceptible to dirt and gasket debris to the degree that most other barrel-type panel fasteners are. Proper hole preparation is shown in Figure 10-35.

F10-025S01

Figure 10-25. Panel Fastener Retainer Ring Problems (Sheet 1 of 2)

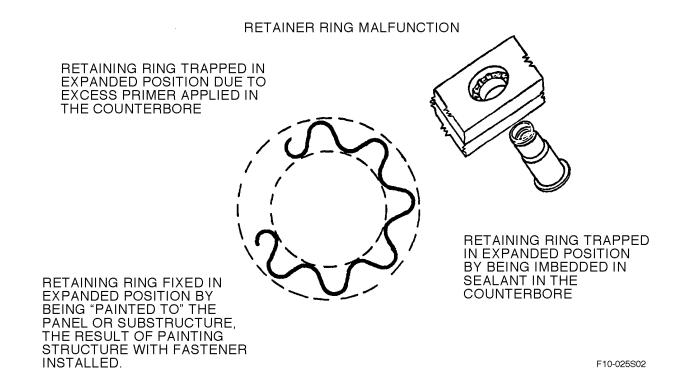
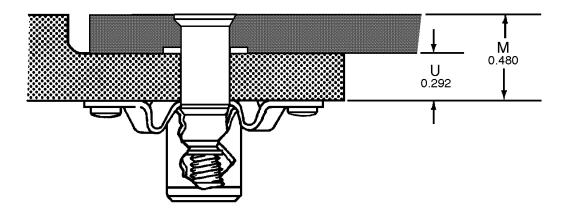


Figure 10-25. Panel Fastener Retainer Ring Problems (Sheet 2)

MECHANICAL PROPERTIES

Part	Shank Diameter of	Tensile Strength	Shear Strength	Installation Torque inlbs.
Number	Sleeve Bolt	lbs min.	Single min.	First Installation
19XX-4 19XXS-4 19XXSS-4	1/4	2000 1800	2250 2100	25
19XX5 19XXS-5 19XXSS-5	5/16	3500 2200	4750 3200	45
19XXS-6 19XXS-6 19XXSS-6	3/8	6000 3300	6500 4800	100


CALLOUT PROCEDURE

- Select sleeve bolt size and style, next select grip length. Generally the sleeve bolt grip should be equal to the total material thickness. However, if structural requirements permit, consider using a shorter grip bolt for weight and cost reduction. This is usually possible when the panel thickness is less than the substructure thickness.
- 2. Choose, receptacle desired, next select second and third receptacle dash numbers (barrel height and stud protrusion) by using the tables.
- 3. Diameter of sleeve bolt will determine retainer ring to be used.

NOTE: Make callout of sleeve bolt, retainer ring, and receptacle assembly separately.

F10-026S01

Figure 10-26. Milson Panel Fastener Selection (Sheet 1 of 2)

Component	Basic Part <u>Number</u>	Description
Sleeve Bolt (Stud)	1910	Pan Head, Hex Drive
Sleeve Bolt (Stud)	1920	Flush Head, Hex Drive
Retainer Ring	1943	Retainer Ring
Receptacle	1950	2 Lug Assembly
Receptacle	1955	Reduced-Rivet Spacing Assembly
Receptacle	1960	Corner Assembly
Receptacle	1970	Self-Sealing Assembly
Receptacle	1980	Self-Sealing Corner Assembly

EXAMPLE: Standard two-lug receptacle for service at 700°F with structural dimensions as shown above.

M = Total material thickness.

U = Total substructure thickness.

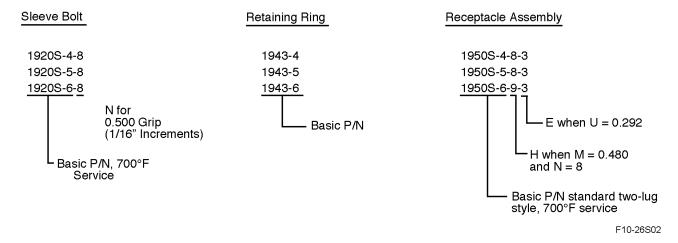
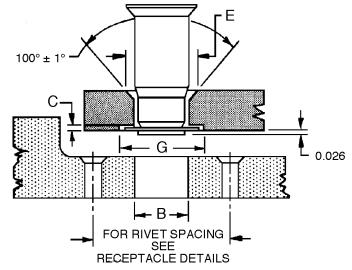



Figure 10-26. Milson Panel Fastener Selection (Sheet 2)

	В	С	Е	G
SIZE	+.004 000	MIN.	DIA.	+.010 000
-4	.250	.032	.358	.450
-5	.312	.034	.441	.537
-6	.375	.035	.523	.625

F10-027

Figure 10-27. Milson Panel Fastener Hole Preparation

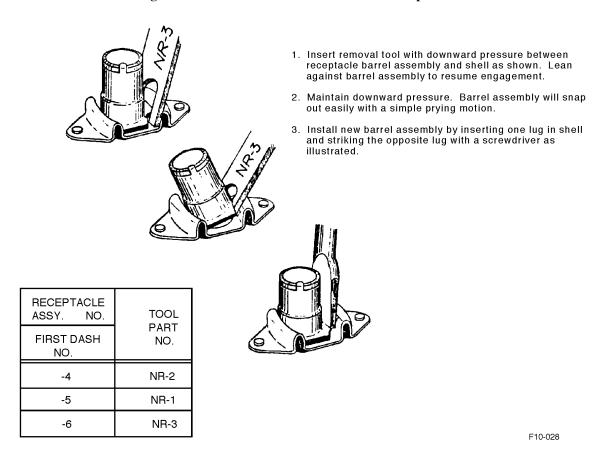


Figure 10-28. Barrel Removal and Assembly

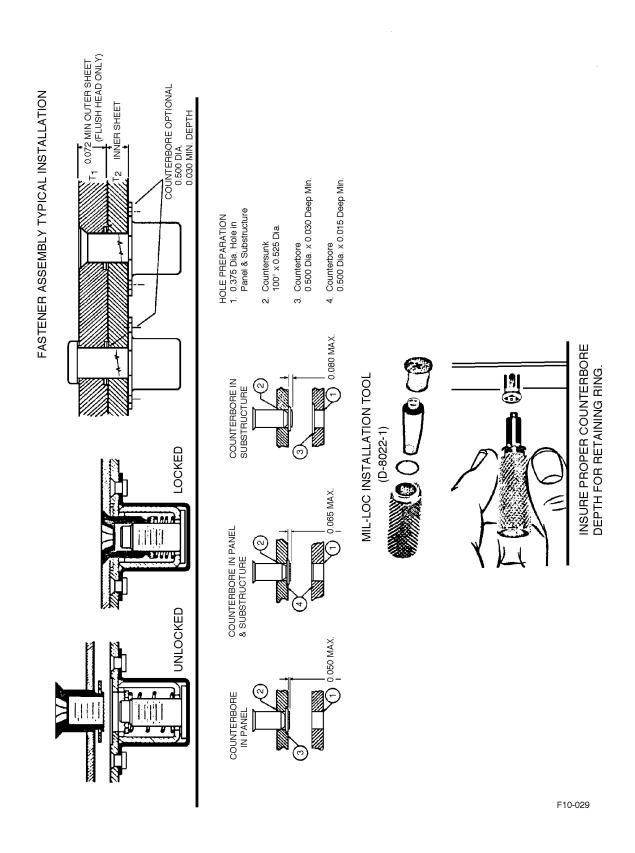
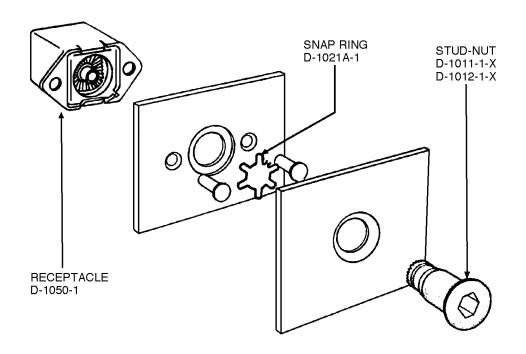



Figure 10-29. MIL-LOC Panel Fastener

Zip-Loc Stud-Nut Installation

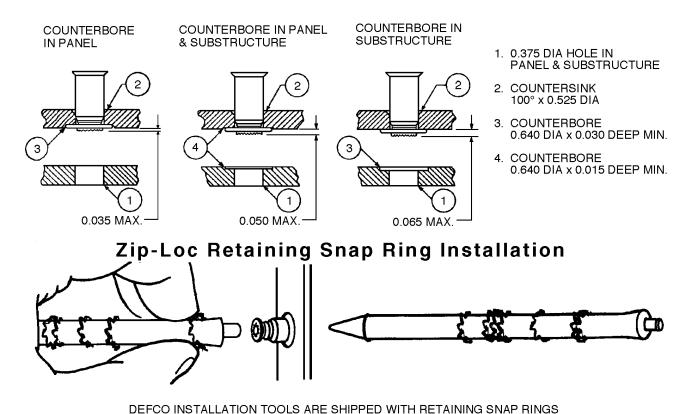
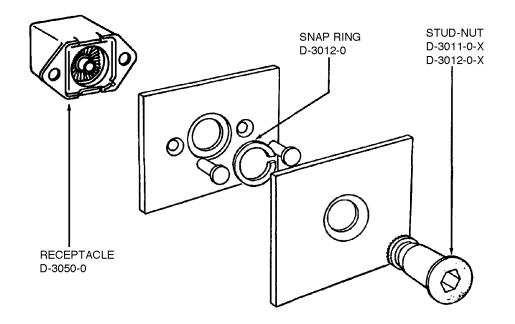
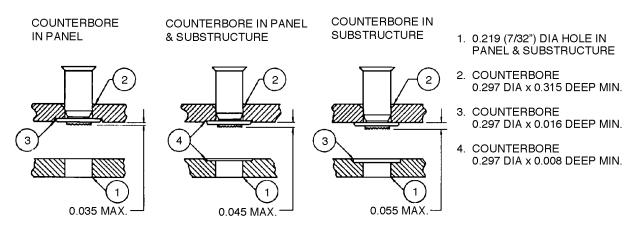




Figure 10-30. ZIP-LOC Panel Fastener

F10-030

Miniature Zip-Loc Stud-Nut Installation

Miniature Zip-Loc Retaining Snap-Ring Installation

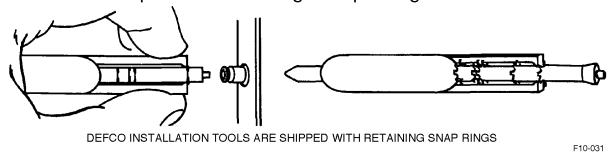
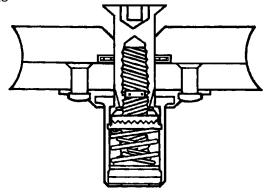


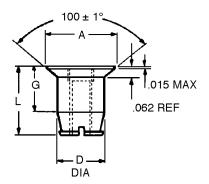
Figure 10-31. Miniature ZIP-LOC Panel Fastener

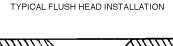
ENGINEERING DATA: RECOMMENDED TIGHTENING TORQUES

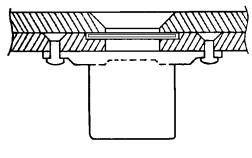
CA1700 Series 40-in. lbs.


CA1800 Series 30-in. lbs.

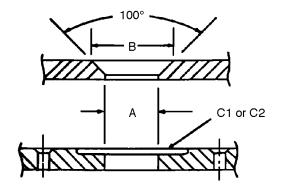
CA2000 Series 15-in. lbs.


RECOMMENDED MAXIMUM OPERATING TEMPERATURES: 500°F


SPECIAL DESIGN AVAILABLE FOR TEMPERATURES TO 1000°F


MATERIALS: Stud Nuts 300 Series cres per MIL-S7720. Receptacle Assembly 300 Series cres per MIL-S7720 except for Receptacle Screw which is A-286 (AMS 5735) and Heat Treated Stainless Ratchet Components.

FLUSH HEAD STUD NUT



Stud Nu	t P/N	Basic	G	Hex	'A' Dim.	, D,	Recepta	de P/N	Retain	ing Ring
Dble. Ld.	Quad. Ld.	Thread	Grip	recess	Theoretic	Dia.	Dble. Ld.	Quad. Ld.	Open	Caged
	CA1721-1 -2 -3	10-32	.180 .250 .251 .343 .344 .437	3/16	.520 max. sharp	.3745 .3730 ♠ max. min.		CA1711	CA1727	CA1727-2
	-4	↓ 10-32	.437 .438 .531	↓ 3/16	.520	.3745 .3730		↓ CA1711	↓ CA1727	↓ CA1727-2
	CA1820-1 -2 -3	8-32 A 8-32	.156 .250 .251 .343 .344 .437 .438 .531	5/32	.399 max. sharp	.249 .247		CA1810	CA1825	CA1826-1
CA2020-0		4-40	.531 .065 .124	5/32 3/32	.399	.247 .186 .184	CA2010	CA1810	CA1825 CA2025	CA1826-1
-1		 	<u>.125</u> .187	1 102	.342	†	†		↑ ↑	
-2			.188 .250		max. sharp	max. min.				
-3 -4		↓ 4-40	. <u>251</u> .312 . <u>313</u> .375	3/32	.342	. <u>186</u> .184	♦ CA2010		▼ CA2025	

*Addition of suffix "T.S." changes standard Hex Socket recess to Torq-Set recess.

F10-032S01

Figure 10-32. Calfax Live-Lock Panel Fastener (Sheet 1 of 2)

Series	А	В	RETAININ Open Type C1	IG HING	Rivet Spacing ±.002	Rivet Hole Dia
CA1700	.380 +.005 000	.525 ±.003	.625 Min. Dia. .025 Min. Depth	.656 Min. Dia. .055 Min. Depth	.875	.098
CA1800	.250 +.005 000	.406 ±.003	.437 Min. Dia. .025 Min. Depth	.468 Min. Dia. .045 Min. Depth	.687	.098
CA2000	.187 +.005 000	.337 ±.002	.281 Min. Dia. .025 Min. Depth		.437	.066

F10-032S02

Figure 10-32. Calfax Live-Lock Panel Fastener (Sheet 2)

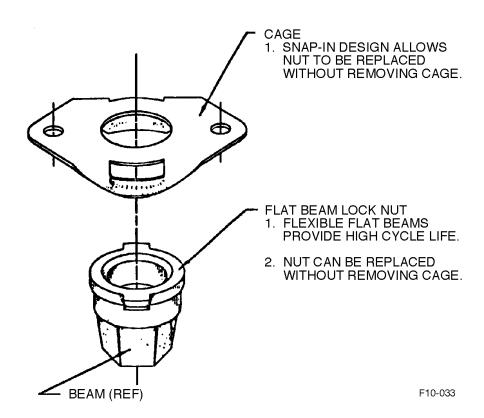


Figure 10-33. Calfax Mark IV Receptacle

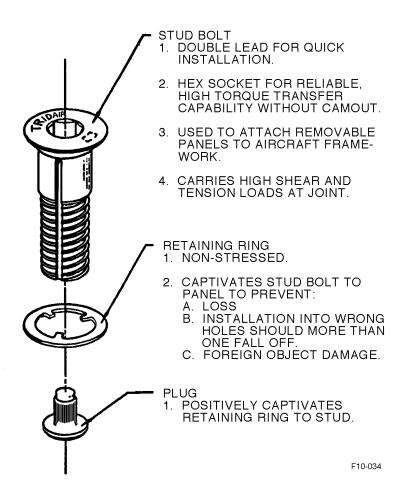
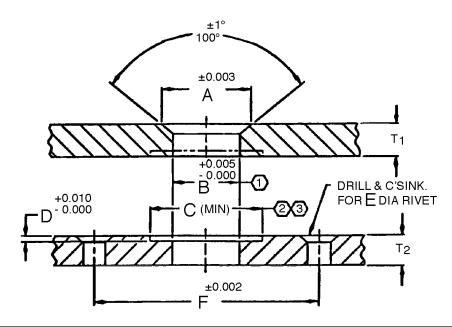



Figure 10-34. Calfax Mark IV Stud

STUD BASIC DIA.	A C'SINK DIA.	B HOLD DIA.	C C'BORE DIA.	D C'BORE DEPTH	E RIVET DIA.	F RIVET SPACING
1/4	0.406	0.250	0.406	0.030	3/32	0.687
3/8	0.523	0.375	0.531	0.030	1/8	0.875

- $\ensuremath{\mathbf{1}}$ B DIA. IN T2 MAY BE INCREASED TO .300 DIA. TO ALLOW FOR HOLE MISALIGNMENT SUBJECT TO APPROVAL OF STRUCTURES GROUP.
- 2 COUNTERBORE IN T₁ OPTIONAL IF THICKNESS ALLOWS.
- ${ \ \, extbf{3} \ \, }$ IF B DIA. IN T $_2$ IS INCREASED, C DIA. MUST BE INCREASED ACCORDINGLY.

PANEL PREPARATION (WITHOUT FORM-IN-PLACE GASKET)

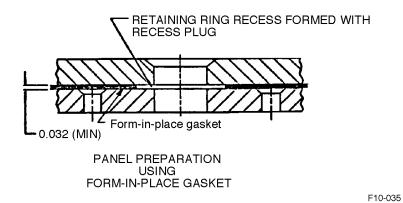


Figure 10-35. Calfax Mark IV Hole Preparation

CHAPTER 11 CABLES, TURNBUCKLES, AND CABLE TERMINALS

11.1 <u>CABLES, TURNBUCKLES, AND CABLE</u> TERMINALS.

This chapter presents information about cables, cable damage, cable tension, cable hardware, and cable fabrication. Instructions contained in this manual are only general guidelines. Specific instructions contained in aircraft manuals or aircraft workcards may override any general instructions contained in this technical order.

11.1.1 Cables.

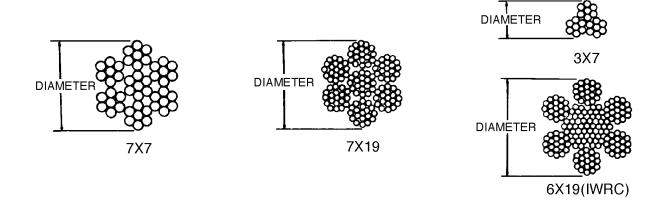
- 11.1.2 <u>Cable Definitions</u>. The following cable definitions are in accordance with Military Specification MIL-W-83420, MIL-C-18375, and MIL-W-87161.
 - wire Each individual cylindrical steel rod or thread shall be designated as a wire.
 - b. strand Each group of wires helically twisted or laid together shall be designated as a strand.
 - c. cable or wire rope A group of strands helically twisted or laid about a central core shall be designated as a cable. The strands and the core shall act as a unit.
 - d. preformed type Cable consisting of wires and strands shaped prior to fabrication of the cable to conform to the form or curvature which they take in the finished cable shall be designated as preformed type.
 - e. diameter The diameter of cable is the diameter of the circumscribed circle.
 - f. lay or twist The helical form taken by the wires in the strand and by the strands in the cable is characterized as the lay or twist of the strand or cable respectively. In a right-hand lay, the wires or strands are in the same direction as the thread on a right-hand screw; and for a left-hand lay, they are in the opposite direction.
 - g. pitch (or length of lay) The distance parallel to the axis of the strand or cable in which a wire or strand makes one complete turn about that axis is designated as the pitch (or length of lay) of the strands or cable respectively.
 - wire center The center of all strands shall be an individual wire ad shall be designated as a wire center.

- strand center A strand center shall consist of a single, straight strand made of preformed wires, similar to the other strands comprizing the cable in arrangement and number of wires.
- j. independent wire rope center (IWRC) 7 x 7 A 7 x 7 independent wire rope center as specified herein shall consist of a cable or wire rope of six strands of seven wires each, twisted or laid around a strand center or core consisting of seven wires.
- k. popped core A popped core is a condition where one end of the core of a wire rope has been pulled inside the outer strands at that end, and has protruded through the outer strands some distance form the end of the rope.

11.1.3 Flexible Cables. (Refer to Table 11-1 and see Figure 11-1.) Flexible, preformed, carbon steel, Type I, Composition A cables, Military Specification MIL-W-83420, are manufactured from steel made by the acid-openhearth, basic-open hearth, or electric furnace process. Throughout the manufacturing operation, every precaution is taken to keep the cable made from different batches of steel separate and identifiable. The wire used in construction of the cable is coated with pure tin or zinc. Flexible, preformed, corrosion-resistant steel, Type I, Composition B cables, Military Specification MIL-W-87161, MIL-W-83420, and MIL-C-18375 are manufactured from steel made by the electric furnace process. These cables are of the 3 x 7, 7 x 7, 7 x 19, or 6 x 19 (IWRC) construction, according to the diameter as specified in Table 11-1. The 3 x 7 cable consists of three strands of seven wires each. There is no core in this construction. The 3 x 7 cable has a length of lay of not more than eight times nor less than five times the nominal cable diameter. The 7 x 7 cable consists of six strands of seven wires each, laid around a center strand of seven wires. The wire is laid so as to develop a cable which has the greatest bending and wearing properties. The 7 x 7 cable has a length of lay of not more than eight times nor less than six times the cable diameter. The 7 x 19 cable consists of six strands laid around a center strand in a clockwise direction. The wire composing the seven individual strands is laid around a central wire in two layers. The center core strand consists of a layer of six wires laid around the central wire in a clock-wise direction and a layer of 12 wires laid around this in a clockwise direction. The six outer strands of the cable consists of a layer of six wires laid around the central wire in a counterclockwise direction and a layer of 12 wires laid around this in a counterclockwise direction. The 6 x 19 (IWRC) cable consists of six strands of 19 wires each, laid around a 7 x 7 independent wire rope center. MIL-C-18375 cable, although not as strong as MIL-W-83420, is equal in corrosion resistance and superior in non magnetic and coefficient of thermal expansion properties.

- 11.1.4 Nylon Coated Cable. Nylon jacketed cable is made by extruding a flexible nylon coating over corrosion resistant steel (CRES) cable. The bare CRES cable must conform and be qualified to MIL-W-83420. After coating, the jacketed cable must conform to MIL-W-83420.
 - a. The service life of jacketed cable is much greater than the service life of the same cable when used bare. Most cable wear occurs at pulleys where the cable bends. The wear is caused by friction
- between strands and between wires. In bare cable, this is aggravated by dirt grit working its way into the cable and the lubricant working its way out, leaving dry dirty wires to rub against each other. In long straight runs of cable, vibration work hardens the wires causing the brittle wires to fracture with eventual separation of the cable.
- b. The nylon jacket protects the cable in a threefold manner. It keeps the lubricant from oozing out and evaporating, it keeps dirt grit out, and it dampens the vibrations, thereby greatly reducing their effect on the cable.

Table 11-1. Flexible Cable Construction and Physical Properties


				Minimum Bre	aking Strengt	h (Pounds)
Nominal Diameter of Wire Rope	Construction	Tolerance on Diameter (Plus Only)	Allowable Increase of Diameter at Cut End	MIL-W-83420 Comp A	MIL-W- 83420 Comp B (CRES)	MIL-C- 18375 (CRES)
Inches		Inches	Inches	Lbs	Lbs	Lbs
1/32	3 x 7	0.006	0.006	110	110	
3/64	7 x 7	0.008	0.008	270	270	
1/16	7 x 7	0.010	0.009	480	480	360
1/16	7 x 19	0.010	0.009	480	480	
3/32	7 x 7	0.012	0.010	920	920	700
3/32	7 x 19	0.012	0.010	1,000	920	
1/8	7 x 19	0.014	0.011	2,000	1,760	1,300
5/32	7 x 19	0.016	0.017	2,800	2,400	2,000
3/16	7 x 19	0.018	0.019	4,200	3,700	2,900
7/32	7 x 19	0.018	0.020	5,600	5,000	3,800
1/4	7 x 19	0.018	0.021	7,000	6,400	4,900
9/32	7 x 19	0.020	0.023	8,000	7,800	6,100
5/16	7 x 19	0.022	0.024	9,800	9,000	7,600
11/32	7 x 19	0.024	0.025	12,500		
3/8	7 x 19	0.026	0.027	14,400	12,000	11,000
7/16	6 x 19 IWRC	0.030	0.030	17,600	16,300	14,900
1/2	6 x 19 IWRC	0.033	0.033	22,800	22,800	19,300
9/16	6 x 19 IWRC	0.036	0.036	28,500	28,500	24,300
5/8	6 x 19 IWRC	0.039	0.039	35,000	35,000	30,100
3/4	6 x 19 IWRC	0.045	0.045	49,600	49,600	42,900
7/8	6 x 19 IWRC	0.048	0.048	66,500	66,500	58,000
1-	6 x 19 IWRC	0.050	0.050	85,400	85,400	75,200
1-1/8	6 x 19 IWRC	0.054	0.054	106,400	106,400	
1-1/4	6 x 19 IWRC	0.057	0.057	129,400	129,400	
1-3/8	6 x 19 IWRC	0.060	0.060	153,600	153,600	
1-1/2	6 x 19 IWRC	0.062	0.062	180,500	180,500	

11.1.5 Nonflexible Cables. (Refer to Table 11-2 and see Figure 11-2.) Nonflexible, preformed, carbon steel cables, Military Specification MIL-W-87161, Composition A, are manufactured by the same processes listed for Military Specification MIL-W-83420, Composition A, carbon steel cables. The wire used in construction of the cable is coated with pure zinc. Nonflexible, preformed, corrosion-resistant steel cables, Military Specification MIL-W-87161, are manufactured by the same process and have the same composition as listed for Military Specification MIL-W-83420, Composition B, corrosion resistant steel cables. The nonflexible steel cables are of the 1 x 7 (Type I) or 1 x 19 (Type II) construction according to the diameter as specified in Table 11-2. The 1 x 7 cable consists of six wires laid around a center wire in a counterclockwise direction. The 1 x 19 cable consists of a layer of six wires laid around a center wire in a clockwise direction plus twelve wires laid around the inner strand in a counterclockwise direction.

11.2 CABLE DAMAGE.

- 11.2.1 <u>Broken Wires</u>. At each regular inspection period, cables must be inspected for broken wires. Any cable assembly that has (1) one broken or loose wire located in a CRITICAL FATIGUE AREA must be replaced.
- 11.2.1.1 A CRITICAL FATIGUE AREA is defined as the working length of a cable where the cable runs over, under or around a pulley, sheave or through a fairlead. Or any section where the cable is flexed, rubbed or worked in any manner.
- 11.2.1.2 A CRITICAL FATIGUE AREA is also located at any point within one foot of a swaged on fitting. A swaged on fitting could be an eye, fork, ball, ball and shank, ball and double shank, threaded stud, threaded stud and turnbuckle, compression sleeve or any hardware used as a termination or end fitting on the cable. These fittings may be attached by various swaging methods such as rotary swaging, roll swaging, hydraulic pressing, and hand swaging tools. (See MIL-T-781.) The pressures exerted on the fittings during the swaging process sometimes pinch the small wires in the cable. This will cause premature failure of the pinched wires resulting in broken wires.
- 11.2.1.3 Close inspection in these CRITICAL FATIGUE AREAS, must be made by passing a cloth over the area to snag on broken wires. Also, a very careful visual inspection must be made since a broken wire will not always protrude

- or stick out but may lie in the strand and remain in the position of the helix as it was manufactured. Broken wires of this type may show up as a hairline crack in the wire. If a broken wire of this type is suspected, further inspection with a magnifying glass of 7 power or greater is recommended.
- 11.2.1.4 A CABLE ASSEMBLY is defined as a length of cable with fittings swaged on each end. The length of a cable assembly will vary from less than one foot to several hundred feet. The complete assembly must be replaced when one (1) broken or loose wire is found in a CRITICAL FATIGUE AREA as defined above.
- 11.2.1.5 Any cable assembly that has three (3) broken or loose wires in UNCRITICAL AREAS must be replaced. UNCRITICAL AREAS are those where the cable is not flexed, rubbed or worked in any manner other than a straight pulling motion. The discovery of only one broken wire in an UNCRITICAL AREA should be noted in your inspection report.
- 11.2.2 Kinked Cable. Kinking of wire cable can be avoided if properly handled and installed. Kinking is caused by the cable taking a spiral shape as the result of unnatural twist. One of the most common causes for this twist is improper unreeling and uncoiling. Strands and wires are out of position, which creates unequal tension and brings excessive wear at this part of the rope. Even though the kink may be straightened so that the damage appears to be slight, the relative adjustment between the strands has been disturbed so that the rope cannot give maximum service and should be replaced. Inspect cables for popped core or loose strands. Replace any cable that has a popped core or loose strands regardless of wear or broken wires.
- 11.2.3 <u>Cracks In Nylon Jacket</u>. Nylon jacketed cable with any cracks or necking down in diameter in the jacket shall be replaced. Usable cable life is over when these conditions begin to appear in the nylon jacket.
- 11.2.4 <u>Severed Cables</u>. Completely severed cables, or those so damaged or kinked in one place that the strength is obviously below the minimum allowable, must be replaced. A temporary repair may be done by use of a swaged-type male eye terminal, AN668 or MS20668, bolted to a swaged-type female fork terminal, AN667 or MS20667. If adjustment is desired, a turnbuckle may be used. However, either assembly can only be used where the cable does not pass over pulleys or through fairleads. (See Figure 11-3.)

F11-001

Figure 11-1. Flexible Cable Cross Section

Table 11-2. Nonflexible Cable Construction and Physical Properties

	Nominal Diameter of Wire Strand	Tolerance on Diameter (Plus Only)	Allowable Increase in Diameter at the End		MIL-W-87161 Minimum Break Strength Comp A and B
Strand Type	ln.	ln.	ln.	Construc- tion	Lbs
I	1/32	0.003	0.006	1 x 7	185
I	3/64	0.005	0.008	1 x 7	375
II	3/64	0.005	0.008	1 x 19	375
I	1/16	0.006	0.009	1 x 7	500
II	1/16	0.006	0.009	1 x 19	500
II	5/64	0.008	0.009	1 x 19	800
II	3/32	0.009	0.010	1 x 19	1,200
II	7/64	0.009	0.010	1 x 19	1,600
II	1/8	0.013	0.011	1 x 19	2,100
II	5/32	0.013	0.016	1 x 19	3,300
II	3/16	0.013	0.019	1 x 19	4,700
II	7/32	0.015	0.020	1 x 19	6,300
II	1/4	0.018	0.021	1 x 19	8,200
II	5/16	0.022	0.024	1 x 19	12,500
II	3/8	0.026	0.027	1 x 19	17,500

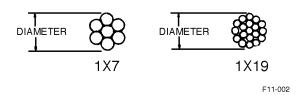


Figure 11-2. Nonflexible Cable Cross Section

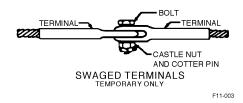


Figure 11-3. Repair of Severed Cable

11.2.5 Control Cable External Wear Patterns.

CAUTION

- Do not force open a cable that is designed to function under extensive tension. Use of the above methods weakens the cable and may result in premature failure.
- Do not use metallic wools or solvents to clean cables. Use of metallic wool will imbed dissimilar metal particles in the cables and create further corrosion problems. Solvents will remove internal cable lubricant allowing cable strands to abrade and further corrode.

Wear will normally extend along the cable equal to the distance the cable moves at that location and may occur on one side of the cable only or on its entire circumference. Replace flexible and non-flexible cables when the individual wire in each strand exceeds the wear limits as depicted in Figure 11-4. Actual instances of cable wear beyond recommended replacement point are shown in Figure 11-4.

11.2.5.1 <u>Corrosion Treatment for Steel Cables</u>. If the surface at the cable is corroded, relieve cable tension and carefully force the cable open by reverse twisting and visually inspect the interior. Corrosion on the interior strands of the cable constitutes failure, and the cable must be replaced. If no internal corrosion is detected, remove loose external rust and corrosion with a clean, dry, courseweave rag or fiber brush. After thorough cleaning, apply

specification MIL-C-16173, Grade 4, corrosion preventive compound to cable sparingly. Do not apply the material so thick that it will interfere with the operation of cables at fairleads, pulleys, or grooved bellcrank areas. After accomplishing the above procedures perform a rag method inspection. Replace this cable when a new cable is available.

11.2.5.2 Interchangeability of Flexible Cables.

 a. Carbon steel cable MIL-W-83420, Composition A shall not be substituted for corrosion resistant steel cable MIL-W-83420, Composition B or MIL-C-18375 for aircraft use.

NOTE

If there is any doubt about a substitution, consult a materials engineer. Also if a substitution is made, the item will be marked on the calendar inspection schedule of the AFTO Form 781K, Aircraft Inspection and Maintenance Status Record. The frequency of inspection will be one half the time of normal inspections. Characteristics of some aircraft will not allow substitution of cable; therefore, always refer to applicable maintenance manual for aircraft concerned for specific cable and tension.

b. When carbon steel cable MIL-W-83420, Composition A, is not available corrosion resistant cable, MIL-W-83420, Composition B, may be substituted in the following diameters only: 1/16, 3/32, 1/2, 9/16, 5/8, 3/4. Other diameters of MIL-W-83420, Composition B, will not be used as substitutes for composition A for lack of equal strength.

11.3 CABLE TENSION.

11.3.1 Checking Cable Tension.

NOTE

Refer to the Maintenance Handbook for the aircraft concerned for specific information on the cable tension.

For rigging the control surface cables and for checking the cable tensions in an aircraft that has been rigged, a tensiometer is used. One type of tensiometer is shown in Figure 11-5. This instrument works on the principle of measuring the amount of force required to deflect a cable a certain distance at right angles to its axis. The cable to be tested is placed under the two blocks on the instrument, and the lever on the side of the instrument is pulled down. Movement of this lever pushes up on the center block, called a riser, which pushes the cable at right angles to the two clamping points. The force required to do this is indicated by a pointer on the dial. Different risers are used

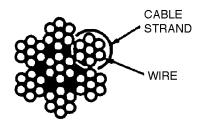
with different size cables. Each riser carries an identifying number and is easily inserted in the instrument. Each tensiometer is supplied with a calibration table to convert the dial readings into pounds. One of these calibration tables is illustrated in Figure 11-5. For example, in using a number 2 riser with a 3/16-inch diameter cable, if the pointer on the dial indicates 48, the actual tension in the cable is 70 pounds. It will be noted that in the case of this particular instrument, the number 1 riser is used with 1/16-, 3/32-, and 1/8-inch diameter cables. It should be noted that the calibration table applies to a particular instrument only and cannot be used with any other. For this reason, the calibration chart is pasted inside of the cover of the box in which the instrument is kept. The tensiometer, like any other measuring instrument, is a delicate piece of equipment and should be handled carefully. During the adjustment of turnbuckles, the calibration chart must be used to obtain the desired tension in a cable. For example, if it is desired to obtain a tension of 110 pounds in a 3/16-inch diameter cable, the number 2 riser is inserted in the instrument and the figure opposite 110 pounds is read from the calibration chart. In this case, the figure is 66. The turnbuckle is then adjusted until the pointer indicates 66 on the dial. In some cases the position of the tensiometer on the cable is such that the face of the instrument cannot be seen by the operator. In such cases, after the lever has been set and the pointer moved on the dial, a button on the top of the instrument is pushed into hold the pointer in place. Then the lever is released and the instrument removed from the cable, the pointer remaining in position. After the reading has been taken, the button is pulled out, and the pointer will return to zero.

11.3.2 Aircraft Cable Temperature Considerations. When a temperature is encountered that is lower than the one at which the aircraft was rigged, the aircraft structure shrinks more than the cables, and the cables go slack. When temperatures higher than the one at which aircraft was rigged are encountered, aircraft structure expands more than the cables, and the cable tension is increased. Use of cable, MIL-C-18375, where required by design and service specifications, can greatly alleviate this condition. Its coefficient of expansion is approximately 30% higher than MIL-W-83420 therefore closer to that of the air-frame structure; consequently changes in tension due to ambient temperature variations are less.

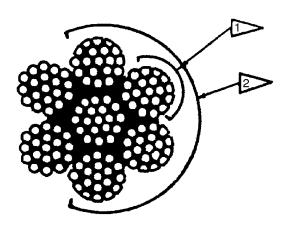
NOTE

In control systems in which temperature regulators are installed, the rigging tensions should be as called for in the aircraft Maintenance Handbook regardless of temperatures encountered.

11.4 CABLE HARDWARE.


11.4.1 Turnbuckles. (Refer to Table 11-3 through Table 11-10.) A turnbuckle is a device used in cable systems to provide a means of adjusting tension. Turnbuckles have barrel-shaped sleeves with internal left- and righthand threads at opposite ends into which the threaded cable terminals are screwed. The cables, with terminals attached, are made to such a length that, when the turnbuckle is adjusted to give the specified cable tension, a sufficient number of threads on the terminal ends are screwed into the barrel to hold the load. The clip-locking turnbuckle and its associated parts are identical to standard AN and MS parts except for a slot grooved on the interior of the barrel and the shanks of the forks, eyes, etc. The clip-locking turnbuckle parts have the following drawing numbers: MS21251, turnbuckle body; MS21252, turnbuckle clevis end; MS21253, turnbuckle clevis end (for bearing); MS21254, turnbuckle eye and (for pin); MS21255, turnbuckle eye end (for wire rope); MS21256, turnbuckle locking clip; MS21260, terminal, wire rope, stud. For information on the assembly and securing of clip-locking turnbuckle assemblies refer to paragraph 16.3.4.

NOTE


Turnbuckles showing signs of thread distortion/ bending should be replaced. Turnbuckle ends are designed for providing the specified cable tension on a cable system, and a bent turnbuckle would place undesirable stress on the cable, impairing the function of the turnbuckle.

11.4.2 <u>Turnbuckle Installation</u>. (See Figure 11-6.) When installing cable system turnbuckles, it is necessary to screw both threaded terminals into the turnbuckle barrel an equal amount. It is essential that turnbuckle terminals be screwed into the barrel so that not more than three threads on the terminal are exposed (Figure 11-6, Detail A.) On initial installation, the turnbuckle terminals should not be screwed inside the turnbuckle barrel more than four threads. (Figure 11-6, Detail B.)

CABLE SIZE	PERCENT ALLOWABLE WEAR OF OUTER WIRES BEFORE REPLACEMENT
1/8 7 x 19	30
3/327 x 7	30
3/16 7x19	30

7 x 19 CABLE
OUTER WIRES INDICATED BY SHADING

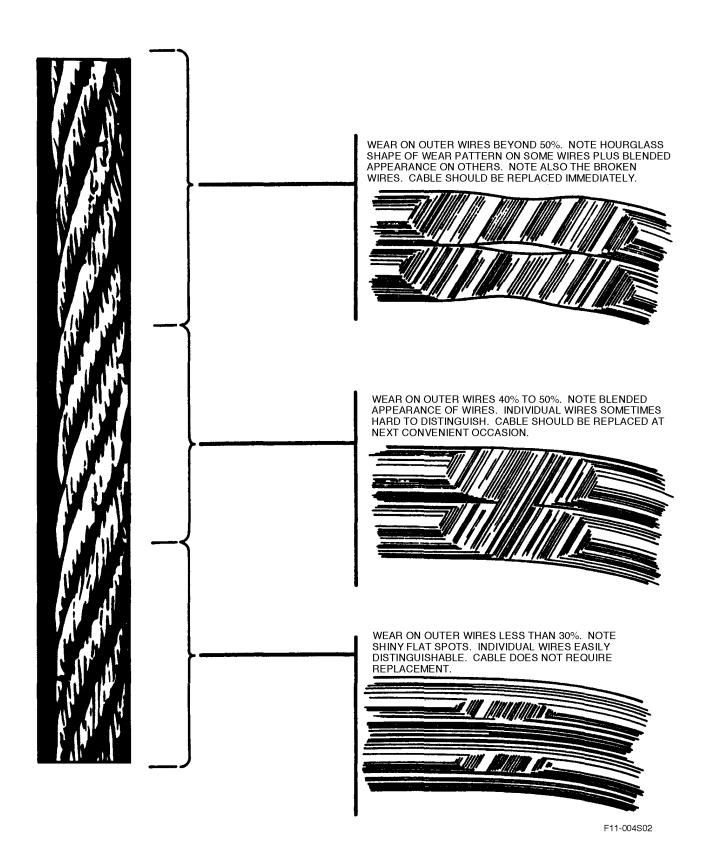
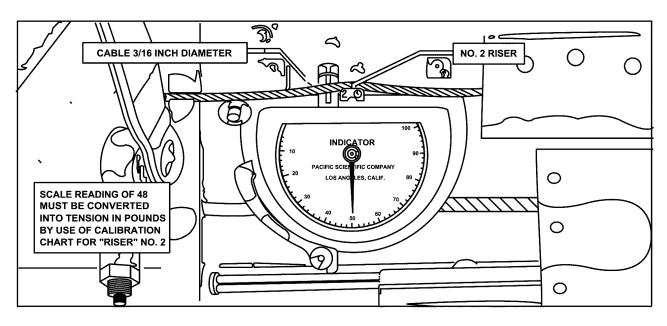
TYPICAL OUTER WIRE WEAR AREA ON CABLE STRAND.
HAIRLINE CRACKS BETWEEN WIRES OR FULLY BLENDED
SURFACE APPEARANCE OF APPROXIMATELY SIX WIRES PER
OUTER CABLE STRAND INDICATES 30 PERCENT WIRE WEAR.
IF THIS APPEARANCE IS VISIBLE, THE CABLE SHOULD BE
REPLACED.

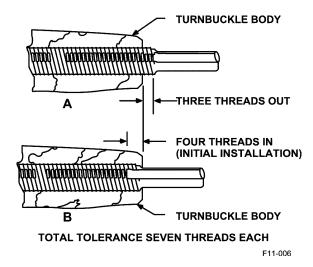
TYPICAL CABLE WEAR MAY OCCUR ON ONE SIDE ONLY OR ON FULL CIRCUMFERENCE AND MY EXTEND ALONG THE CABLE FOR A DISTANCE EQUAL TO NORMAL CABLE MOVEMENT.

WHENEVER CABLE WEAR IS FOUND, CAUSE FOR WEAR MUST BE DETERMINED AND CORRECTED.

F11-004S01

Figure 11-4. Control Cable Wear Limit (Sheet 1 of 2)


Figure 11-4. Control Cable Wear Limit (Sheet 2)

NO.1			RISERS	→ No. 2		NO. 3		
DIA.	1/16	3/32	1/8	TENSION LBS.	5/32	3/16	7/32	1/4
	14	17	21	30	18	26		
	20	24	28	40	24	32		
	25	30	35	50	29	38		
	30	35	42	60	34	43		
	35	40	48	(70)◀──	39 _	48		
	39	45	54	80	43	53		
	44	50	60	90	47	58		
	48	55	65	100	51	62		
	52	60	70	110	55	66		
	56	64	75	120	59	70		
		68	80	130	63	74		
		72	84	140	66	78		
			89	150	69	82		
			93	160	72	85		
				170	75	89		
				180	78	92		
				190	81	96		
				200	83	99		
TVDE				210				
	TYPED FIGURES ARE INSTRUMENT SCALE READINGS CORRESPONDING			220				
	TO TENSION			230				
INST	INSTRUMENT			240 250				
NO.	NO. 1149							
MOD	EL 401-1A	-2						

F11-005

Figure 11-5. Cable Tensiometer

11.4.3 Fork, Eye, and Threaded End Cable Terminals, Bushings, Shackles, and Thimbles. Refer to Table 11-11 through Table 11-17 for information pertaining to fork, eye, and threaded end cable terminals, bushings, shackles, and thimbles.

Figure 11-6. Turnbuckle Thread Tolerance

Table 11-3. Turnbuckle Assembly - Fork

CABLE EYE P (THREADS FLUSH WITH ENDS OF BODY) BODY P11-010							
Dash Num- ber	Strength (Pounds)	Body	Fork	Cable Eye	P (Inches)	Takeup (Inches)	
-2S	800	MS21251-2S	MS21252-2RS	MS21255-2LS	4.500	1-1/4	
-2L		MS21251-2L	MS21252-2RL	MS21255-2LL	8.000	2-7/8	
-3S	1,600	MS21251-3S	MS21252-3RS	MS21255-3LS	4.500	1-1/8	
-3L		-3L	-3RL	-3LL	8.000	2-7/8	
-5S	3,200	MS21251-5S	MS21252-5RS	MS21255-5LS	4.594	7/8	
-5L		5L	-5RL	-5LL	8.109	2-5/8	
-6S	4,600	MS21251-6S	MS21252-6RS	MS21255-6LS	4.656	5/8	
-6L		-6L	-6RL	-6LL	8.156	2-3/8	
-8L	8,000	MS21251-8L	MS21252-8RL	MS21255-8LL	8.313	2-1/8	
-9L	12,500	MS21251-9L	MS21252-9RL	MS21255-9LL	9.063	2-1/16	
-10L	17,500	MS21251-10L	MS21252-10RL	MS21255-10LL	9.563	2-1/16	
Groove on body indicates end with left-hand threads.							

- P (THREADS FLUSH WITH ENDS OF BODY) --PIN EYE CABLE EYE 0 BODY Dash Strength Ρ **Takeup** Number (Pounds) Body Pin Eye Cable Eye (Inches) (Inches) MS21251-2S MS21255-2LS -2S 800 MS21254-2RS 4.5 1-3/8 -2L 2-7/8 MS21251-2L MS21254-2RL MS21255-2LL 8.0 -3S 1,600 MS21251-3S MS21254-3RS MS21255-3LS 4.5 1-1/8 8.0 2-7/8 -3L MS21251-3L MS21254-3RL MS21255-3LL -5S 3,200 MS21251-5S MS21254-5RS MS21255-5LS 4.5 7/8 -5L MS21251-5L 2-5/8 MS21254-5RL MS21255-5LL 8.0 -6S 4,600 MS21251-6S MS21254-6RS MS21255-6LS 4.5 5/8 -6L MS21251-6L MS21254-6RL MS21255-6LL 8.0 2-3/8 -8L 8,000 MS21251-8L MS21254-8RL 8.0 2-1/8 MS21255-8LL -9L 12,500 MS21251-9L MS21254-9RL MS21255-9LL 9.0 2-1/16 -10L 17,500 MS21255-10LL 9.5 MS21251-10L MS21254-10RL 2-1/16 Groove on body indicates end with left-hand threads.

Table 11-4. Turnbuckle Assembly - Pin Eye

Table 11-5. Turnbuckle Assembly - Cable Eye

CABLE BODY GF BODY) CABLE EYE P-(THREADS FLUSH WITH ENDS OF BODY) CABLE EYE P11-012							
Dash Number	Strength (Pounds)	Body	Cable Eye	P (Inches)	Takeup (Inches)		
-2S	800	MS21251-2S	MS21255-2RS -2LS	4.5	1-3/8		
-2L		MS21251-2L	MS21255-2RL -2LL	8.0	2-7/8		
-3S	1,600	MS21251-3S	MS21255-3RS -3LS	4.5	1-1/8		
-3L		MS21251-3L	MS21255-3RL -3LL	8.0	2-7/8		
-5S	3,200	MS21251-5S	MS21255-5RS -5LS	4.5	7/8		
-5L		MS21251-5L	MS21255-5RL -5LL	8.0	2-5/8		
-6S	4,600	MS21251-6S	MS21255-6RS	4.5	5/8		

Table 11-5. Turnbuckle Assembly - Cable Eye - Continued

Dash Number	Strength (Pounds)	Body	Cable Eye	P (Inches)	Takeup (Inches)	
			-6LS			
-6L		MS21251-6L	MS21255-6RL	8.0	2-3/8	
			-6LL			
-8L	8,000	MS21251-8L	MS21255-8RL	8.0	2-1/8	
			-8LL			
-9L	12,500	MS21251-9L	MS21255-9RL	9.0	2-1/16	
			-9LL			
-10L	17,500	MS21251-10L	MS21255-10RL	9.5	2-1/16	
			-10LL			
Groove on body end indicates left-hand threads.						

Table 11-6. Turnbuckle Assembly - Swaging Terminal, Pin Eye

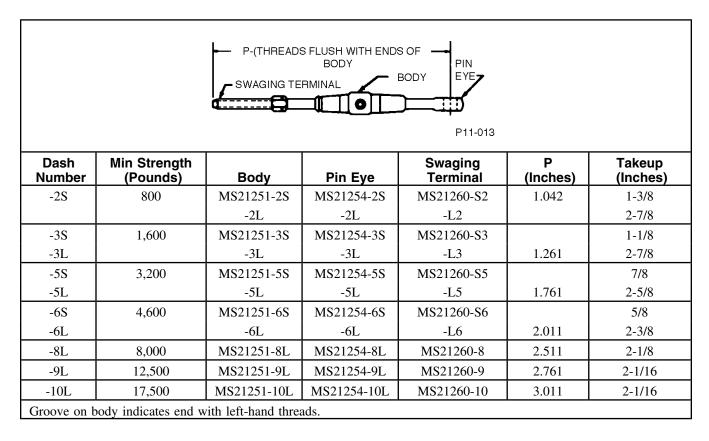


Table 11-7. Turnbuckle Assembly - Swaging Terminal, Fork

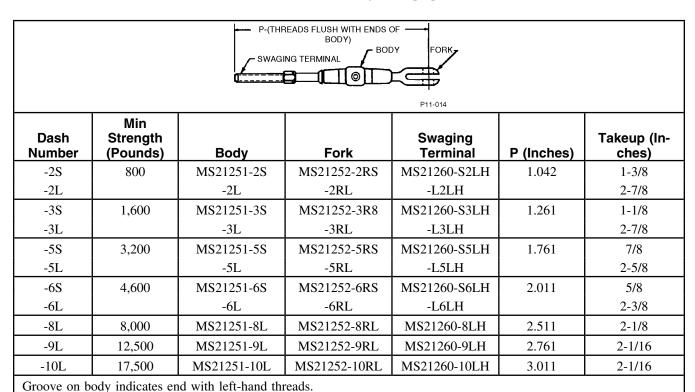


Table 11-8. Turnbuckle Assembly - Swaging Terminal

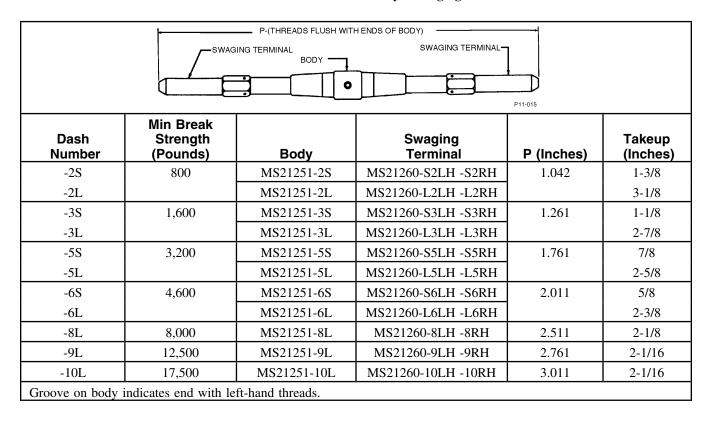


Table 11-9. Turnbuckle Assembly - Fork

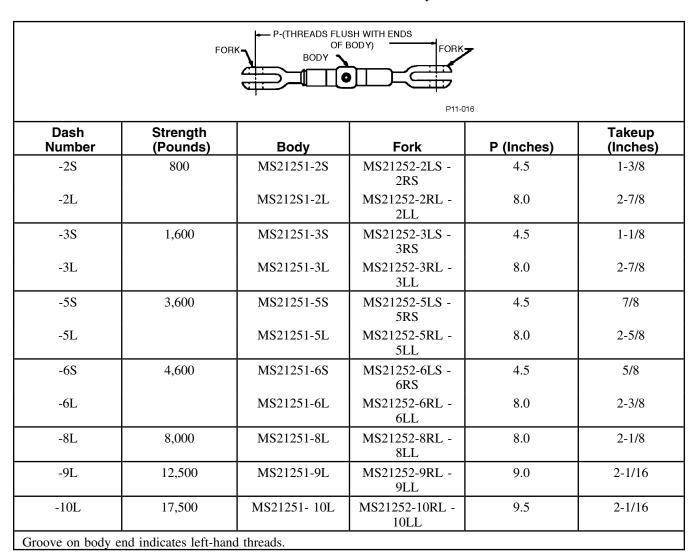


Table 11-10. Turnbuckle Assembly - Pin Eye

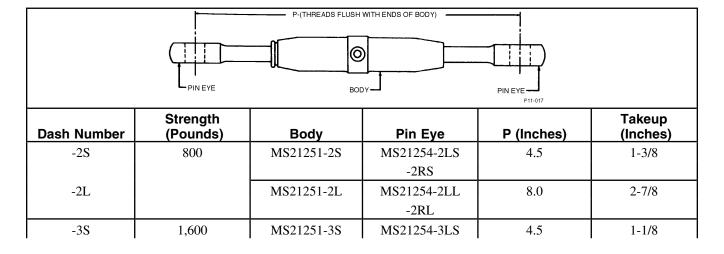
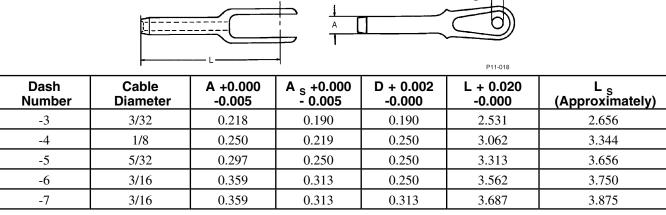



Table 11-10. Turnbuckle Assembly - Pin Eye - Continued

Dash Number	Strength (Pounds)	Body	Pin Eye	P (Inches)	Takeup (Inches)
			-3RS		
-3L		MS21251-3L	MS21254-3LL	8.0	2-7/8
			-3RL		
-5S	3,200	MS21251-5S	MS21254-5LS	4.5	7/8
			-5RS		
-5L		MS21251-5L	MS21254-5LL	8.0	2-5/8
			-5RL		
-6S	4,600	MS21251-66	MS21254-6LS	4.5	5/8
			-6RS		
-6L		MS21251-6L	MS21254-6LL	8.0	2-3/8
			-6RL		
-8L	8,000	MS21251-8L	MS21254-8LL	8.0	2-1/8
			-8RL		
-9L	12,500	MS21251-9L	MS21254-9LL	9.0	2-1/16
			-9RL		
-10L	17,500	MS21251-10L	MS21254-10LL	9.5	2-1/16
			-10RL		

Table 11-11. MS20658 Fork End Cable Terminal

A = Outside diameter of shank before swaging.

 A_s = Outside diameter of shank after swaging.

D = Hole diameter.

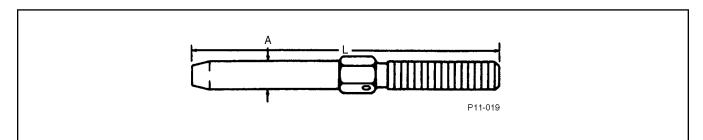
L = Length before swaging.

 L_s = Length after swaging.

All dimensions given in inches.

Code:

Dash numbers listed are for corrosion-resistant steel terminals.


Example of part number:

MS20658-4 terminal, corrosion-resistant steel, 1/8-inch diameter cable, fork end.

Table 11-11. MS20658 Fork End Cable Terminal - Continued

Dash Number	Cable Diameter	A +0.000 -0.005	A _s +0.000 - 0.005	D + 0.002 -0.000	L + 0.020 -0.000	L _S (Approximately)			
Material:									
Steel, corrosion-resistant, Specification MIL-T-781A.									

Table 11-12. MS21259 Threaded Cable Terminal

Dash Num- ber	Cable Diameter	Thread NF-3A UNF-3A		A	A	· s	L + 0.016 - 0.000	L _S (Approximately)
-2	1/16	6-40	0.160		0.138		2.473	2.651
-3	3/32	10-32	0.218		0.190	+0.000	2.879	2.996
-4	1/8	1/4-28	0.250		0.219	-0.005	3.333	3.589
-5	5/32	1/4-28	0.297		0.250		3.627	3.972
-6	3/16	5/16-24	0.359		0.313		4.002	4.170
-7	7/32	3/8-24	0.427		0.375	+0.000	4.516	4.812
-8	1/4	3/8-24	0.494		0.438	-0.007	4.937	5.236
-9	9/32	7/16-20	0.563		0.500		5.391	5.750
-10	5/16	1/2-20	0.635		0.563		5.844	6.266
				+0.000		+0.000		
				-0.005		-0.008		
-12	3/8	9/16-18	0.703		0.625		6.656	7.093
-14	7/16	5/8-18	0.781		0.688		7.437	8.124
-16	1/2	5/8-18	0.844		0.750	+0.000	8.187	8.683
-18	9/16	3/4-16	0.984		.0.875	-0.009	9.125	9.937
-20	5/8	7/8-14	1.109		1.000	+0.000	10.375	11.062
-24	3/4	1-14	1.359			-0.010	12.063	12.750
-28	7/8	1-1/8-12	1.593	+0.000	1.250 1.437	+0.000	13.226	13.750
-32	1	1-1/4-12	1.812		1.625		14.969	15.750

A = Outside diameter of shank before swaging.

NOTE

These terminals are not to be used with turnbuckle barrels.

 A_s = Outside diameter of shank after swaging.

L = Length of terminal before swaging.

Table 11-12. MS21259 Threaded Cable Terminal - Continued

Dash		Thread				
Num-	Cable	NF-3A			L + 0.016	L _s
ber	Diameter	UNF-3A	Α	As	- 0.000	(Approximately)

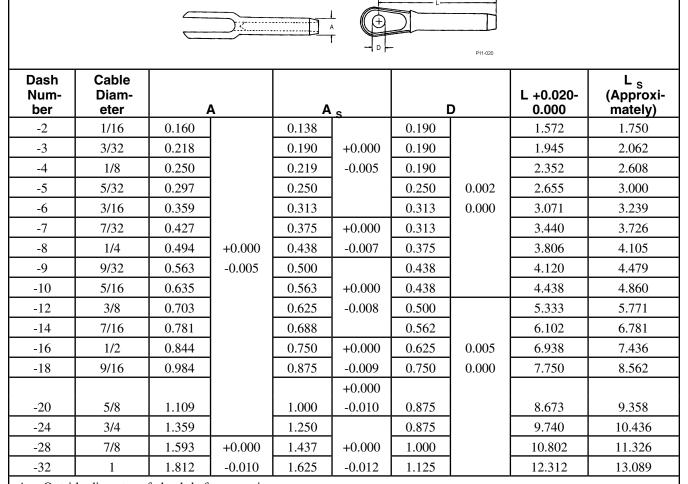
 L_s = Length of terminal after swaging.

All dimensions given in inches.

Code:

Dash numbers listed are for corrosion-resistant steel terminals.

RH or LH after dash numbers indicate right- or left-hand threaded terminals.


Example of part number:

MS21259-6RH terminal, corrosion-resistant steel, 3/16-inch diameter cable, right-hand threads.

Material:

Steel, corrosion-resistant, Specification MIL-T-781A.

Table 11-13. MS20667 Fork End Cable Terminal

A = Outside diameter of shank before swaging.

 A_s = Outside diameter of shank after swaging.

D = Hole diameter.

Table 11-13. MS20667 Fork End Cable Terminal - Continued

Dash	Cable					L c
Num-	Diam-				L +0.020-	(Approxi-
ber	eter	Α	As	D	0.000	mately)

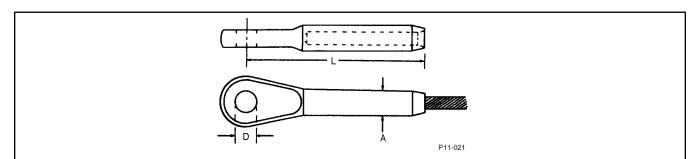
L = Length before swaging.

 L_s = Length after swaging.

All dimensions given in inches.

Code:

Dash numbers listed are for corrosion-resistant steel terminals.


Example of part number:

MS20667-6 terminal, corrosion-resistant steel, 3/16-inch diameter cable.

Material:

Steel, corrosion-resistant, Specification MIL-T-781A.

Table 11-14. MS20668 Eye End Cable Terminal

Dash Number	Cable Diameter	,	4	A	s		D	L +0.020 -0.000	L _S (Approxi- mately)
-2	1/16	0.160		0.138			0.190	1.631	1.809
-3	3/32	0.218		0.190	+0.000	0.190		2.043	2.160
-4	1/8	0.250		0.219	-0.005	0.190		2.337	2.593
-5	5/32	0.297	+0.000	0.250		0.250		2.684	3.029
-6	3/16	0.359	-0.005	0.313		0.313	+0.002	3.019	3.187
-7	7/32	0.427		0.375	+0.000	0.313	-0.000	3.382	3.678
-8	1/4	0.494		0.438	-0.007	0.375		3.763	4.062
-9	9/32	0.563		0.500		0.438		4.153	4.512
-10	5/16	0.635		0.563	+0.000	0.438		4.546	4.969
-12	3/8	0.703		0.625	-0.008	0.500		5.562	6.000
-14	7/16	0.781	+0.000	0.688		0.562		6.398	7.093
-16	1/2	0.844	-0.005	0.750	+0.000	0.625	+0.005	7.323	7.812
-18	9/16	0.984		0.875	-0.009	0.750	-0.000	8.185	9.000
-20	5/8	1.109		1.000	+0.000	0.875		9.167	9.853
-24	3/4	1.359		1.250	-0.010	0.875		10.328	11.031
-28	7/8	1.593	+0.000	1.437	+0.000	1.000		11.530	12.054
-32	1	1.812	-0.010	1.625	-0.012	1.125		13.156	13.937

A = Outside diameter of shank before swaging.

 A_s = Outside diameter of shank after swaging.

Table 11-14. MS20668 Eye End Cable Terminal - Continued

						L _s
Dash	Cable				L +0.020	(Approxi-
Number	Diameter	Α	A	D	-0.000	mately)

D = Hole diameter.

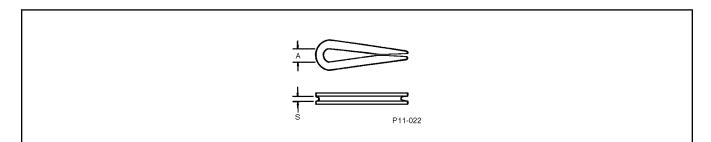
L = Length before swaging.

 L_s = Length after swaging.

All dimensions given in inches.

Code:

Dash numbers listed are for corrosion-resistant steel terminals.


Example of part number:

MS20668-6 terminal, corrosion-resistant steel, 3/16-inch diameter cable.

Material:

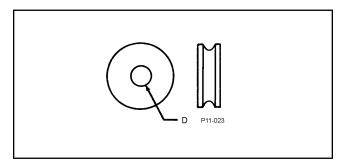
Steel, corrosion-resistant, Specification MIL-T-781A.

Table 11-15. AN100 Cable Thimble

Dash Number	Cable Diameter	A (Inches)	S +1/64 -0 (Inch)
-3	1/16	.350	3/32
	5/64		
	3/32		
-4	7/64	.350	9/64
	1/8		
-5	5/32	.400	11/64
-6	3/16	.500	13/64
-7	7/32	.600	15/64
-8	1/4	.700	17/64
-9	9/32	.800	19/64
-10	5/16	.900	21/64
-12	3/8	1.000	25/64
-14	7/16	1.125	29/64
-16	1/2	1.250	33/64
-18	9/16	1.500 (Min)	37/64
-20	5/8	1.750 (Min)	41/64

AN100-18 and AN100-20 available only in commercial wrought steel.

Code:


Dash numbers listed are for low carbon steel thimbles.

C before dash indicates corrosion-resistant steel thimbles.

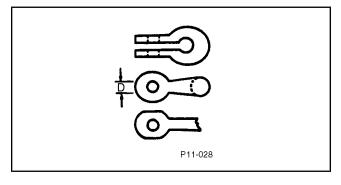
Table 11-15. AN100 Cable Thimble - Continued

Dash Number	Cable Diameter	A (Inches)	S +1/64 -0 (Inch)					
B before dash indicates phosphor bronze thimbles.								
Material:								
Carbon steel, Military S	pecification MIL-T-5677A.							
Corrosion-resistant steel, Military Specification MIL-S-5059, composition G.								
Phosphor bronze, Federa	al Specification QQ-P-330.							

Table 11-16. AN111 Cable Bushing

Dash Number	Cable Diameter	D Drill +.010 000 (Inch)
	1/16	
-3	5/64	.187
	3/32	
-4	1/8	.187
5	5/32	.250
-6	3/16	.312
-7	7/32	.375
-8	1/4	.375
-10	5/16	.437
-12	3/8	.500

Dash numbers listed are for low carbon steel.


C before dash number indicates corrosion-resistant steel. Material:

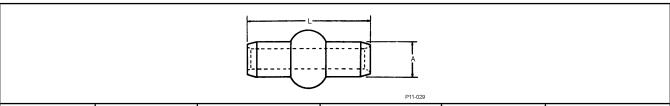
Corrosion-resistant steel, Military Specification MIL-S-7720.

11.4.4 Swaged Ball Terminals. (Refer to Table 11-18 and Table 11-19.) On some aircraft cables, swaged ball terminals are used. The MS20663 is a double-shank, ball end cable terminal and the MS20664 is a single-shank, ball end cable terminal. These terminals are used for attaching cables to quadrants and special connections where space is limited. The steel balls and shanks have a hole through the center and are slipped over the cable and then swaged in position. Dies are supplied with the standard, hand-swaging machines for attaching these terminals to cables. The

terminal is placed at the correct location on the cable, then run through the dies in the standard swaging machine. The single-shank terminal is usually used at the end of cables, and the double-shank may be used at either the end or center of the cable. Cut or file flush all protruding or excess cable from ends of all fittings prior to testing.

Table 11-17. AH115 Cable Shackle

Dash Number	D Diameter +.010000 (Inch)
-8	.188
-16	.188
-21	.188
-32	.250
-46	.313
-61	.375
-80	.375
-125	.438
-175	.500


Code:

Dash numbers listed are for cadmium- or zinc-plated steel.

C before dash number indicates corrosion-resistant steel. K before dash number indicates NI-CU-AL alloy. Material:

Cadmium- or zinc-plated steel, corrosion-resistant steel, NI-CU-AL alloy.

Table 11-18. MS20663 Double Shank Ball End Cable Terminal

Dash Number	Cable Diameter		4	А	s	L ±0.0075	L _S (Approximately)
-2	1/16	0.127		0.112		0.362	0.390
-3	3/32	0.163		0.143	+0.000	0.525	0.578
					-0.003		
-4	1/8	0.218	+0.000	0.190		0.688	0.765
			-0.004		+0.000		
-5	5/32	0.254		0.222	-0.004	0.850	0.953
-6	3/16	0.293		0.255		1.012	1.140
-7	7/32	0.347	+0.000	0.302	+0.000	1.175	1.328
			-0.005		-0.005		
-8	1/4	0.401		0.348		1.337	1.515
			+0.000				
-9	9/32	0.439	-0.004	0.382	+0.000	1.497	1.719
			+0.000		-0.007		
-10	5/16	0.475	-0.005	0.413		1.664	1.875

A = Outside diameter of shank before swaging.

A_s = Outside diameter of shank after swaging.

L = Length of terminal before swaging.

 $L_s = Length of terminal after swaging.$

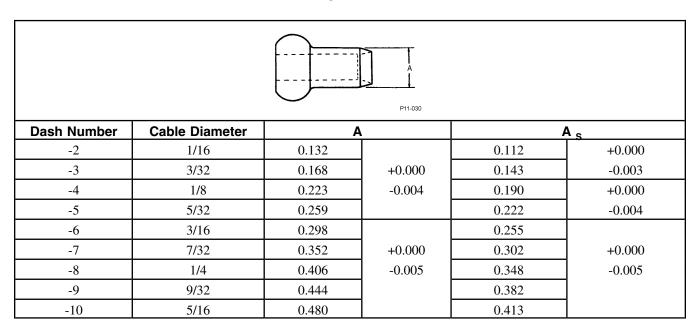
All dimensions given in inches.

Code:

Dash numbers listed are for carbon steel terminals.

Example of part number:

MS20663-4 terminals, carbon steel, 1/8-inch diameter cable.


Material:

Steel, corrosion-resistant, Specification MIL-T-781A.

NOTE

Caution must be exercised to assure that AN663 or MS20663 carbon steel ball end terminals are not used with MIL-C-18375 or MIL-W-83420, Composition B, corrosion resistant steel cable. Only the AN663C or MS20663C stainless steel fitting will be used; however, either the carbon steel ball end or stainless steel ball end can be used on MIL-W-83420, Composition A carbon steel cable.

Table 11-19. MS20664 Single Shank Ball End Cable Terminal

A = Outside diameter of terminal before swaging.

 A_s = Outside diameter of terminal after swaging.

All dimensions given in inches.

Code:

Dash numbers listed are for carbon steel terminals.

Example of part number:

MS20664-4 terminal, carbon steel, 1/8-inch diameter cable.

Material:

Steel, corrosion-resistant, Specification MIL-T-781A.

NOTE

Caution must be exercised to assure that AN664 or MS20664 carbon steel ball end terminals are not used with MIL-C-18375 or MIL-W-83420, Composition B, corrosion resistant steel cable. Only the AN664C or MS20664C stainless steel fitting will be used; however, either the carbon steel ball end or stainless steel ball end can be used on MIL-W-83420, Composition A, carbon steel cable.

11.5 PULLEYS.

Inspect pulleys for roughness, sharp edges, and presence of foreign material embedded in the grooves. Examine pulley bearings to assure proper lubrication, smooth rotation, freedom from flat spots, dirt, and paint spray. Periodically rotate pulleys, which turn through a small arc, to provide a new bearing surface for the cable. Maintain pulley alignment to prevent the cable from riding on the flanges and chafing against guards, covers, or adjacent structure. Check all pulley brackets and guards for damage, alignment, and security.

- a. Pulley Wear patterns. Various cable system malfunctions maybe detected by analyzing pulley conditions. These include such discrepancies as too much tension, misalignment, pulley bearing problems, and size mismatches between cables and pulleys. Examples of these conditions are shown in Figure 11-7.
- 11.5.1 <u>Cable Stops.</u> (See Figure 11-8.) Cable stops, consisting of a tapered locking screw and a locking nut, are used on some aircraft trim tab system cables. When fabricating new cables for the trim tab system, the two units comprising the stop must be threaded onto the cable in the

proper direction and sequence before swaging or soldering the last terminal. When this device is clamped onto a cable, the correct location should be found, the tapered locking screw held with an open-end wrench, and the locking nut screwed over the threads. The tapered locking screw should not be allowed to rotate on the cable, since the cable will be damaged as the wedging action of the locking nut increases.

11.5.2 Cable Fabrication.

A suitable guard should be placed over the cable while it is being tested to prevent injury to personnel or damage to equipment should the cable break.

NOTE

All locally fabricated, reworked and repaired cable assemblies shall be tested for proper strength before installation. The desired method is to simulate the installation arrangement including pulleys where required, (if such simulation is not possible a straight pull test may be accomplished). Apply a test load of 60% of the minimum allowable breaking strength gradually to one end of the cable with the other end securely anchored. Hold for 3 minutes; release and examine the cable for damage in accordance with paragraph 11.2.1 and the fittings for any sign of failure of attachment.

11.5.3 <u>Cable Replacement</u>. If spare cables are not available, exact duplicates of the damaged cables should be prepared. However, if facilities and supplies are limited and immediate replacement is imperative, replacements may be

prepared by using cable bushings and eye splices and proper combination of turnbuckles to match the original installation. Eye-type swaged terminals may be replaced by bushing in an eye splice. Clevis-type terminals may be replaced by a cable thimble in conjunction with an eye splice and a shackle. When this is done cables having a diameter of 3/32-inch and over may be woven-spliced by means of the five-tuck method, and cables of 1/16-inch diameter may be wrap-soldered. Table 11-20 gives the particular terminals recommended for use with an improvised woven-spliced or wrap-soldered cable.

11.5.4 Cutting Cables. Cables may be cut by any cutting method except a torch, depending upon the tools and machines available. If a cable tends to unravel or fray when being cut, the cut area should be sweat-soldered or wrapped with masking, cellulose, or friction tape so that half the soldered or taped width will remain on each end after cutting. Small diameter cables may be cut satisfactorily with a pair of heavy-duty diagonal cutters, side cutters, or with pair of wire nippers. (See Figure 11-9.) Best results are obtained if the cutting jaws are held perpendicular to the cable during the cutting operation. Cables up to 3/32inch diameter may be cut in one cut by this method, while larger cables will require two or more cuts. When cutting large diameter cables in this manner, the end of the cutting blade should be used and a few strands cut at a time. A cold chisel, used in conjunction with a soft metal block, may also be used for cutting cables. The chisel should be held straight up and the cutting blade placed at right angles to the cable. (See Figure 11-10.) A heavy hammer should be used with a sharp blow to the chisel to effect a clean, square cut. The best method of cutting cables is with a cable-cutting machine having special jaws for cables of various diameters. (See Figure 11-11.) The cables should be positioned in the proper diameter groove and held firmly at right angles to the cutting blades while the operating handle is pulled down sharply. Large cables should be cut with a radiac (a thin, abrasive wheel which revolves at high speed).

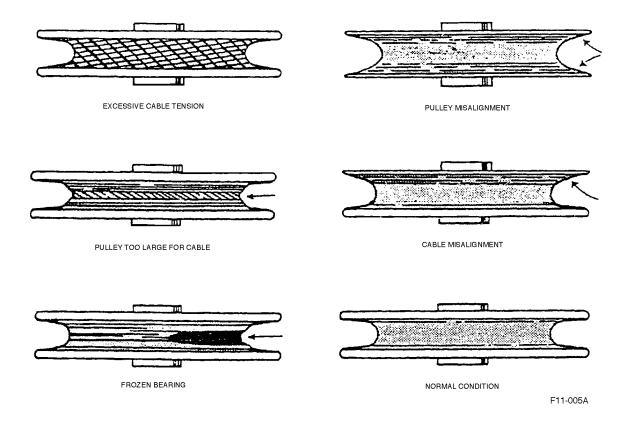


Figure 11-7. Pulley Wear Patterns

Table 11-20. Recommended Terminals for Use with Improvised Woven-Spliced or Wrap-Soldered Cable

N100-3	AN111-3 AN111-3	AN115-8	AN150-16S
	AN111-3		
		AN115-8	AN150-16S
.N100-4	AN111-4	AN115-16	AN150-21S
N100- 5	AN111-5	AN115-21	AN150-32S

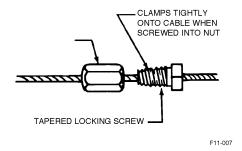


Figure 11-8. Trim Tab Cable Stop

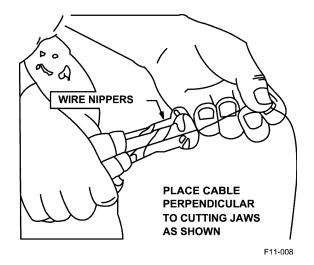


Figure 11-9. Cutting Small Diameter Cable

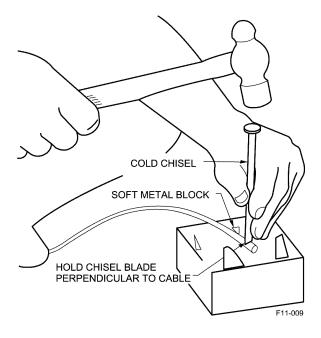


Figure 11-10. Cutting Cable With Cold Chisel

11.5.5 Cable Lubrication and Corrosion Preventative Treatment. Lubrication and corrosion preventative treatment of cables may be effected simultaneously by application of compound MIL-C-16173 grade 4, or MIL-C-11796, class I. MIL-C-16173 compound should be brushed, sprayed or wiped on the cable to the extent it penetrates into the strands and adequately covers the cable surfaces. It will dry "tack free" in 24 hours at 77°F. MIL-C-11796 compound is applied by dipping the cable in a tank of compound heated to 77 \pm 5°C (170 \pm 9°F) for 1/2 minute then removing it and wiping off the excess oil.

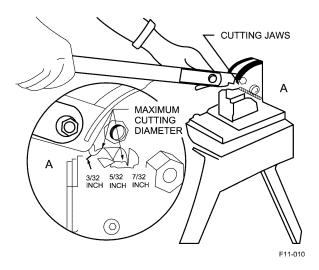


Figure 11-11. Cable Cutting Machine

- 11.5.6 <u>Swaging Cable Terminals</u>. Swaged terminals should be used in fabrication if available. After preparing the necessary cable length, allowing for the fitting elongation under swaging and proof loading, the end of the cable should be coated with lubricating oil, Military Specification MIL-L-15016. To swag the terminals onto the cable end, proceed as follows:
 - a. Check that end of cable is square cut so that entire cable end will go inside terminal barrel. (See Figure 11-13.)
 - b. Insert cable into terminal approximately 1-inch. Bend cable toward terminal, straighten back to normal, and then push cable end entirely into terminal barrel.
 - c. Check that proper size swaging dies are in swaging machine. (See Figure 11-14, Figure 11-15, and Figure 11-16.)
 - d. With a micrometer, check terminal barrel diameter after swaging. If, after swaging, the terminal has more than allowable 1/2-degree bend, secure it in a vise and straighten it with as few applications of pressure as possible.
 - e. Accurately measure the overall cable length and trim the cable as required.
 - f. Check that all additional fittings are slipped on the cable in proper sequence.
 - g. Swage the other terminal as directed in steps a through d above.

- h. Using red paint, paint the junction of the swaged fitting and cable.
- i. At all subsequent service inspections of the swaged fitting, check for gap in the painted section which would indicate cable slippage.
- 11.5.7 Sweat-Soldering Cable Terminals. As sweat-soldered terminals are employed only on lightly loaded cables, they should be used only when replacing cables where they were originally used. Sweat-soldered terminals can be distinguished from swaged-type terminals by the air holes in the barrel of the terminal, which allow the molten solder to fill the barrel without air bubbles. (See Figure 11-17.) To attach sweat-soldered terminals to cables proceed as follows:
 - a. Select proper size and type terminal and place it, barrel up, in a suitable clamping device. The clamping device should have jaws of fiber or some other nonconductive material that will not lose heat readily.
 - b. Apply heat to terminal barrel with a soldering torch or a high-wattage soldering iron.
 - c. After terminal is thoroughly heated, insert a small amount of soldering flux into barrel. Stearic acid, a suitable mixture of stearic acid and resin, or resin dissolved in alcohol may be used as the soldering flux. Muriatic acid should not be used as a flux.
 - d. Apply soldering flux to end of the cable and insert it into barrel of terminal. On clevis-type terminals, allow cable to extend through barrel a short distance and free end strands of cable; allow them to fray. Pull cable back into barrel until end is flush with clevis.
 - e. Apply tin-lead solder, Federal Specification QQ-S-571, around cable at terminal opening and thoroughly sweat-solder into terminal barrel until solder appears at opposite end of barrel and fills each breather hole. Avoid overheating solder.
 - f. Leave a solder bead around cable at terminal opening and allow terminal to air-cool. Do not quench.

11.5.8 Wrap-Soldering Cable Terminals. (See Figure 11-18.)

The wrap-soldered splice may be employed to fabricate end fittings on cables of 1/16-inch diameter only. To replace an eye-type fitting, the AN111-3 cable bushing is used; to replace a clevis-type fitting, the AN100-3 cable thimble and an AN115-8 cable shackle is used. Proceed as follows:

a. Arrange cable and fittings, allowing approximately 2-1/4 inches of free end. Before wrapping cable

- around a thimble, place cable shackle in position, as this cannot be done after splice is completed.
- b. Clamp assembly in a splicing clamp or similar holding device and secure in a vise.
- c. Starting as close as practicable to end fitting, press free end of standing length of cable together tightly and wrap with a single layer of number 20 zinccoated soft steel wire, Federal Specification QQ-W-461, leaving a space of approximately 1/8 inch between every 1/2 inch of wrapping. Allow wrapping to extend approximately 1/4 inch beyond free end.

NOTE

Be careful to prevent standing length from twisting during this operation.

- d. Thoroughly flux entire splice with stearic acid, a suitable mixture of stearic acid and resin, or resin dissolved in alcohol. Muriatic acid should not be used as a flux.
- e. Remove splice from cable clamp and dip wrapping in tin-lead solder, Federal Specification QQ-S-571. Carefully sweat-solder into cable about wrapping and apply solder until wrapping wire is barely discernible, making certain that open spaces between wrapped sections are thoroughly impregnated with molten solder. If a solder pot is not

- available, a soldering torch may be used; in that case, be careful to thoroughly impregnate entire splice with solder.
- f. Remove splice from solder pot and allow to cool. Do not quench.
- g. After splice has cooled, thoroughly wipe clean and wash away all soldering flux from splice and adjacent cable with hot water.
- h. Dry splice and impregnate spliced section with a rust or corrosion preventive conforming to Military Specifications MIL-C-11796, class I, MIL-C-16173, Grade 4.
- i. Carefully inspect splice. A wrap-soldered splice easily bent with the fingers is unsatisfactory because of poor solder penetration. Cracks in solder, between wrapping wire and short space provided between wraps, are a positive indication of slippage in a wrap-soldered splice.

NOTE

Before replacing clevis-type terminal with a cable thimble and cable shackle, see that there will be sufficient room and clearance for this setup. If not, make an eye splice with an AN111 bushing and use in conjunction with a turnbuckle assembly. (See Figure 11-19.)

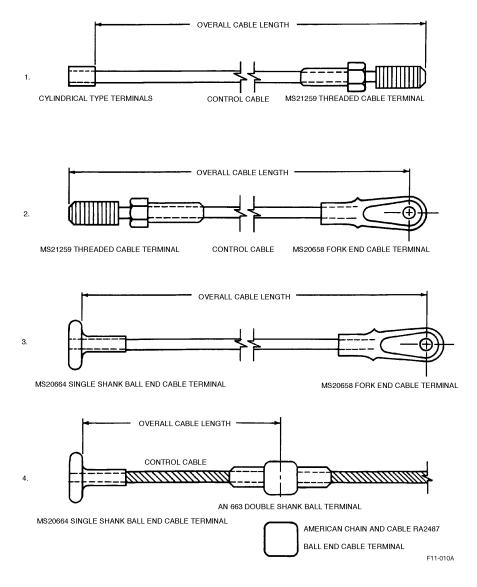


Figure 11-12. General Cable Measurements

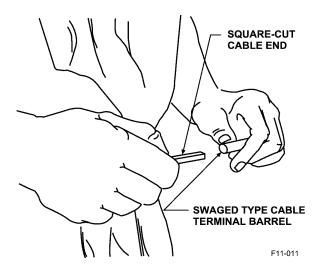


Figure 11-13. Inserting Cable in Swaging Terminal

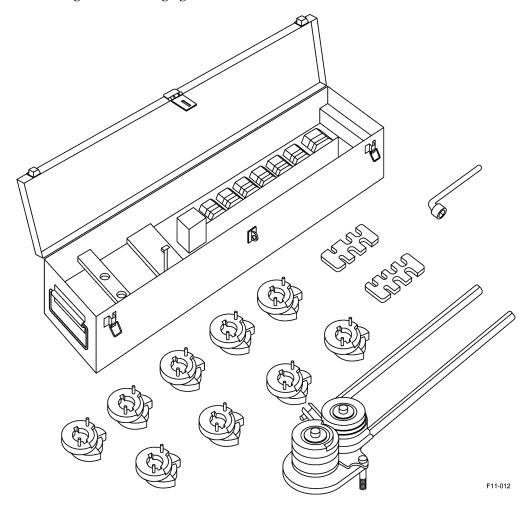


Figure 11-14. Standard Hand Swaging Machine Set With Dies

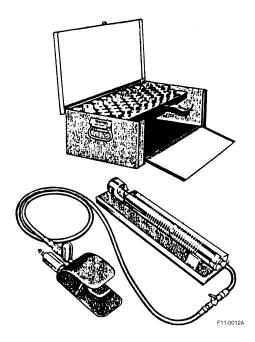


Figure 11-15. Portable Aircraft Cable Swaging Machine

11.5.9 Woven-Spliced Cable Terminals. Where facilities are limited and immediate replacement of cables is imperative, five-tuck woven-spliced terminals may be used in conjunction with AM111 bushing, or with AN100 cable thimbles and AN115 shackles, in place of swaged terminals. Because of restrictions such as fairleads, cutouts, and pulleys, it may be necessary to splice one end of the cable in the aircraft. Therefore, the original installation should be checked for any restrictions on the passage of the splice. Prior to splicing a cable by this method, the cable should be annealed with a welding torch for a distance of one inch from the tip. (See Figure 11-20.) Each of the strands should be trimmed after annealing. (See Figure 11-22 for the designation of numbers and letters referred to in the following sequence of operations.) The procedure for the fabrication of the five-tuck woven splice is as follows:

- a. Secure cable around a bushing or thimble by means of a splicing clamp, leaving eight inches or more of free end. Secure splicing clamp in a vise with free end left of standing wire and away from operator. (See Figure 11-21.) If a thimble is used as the end fitting, turn points outward approximately 45-degrees.
- b. Select free strand (1, Figure 11-22) nearest standing length at end of fitting and free this strand from the rest of free ends. Insert a marlinspike under first three strands (A, B, and C) of standing length nearest separated strand of free end and separate them momentarily by twisting marlinspike. Insert

- free strand (1) under the three separate strands through opening created by marlinspike. Pull free end taut by means of pliers.
- c. Untwist a second strand (2), located to left of first strand tucked, and insert it under first two standing strands (A, B). Loosen third free length strand (3) located to left of first two, and insert it under first standing strand (A) of original three.

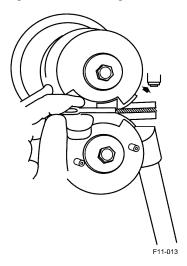


Figure 11-16. Locating the Terminal in the Swaging Jaws

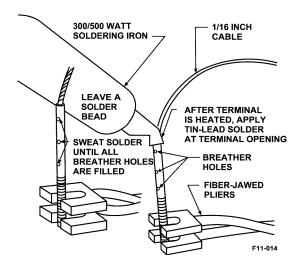


Figure 11-17. Sweat Soldering Cable Terminal

- d. Remove center or core strand (7) from free end and insert it under same standing strands (A, B). Temporarily secure core strand to body of standing cable. Loosen last free strand (6), located just to right of first (1), and tuck it under last two strands (E, F) of standing cable. Tuck fifth free end (5) around fifth standing strand (E). Tuck fourth free end (4) around sixth standing strand (F). Pull all strands snug toward end fitting with pliers. This completes first tuck.
- e. Begin with first free strand (1) and work in a counterclockwise direction tucking free strands under every other standing strand. After completion of every tuck pull strands tight with pliers. Pull toward end fitting. After completion of the third complete tuck, divide in half the number of wires in each free strand. Make another complete tuck with wires remaining at the completion of fourth tuck; again halve wires in the free strands and make one final tuck with wires remaining. Cut off all protruding strands and pound splice with a wooden or rawhide mallet to relieve strain in wires.

Serve splice with waxed-linen cord, Federal Specification V-T-291. Start 1/4 inch from end of splice and carry wrapping over loose end of the cord and along tapered splice to a point between second and third tucks. Insert end of cord back through last five wrappings and pull snug. Cut off ends. If a thimble is used as an end fitting, bend down points. Apply two coats of shellac to cord, allowing two hours between applications. Carefully inspect cable strands and splices for local failure. Weakness in a woven splice is made evident by a separation of strands of serving cord.

NOTE

Nonpreformed and stainless steel cables can be spliced, but not as easily as preformed cables, due to the fact that strands of the cable have a tendency to flare or spread out when cut. To avoid strand flaring, the electric cable cutter should be used. If this tool is not available, flaring may be prevented by placing solder on cable at cutoff position.

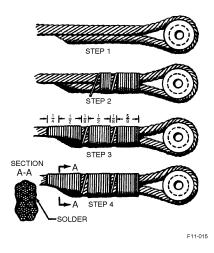


Figure 11-18. Wrap-Soldered Splice

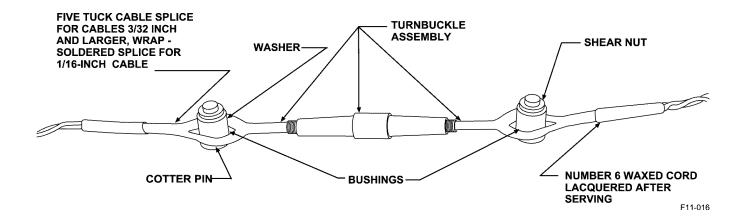
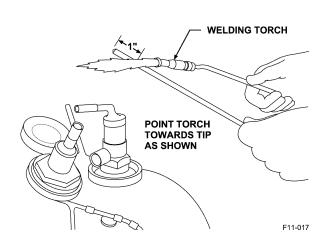



Figure 11-19. Turnbuckle and Splices

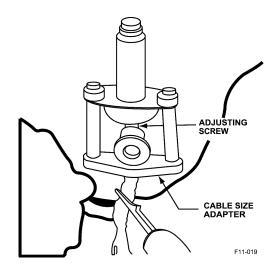
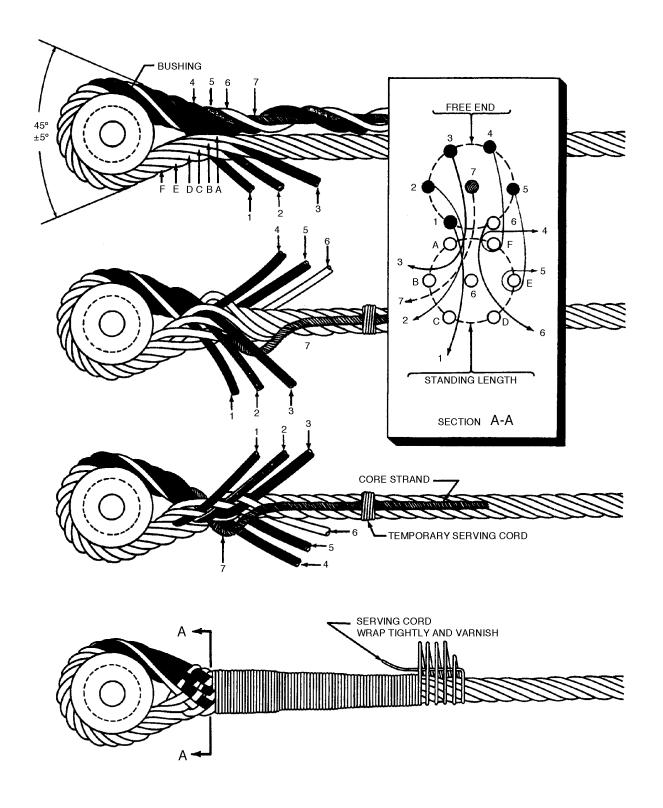



Figure 11-21. Cable Clamp for Woven Splice

F11-018

Figure 11-22. Woven Cable Splice

CHAPTER 12 TIE RODS AND CONTROL RODS

12.1 TIE RODS AND CONTROL RODS.

Tie rods and control rods of several different sizes and types are used in the makeup of tie rod and control rod assemblies. Tie rod assemblies are used as tension carrying structural members which have a high strength and will affect the alignment of adjacent structural elements. Control rod assemblies are used as links in mechanical systems to allow remote operation for adjustment of engine accessories, main flight controls, and miscellaneous units of fixed equipment.

12.1.1 Tie Rods. (Refer to Table 12-1 and Table 12-2.)

12.1.2 <u>Tie Rod Assemblies</u>. A tie rod assembly consists of a tie rod, two checknuts, and two tie rod terminal fittings. The tie rod is made of high strength steel, and is threaded with right-hand and left-hand threads at opposite ends. A portion of the shank is flat, which allows a wrench to be used for turning the tie rod during installation and adjustment. A checknut and fitting are installed on each end of the tie rod. The checknuts are tightened against the fittings to prevent loosening caused by vibration. A typical tie rod assembly is shown in Figure 12-1.

12.1.3 Types of Tie Rods. There are several types of tie rods available including streamlined, round, and square tie rods. The streamlined tie rods (AN671 through AN686) are elliptical in shape and are designed for external use where it is important to reduce air resistance. The round and square tie rods (AN701 through AN708) are used internally for various bracing purposes where a light, strong, adjustable member is required.

12.1.4 <u>Types of Tie Rod Terminal Fittings</u>. There are several different types of tie rod terminal fittings. The most common type used is the AN665 tie rod end terminal. This fitting has a clevis end and is threaded for attachment to the threaded end of the tie rod shank.

12.1.5 Control Rods. (Refer to Table 12-3.)

12.1.6 Control Rod Assembly. (Refer to Table 12-4 through Table 12-23.) Most control rod assemblies consist of a tube assembly, two checknuts and two rod ends or a tube assembly, one checknut and one rod end. Others consist of a control rod, two checknuts and two rod ends. The control rod is made of steel and the tubing for the tube assembly is made of stainless steel or aluminum alloy. Control rod assemblies can be made from standard AN or NAS parts, using any combination that is required. Length adjustment is accomplished by the use of screw-type fittings which may be capable of self-alignment to avoid rod distortion under certain types of motion. Control rod assemblies with ball-bearing rod ends are used for mechanical systems where low friction loads are desired and where motion tends to twist or bend the control rod. The checknut is first installed on the threaded end of the rod or tubing assembly, and then the rod end is attached. When the correct length of the control rod assembly has been determined, the checknut is tightened against the rod end to prevent the rod end from becoming loose. Typical control rod assemblies are shown in Figure 12-2.

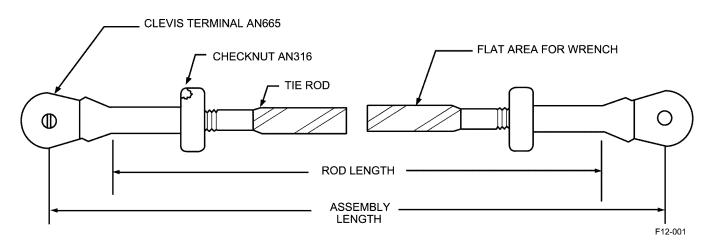


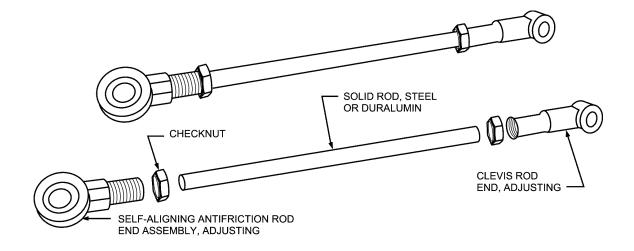
Figure 12-1. Typical Tie Rod Assembly

NOTE

When connecting a ball bearing control rod, a plain or countersunk washer of appropriate size, NAS143 (reference Table 6-2), MS20002 (reference Table 6-9, or AN970 (reference Table 6-7) will be installed under the attaching nut and bolt head to prevent any possibility of control rod slipping off over the bearing retaining nut or bolt head. The attaching nut and bolt must tightly clamp the inner race of the bearing to face of the washer and supporting structure. A nut and bolt that is only finger tight does not utilize the bearing for the purpose it was intended. Control rods utilizing clevis rod ends may have washers, if required, installed under the bolt and nut heads on the outside of the fork or between the fork and bearing if space permits. Nuts should be tightened to the recommended torque values listed in Table 5-9.

12.1.7 Control Tube Assemblies. (Refer to Table 12-24 through Table 12-29.) The control tube assembly consists of a metal tube and two rod ends. One rod end is attached to each end of the metal tube. The metal tube may be swaged, expanded, or reamed at the ends to engage the rod ends. The rod ends are welded or riveted to the tube.

12.1.8 <u>Types of Rod Ends</u>. (Refer to Table 12-30 through Table 12-42.) There are several different types of


rod ends. Rod ends are available with threaded, clevis, and bearing ends. Rod ends that have internally threaded shanks are used on threaded control rods or control tube assemblies which have threaded rod ends. Other rod ends are used to make up control tube assemblies.

NOTE

Thread engagement criteria. Inspect all internally threaded rod ends equipped with inspection holes to insure proper thread engagement. Proper thread engagement is insured when the threads of the externally threaded rod protrude past the inspection hole. If the installation is difficult to check visually, a piece of wire shall be inserted in the inspection hole to determine if the rod end has sufficient thread engagement to block the hole.

12.1.9 <u>Types of Control Tubes</u>. (Refer to Table 12-43 and Table 12-44.)

12.1.10 <u>Torque</u> <u>Rod</u> <u>Assemblies</u>. (Refer to Table 12-45 and Table 12-46.) The manual operation or adjustment of various accessories or flight controls requires a rotating motion which is often accomplished by means of torque tubes. To effect changes in direction of the torque tube, universal joints are required. The most commonly used universal joints are the MS20270 and MS20271, which are attached to the tube by bolts or rivets.

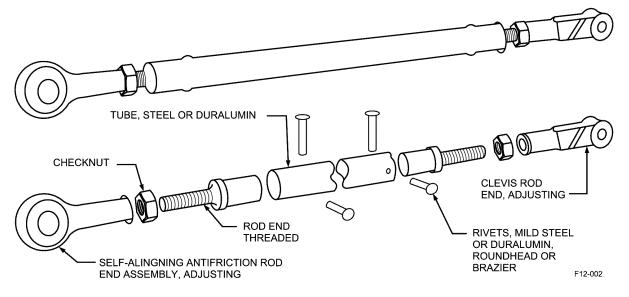
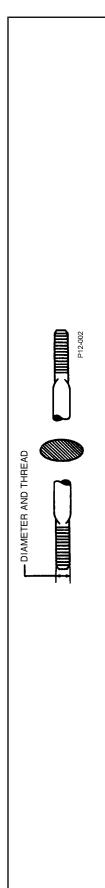



Figure 12-2. Typical Control Rod Assembly

Table 12-1. AN671 through AN686, Tie Rods

AN Number	671	673	674	675	929	229	829	629	089	682	684	989
Diameter and Thread (NF-3)	6-40	10-32	1/4-28	5/16-24	3/8-24	7/16-20	1/2-20	9/16-18	5/8-18	3/4-16	7/8-14	1-14
Tensile Strength (Pounds)	1200	2400	4200	0069	10,000	13,700	18,500	24,000	29,500	42,000	28,000	76,000
V	1-1/4	1-1/2	1-7/8	2-1/8	2-1/4	2-1/2	2-7/8	3-1/4	3-1/2	4-3/8	5	9
Code.												

Dash number is rod length in inches and hundredths of an inch.

C before dash number indicates corrosion-resistant steel rod.

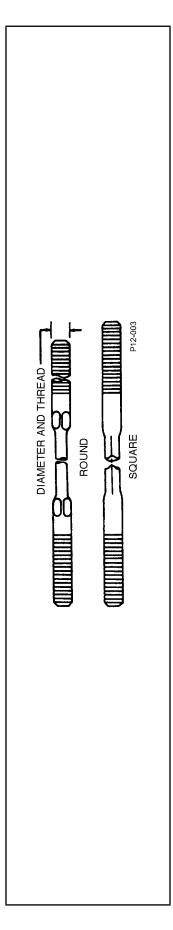
Example of part number:

AN671-3050 = 6-40 rod, 30.50 inches long, carbon steel.

AN671C3050 = 6-40 rod, 30.50 inches long, corrosion-resistant steel.

Material:

Carbon steel, corrosion-resistant steel, Military Specification MIL-T-5684.


Finish:

Cadmium plating, Federal Specification QQ-P-416.

Zinc plating, Federal Specification QQ-Z-325.

A plus rod length is assembly length.

Table 12-2. AN701 through AN708, Tie Rods

AN Number	701	703	704	705	706	707	708
Diameter And Thread (NF-3)	6-40	10-32	1/4-28	5/16-24	3/8-24	7/16-20	1/2-20
Tensile Strength (Pounds)	1000	2100	3400	6100	8000	11,500	15,500
А	1-1/4	1-1/2	1-7/8	2-1/8	2-1/2	2-1/2	2-7/8
-							

Dash number is rod length in inches and hundredths of an inch.

C before dash number indicates corrosion-resistant steel rod.

Example of part number:

An701-3050 = 6-40 rod, 30.30 inches long, carbon steel.

An701c3050 = 6-40 rod, 30.50 inches long, corrosion-resistant steel.

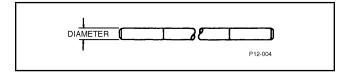
Material:

Finish:

Carbon steel, corrosion-resistant steel, Federal Specification QQ-M-151.

Cadmium plating, Federal Specification QQ-P-416.

Zinc plating, Federal Specification QQ-Z-325.


A plus rod length is assembly length.

12.1.11 Repair of Control Tubes. Control tubes can be repaired by methods similar to those used on structural members. When repairing a control tube, a perfect straightness must be obtained to develop the full strength of the tube. Sleeve reinforcements may be added to steel tubes with a scarfed or fishmouth cut and then welded in place. Duralumin tubes can be repaired in the same manner using rivets for attachments. If at all possible, the tube should be replaced and the terminals salvaged. AN490 threaded rod ends should be replaced because of the difficulty in picking up the original rivet holes.

NOTE

Tube repair should not be attempted if damage occurs in the center one-third of the assembly.

Table 12-3. NAS354 Control Rod

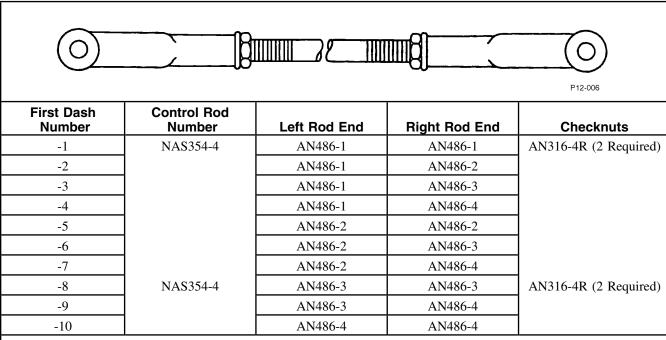
First Dash Number	Diameter	Thread NF-3
-4	1/4	1/4-28
-5	5/16	5/16-24

Code:

Second dash number is rod length in inches and hundredths of an inch.

Example of part number:

NAS354-4-5.90 = control rod, 5.90 inches long.


Material:

Steel, Military Specification MIL-S-18732.

Finish:

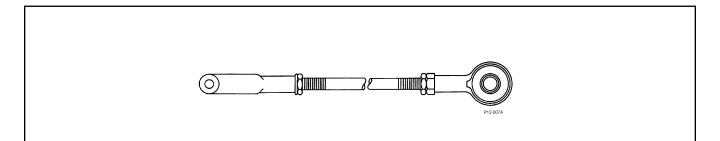
Cadmium plating, Federal Specification QQ-P-416.

Table 12-4. NAS91 Control Rod Assembly (1/4 Adjustable Clevis Ends)

Code:

Second dash number is rod length in inches.

Example of part number:


NAS91-1-5.875 = control rod assembly, 5.875 inches long.

Tensile Strength:

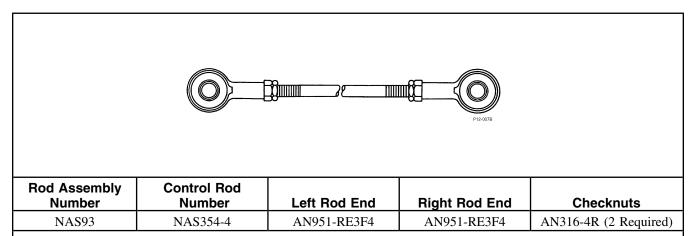
Table 12-4. NAS91 Control Rod Assembly (1/4 Adjustable Clevis Ends) - Continued

First Dash Number	Control Rod Number	Left Rod End	Right Rod End	Checknuts
Ultimate 1700 pound	s.			

Table 12-5. NAS92 Control Rod Assembly (1/4 Adjustable Clevis and Bearing Ends)

First Dash Number	Control Rod Number	Left Rod End	Right Rod End	Checknuts
-1		AN951-RE3F4	AN486-1	
-2			AN486-2	AN316-4R (2 Required)
-3	NAS354-4		AN486-3	
-4			AN486-4	

Second dash number is rod length in inches.

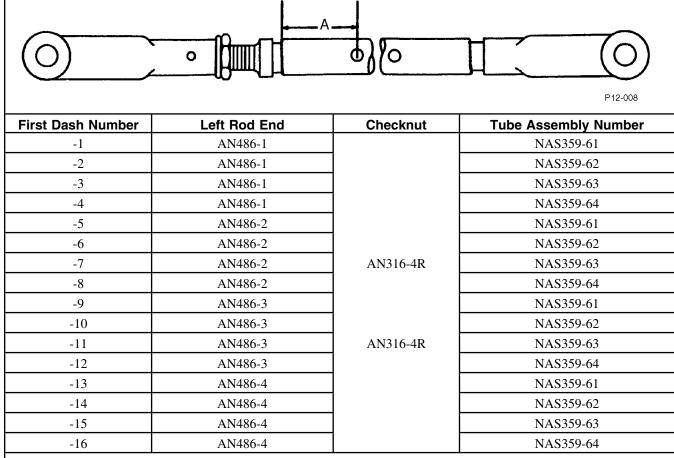

Example of part number:

NAS92-1-5.875 = control rod assembly, 5.875 inches long.

Tensile strength:

Ultimate 1700 pounds.

Table 12-6. NAS93 Control Rod Assembly (1/4 Adjustable Bearing Ends)


Code:

Second dash number is rod length in inches.

Table 12-6. NAS93 Control Rod Assembly (1/4 Adjustable Bearing Ends) - Continued

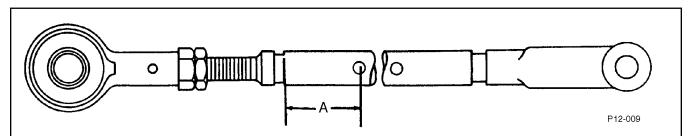
Rod Assembly Number	Control Rod Number	Left Rod End	Right Rod End	Checknuts
Example of part num	ber:			
NAS93-5.875 = contr	rol rod assembly, 5.875	inches long.		
Tensile strength:				
Ultimate 1700 pound	s.			

Table 12-7. NAS95 Control Rod Assembly (Welded Tube, 3/8-inch Outside Diameter, Fixed and Adjustable Clevis Ends)

Second dash number is rod assembly length in inches.

Third dash number is length of A in inches.

No third dash number indicates A length of one inch.


Example of part number:

NAS95-1-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS95-1-8.75-3 = control rod assembly, 8.75 inches long, A equal to 3 inches.

Tensile strength:

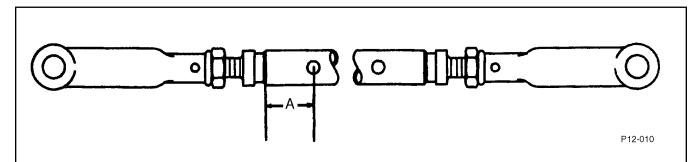
Table 12-8. NAS96 Control Rod Assembly (Welded Tube, 3/8-inch Outside Diameter, Fixed Clevis and Adjustable Bearing Ends)

First Dash Number	Left Rod End	Tube Assembly Number	Checknut
-1	AN951-RE3F4	NAS359-1	AN316-4R
-2			
-3			
-4			

Second dash number is rod assembly length in inches.

Third dash number is length of A in inches.

No third dash number indicates A length of one inch.


Example of part number:

NAS104-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS104-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Table 12-9. NAS98 Control Rod Assembly (Welded Tube, 3/8-inch Outside Diameter, 1/4 Adjustable Clevis Ends)

First Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
-1	AN486-1	AN486-1		
-2	AN486-1	AN486-2		
-3	AN486-1	AN486-3		
-4	AN486-1	AN486-4		
-5	AN486-2	AN486-2	NAS358	AN316-4R (2 Required)
-6	AN486-2	AN486-3		
-7	AN486-2	AN486-4		

Table 12-9. NAS98 Control Rod Assembly (Welded Tube, 3/8-inch Outside Diameter, 1/4 Adjustable Clevis Ends) - Continued

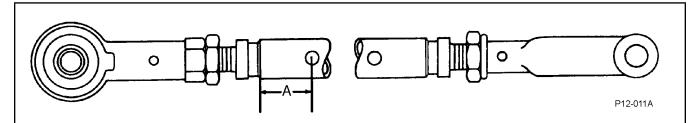
First Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
-8	AN486-3	AN486-3		
-9	AN486-3	AN486-4		
-10	AN486-4	AN486-4		

Second dash number is rod assembly length in inches.

Third dash number is length of A in inches.

No third dash number indicates A length of one inch.

Example of part number:


NAS98-1-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS98-1-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Ultimate 1700 pounds.

Table 12-10. NAS99 Control Rod Assembly (Welded Tube, 3/8-inch Outside Diameter, 1/4 Adjustable Clevis and Bearing Ends)

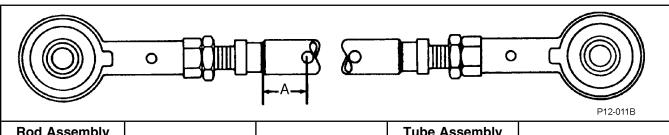
First Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
-1	AN951-RE3F4	AN486-1	NAS358	AN316-4R (2 Required)
-2		AN486-2		
-3		AN486-3		
-4]	AN486-4		

Code:

Second dash number is cod assembly length in inches.

Third dash number is length of A in inches.

No third dash number indicates A length of one inch.


Example of part number:

NAS99-1-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS99-1-9. 25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

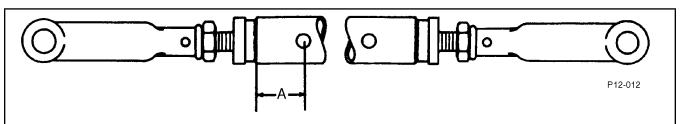
Table 12-11. NAS100 Control Rod Assembly (Welded Tube, 3/8-inch Outside Diameter, 1/4 Adjustable Bearing Ends)

Rod Assembly			Tube Assembly	
Number	Left Rod End	Right Rod End	Number	Checknuts
NAS100	AN951-RE3F4	AN951-RE3F4	NAS358	AN316-4R (2 Required)

Second dash number is rod length in inches.

Third dash number is length of A in inches.

No dash number indicates A length of one inch.


Example of part number:

NAS100-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS100-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Table 12-12. NAS103 Control Rod Assembly (Welded Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Clevis Ends)

First Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
-1	AN486-1	AN486-1		
-2	AN486-1	AN486-2]	
-3	AN486-1	AN486-3]	
-4	AN486-1	AN486-4]	
-5	AN486-2	AN486-2	NAS358	AN3164R (2 Required)
-6	AN486-2	AN486-3		
-7	AN486-2	AN486-4]	
-8	AN486-3	AN486-3		
-9	AN486-3	AN486-4	NAS358	AN3164R (2 Required)
-10	AN486-4	AN486-4		

Table 12-12. NAS103 Control Rod Assembly (Welded Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Clevis Ends) - Continued

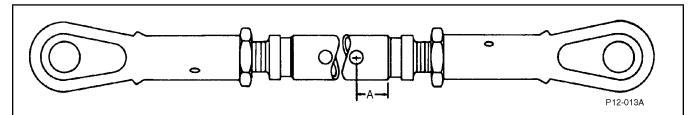
First Dash			Tube Assembly	
Number	Left Rod End	Right Rod End	Number	Checknuts
G 1				

Second dash number is rod length in inches.

Third dash number is length A in inches.

No dash number indicates A length of one inch.

Example of part number:


NAS103-1-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS103-1-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Ultimate 1700 pounds.

Table 12-13. NAS104 Control Rod Assembly (Welded Tube, 1/2-inch Outside Diameter, 5/16 Adjustable Clevis Ends)

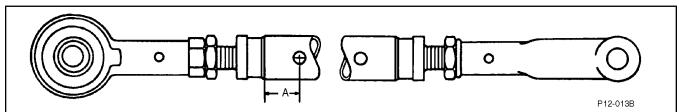
Rod Assembly Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
NAS104	AN665-46R	AN665-46R	NAS358	AN316-5R (2 Required)

Code:

Second dash number is rod length in inches.

Third dash number is length A in inches.

No dash number indicates A length of one inch.


Example of part number:

NAS104-8.75 control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS104-9.25-3 - control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Table 12-14. NAS105 Control Rod Assembly (Welded Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Clevis and Bearing Ends)

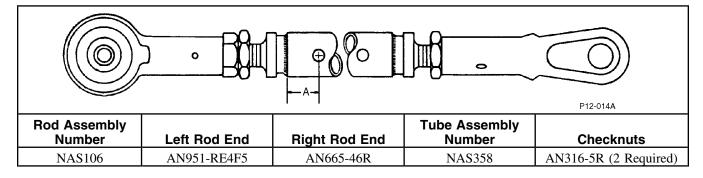
First Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
-1	AN951-RE3F4	AN486-1	NAS358	AN316-4R (2 Required)
-2		AN486-2		
-3		AN486-3		
-4		AN486-4		

Second dash number is rod length in inches.

Third dash number is length A in inches.

No dash number indicates A length of one inch.

Example of part number:


NAS105-1-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS105-1-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Ultimate 1700 pounds.

Table 12-15. NAS106 Control Rod Assembly (Welded Tube, 1/2-inch Outside Diameter, 5/16 Adjustable Clevis and Bearing Ends)

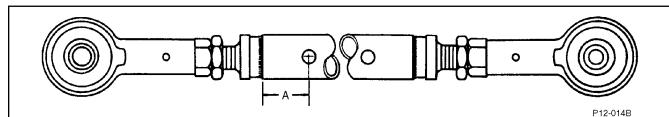
Code:

Second dash number is rod assembly length in inches.

Third dash number is length of A in inches.

No dash number indicates A length of one inch.

Example of part number:


NAS106-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS103-1-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Ultimate 23 pounds.

Table 12-16. NAS107 Control Rod Assembly (Welded Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Bearing Ends)

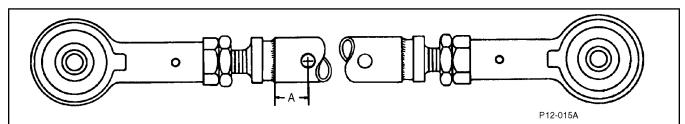
Rod Assembly	Left Ded End	Dight Dod End	Tube Assembly	Chackmuta
Number	Left Rod End	Right Rod End	Number	Checknuts
NAS107	AN951-RE3F4	AN951-RE3F4	NAS358	AN316-4R (2 Required)

Second dash number is rod assembly length in inches.

Third dash number is length of A in inches.

No dash number indicates A length of one inch.

Example of part number:


NAS107-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS107-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Ultimate 1700 pounds.

Table 12-17. NAS108 Control Rod Assembly (Welded Tube, 1/2-inch Outside Diameter, 5/16 Adjustable Bearing Ends)

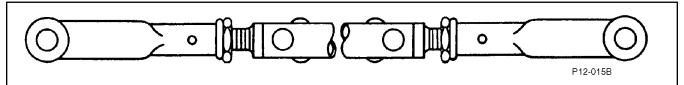
Rod Assembly Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
NAS108	AN951-RE4F5	AN951-RE4F5	NAS358	AN316-5R (2 Required)

Code:

Second dash number is rod assembly length in inches.

Third dash number is length of A in inches.

No dash number indicates A length of one inch.


Example of part number:

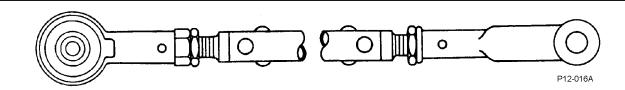
NAS108-8.75 = control rod assembly, 8.75 inches long, A equal to 1 inch.

NAS108-9.25-3 = control rod assembly, 9.25 inches long, A equal to 3 inches.

Tensile strength:

Table 12-18. NAS111 Control Rod Assembly (Riveted Tube, 3/8-inch Outside Diameter, 1/4 Adjustable Clevis Ends)

First Dash Num- ber	Left Rod End	Right Rod End	Tube As- sembly Number	Checknuts
-1	AN486-1	AN486-1	NAS355	AN316-4R (2 Required)
-2	AN486-1	AN486-2		
-3	AN486-1	AN486-3		
-4	AN486-1	AN486-4		
-5	AN486-2	AN486-2		
-6	AN486-2	AN486-3		
-7	AN486-2	AN486-4		
-8	AN486-3	AN486-3		
-9	AN486-3	AN486-4		
-10	AN486-4	AN486-4		


Second dash number is rod assembly length in inches.

Example of part number:

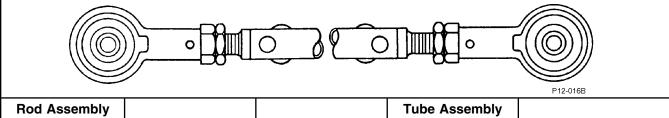
NAS116-1-8.75 = control rod assembly, 8.75 inches long.

Tensile strength:

Table 12-19. NAS112 Control Rod Assembly (Riveted Tube 3/8-inch Outside Diameter, 1/4 Adjustable Clevis and Bearing Ends)

Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
-1		AN486-1		
-2	AN951-RE3F4	AN486-2		
-3		AN486-3		
-4		AN486-4	NAS355	AN316-4R (2 Required)

Second dash number is rod assembly length in inches.


Example of part number:

NAS112-1-8.75 = control rod assembly, 8.75 inches long.

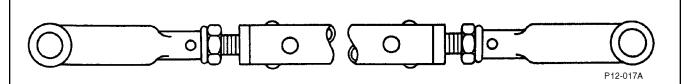
Tensile strength:

Ultimate 1300 pounds.

Table 12-20. NAS113 Control Rod Assembly (Riveted Tube, 3/8-inch Outside Diameter, 1/4 Adjustable Bearing Ends)

Rod Assembly Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
NAS113	AN951-RE3F4	AN951-RE3F4	NAS355	AN316-4R (2 Required)

Code:


Second dash number is rod assembly length in inches.

Example of part number:

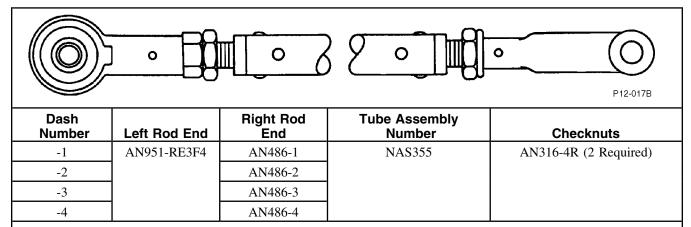
NAS113-8.75 = control rod assembly, 8.75 inches long.

Tensile strength:

Table 12-21. NAS116 Control Rod Assembly (Riveted Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Clevis Ends)

Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts
-1	AN486-1	AN486-1	NAS355	AN316-4R (2 Required)
-2	AN486-1	AN486-2		
-3	AN486-1	AN486-3		
-4	AN486-1	AN486-4		
-5	AN486-2	AN486-2		
-6	AN486-2	AN486-3		
-7	AN486-2	AN486-4		
-8	AN486-3	AN486-3		
-9	AN486-3	AN486-4		
-10	AN486-4	AN486-4		

Second dash number is rod assembly length in inches.


Example of part number:

NAS116-1-8.75 = control rod assembly, 8.75 inches long.

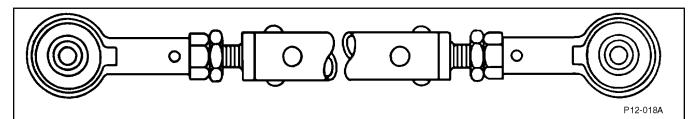
Tensile strength:

Ultimate 1300 pounds.

Table 12-22. NAS117 Control Rod Assembly (Riveted Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Clevis and Bearing Ends)

Code:

Second dash number is rod assembly in inches.


Example of part number:

NAS117-1-8.75 = control rod assembly, 8.75 inches long.

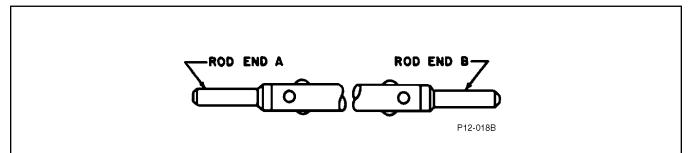
Table 12-22. NAS117 Control Rod Assembly (Riveted Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Clevis and Bearing Ends) - Continued

Dash Number	Left Rod End	Right Rod End	Tube Assembly Number	Checknuts		
Tensile strength:						
Ultimate 1300 pounds.						

Table 12-23. NAS118 Control Rod Assembly (Riveted Tube, 1/2-inch Outside Diameter, 1/4 Adjustable Bearing Ends)

Rod Assembly			Tube Assembly	
Number	Left Rod End	Right Rod End	Number	Checknuts
NAS118	AN951-RE3F4	AN951-RE3F4	NAS355	AN316-4R (2 Required)

First dash number is rod assembly length in inches.


Example of part number:

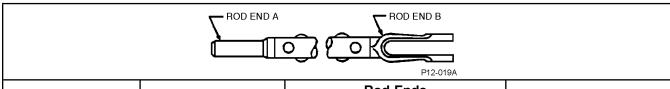
NAS118-8.75 = control rod assembly, 8.75 inches long.

Tensile strength:

Ultimate 1300 pounds.

Table 12-24. NAS355 Control Tube Assembly (With Riveted Threaded Rod Ends)

		Rod E		
First Dash Number	Tube Number	A	В	Rivets
-60	NAS357-60	AN490HT6P	AN490HT6P	AN470AD4-10
-80	NAS357-80	AN490HT8P	AN490HT8P	AN470AD4-12

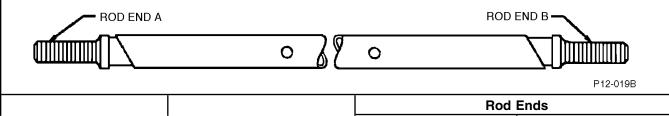

Code:

Second dash number is tube assembly length in inches and hundredths of an inch.

Example of part number:

NAS355-6-880 = control tube assembly, 8.80 inches long.

Table 12-25. NAS356 Control Tube Assembly (With Riveted Clevis and Threaded Rod Ends)


		Rod Ends		
First Dash Number	Tube Number	Α	В	Rivets
61	NAS357-60	AN490HT6P	AN481-1P	AN470AD4-10
62			AN481-2P	
-63			AN481-3P	
64			AN481-4P	
-81	NAS357-80	AN490HT8P	AN481-9P	AN470AD4-12
-82			AN481-10P	
-83			AN481-11P	
-84			AN481-12P	

Second dash number is tube assembly length in inches and hundredths of an inch.

Example of part number:

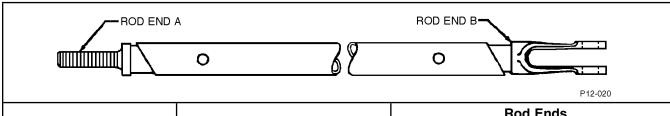
NAS356-61-880 = control tube assembly, 8.80 inches long.

Table 12-26. NAS358 Control Tube Assembly (With Welded Threaded Rod Ends)

		Rod Ends		
First Dash Number	Tube Number	Α	В	
-60	NAS360-60	AN490HT6	AN490HT6	
-80	NAS360-80	AN490HT8	AN490HT8	
-82	NAS360-82	AN490HT9	AN490HT9	

Code:

Second dash number is tube assembly length in inches and hundredths of an inch.


Example of part number:

NAS358-60-880 = control tube assembly, 8.80 inches long.

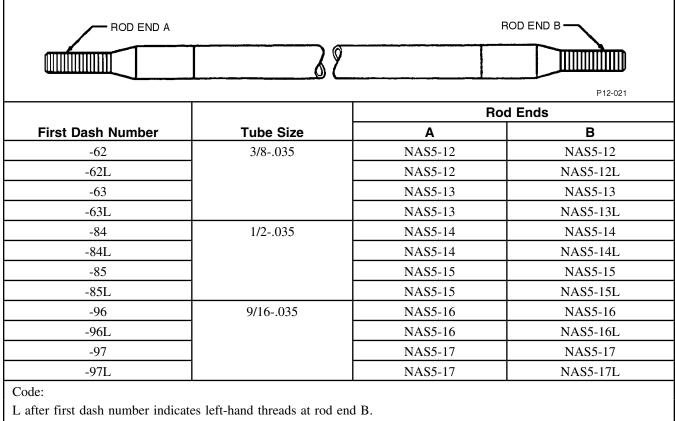
Finish:

Cadmium plating, Federal Specification QQ-P-416; apply one coat of epoxy primer, Military Specification MIL-P-23377.

Table 12-27. NAS359 Control Tube Assembly (With Welded Clevis and Threaded Rod Ends)

		Rod Ends	
First Dash Number	Tube Number	Α	В
-61	NAS360-60	AN489HT6	AN481-1
-62			AN481-2
-63			AN481-3
-64			AN481-4
-81	NAS360-80	AN490HT6	AN481-9
-82			AN481-10
-83			AN481-11
-84			AN481-12

Second dash number is tube assembly length in inches and hundredths of an inch.


Example of part number:

NAS359-61-880 = control tube assembly, 8.80 inches long.

Finish:

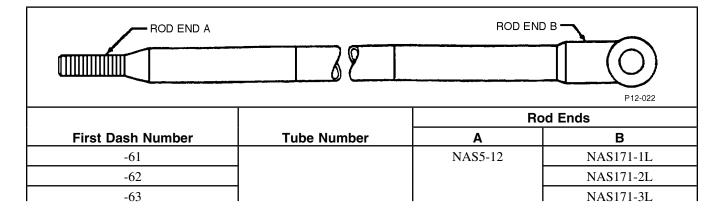
Cadmium plating, Federal Specification QQ-P-416; apply one coat of epoxy primer, Military Specification MIL-P-23377.

Table 12-28. NAS361 Control Tube Assembly (With Flash-Welded Clevis and Threaded Rod Ends)

Second dash number is tube assembly length in inches and hundredths of an inch.

Example of part number:

NAS361-62-880 = control tube assembly, 8.80 inches long.


Material:

Steel tubing, Military Specifications MIL-T-6731 and MIL-T-6736.

Finish

Cadmium plate, Federal Specification QQ-P-416; apply one coat of epoxy primer, Military Specification MIL-P-23377.

Table 12-29. NAS362 Control Tube Assembly (With Flash-Welded Clevis and Threaded Rod Ends)

T.O. 1-1A-8

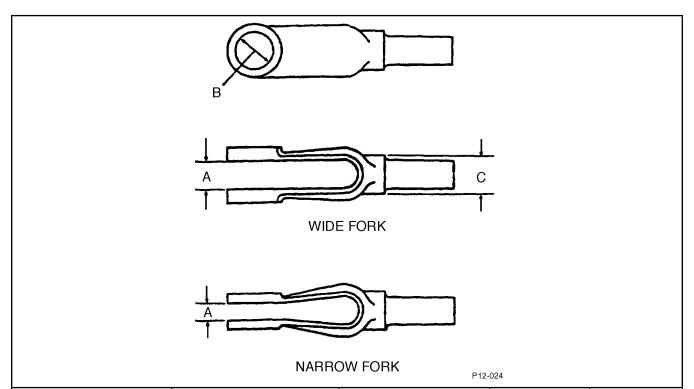
Table 12-29. NAS362 Control Tube Assembly (With Flash-Welded Clevis and Threaded Rod Ends) - Continued

		Rod Ends		
First Dash Number	Tube Number	Α	В	
-64			NAS171-4L	
-61L		NAS5-12L	NAS171-1L	
-62L	NAS360-60		NAS171-2L	
-63L			NAS171-3L	
-64L			NAS171-4L	
-65		NAS5-13	NAS171-1L	
-66			NAS171-2L	
-67			KAS171-3L	
-68			NAS171-4L	
-65L		NAS5-13L	NAS171-1L	
-66L			NAS171-2L	
-67L			NAS171-3L	
-68L			NAS171-4L	
-81		NAS5-14	NAS171-5L	
-82			NAS171-6L	
-83	NAS360-80		NAS171-7L	
-84			NAS171-8L	
-81L	NAS360-80	NAS5-14L	NAS171-5L	
-82L			NAS171-6L	
-83L			NAS161-7L	
-84L			NASI71-8L	
-85		NAS5-15	NAS171-5L	
-86			NAS171-6L	
-87			NAS171-7L	
-88			NAS171-8L	
-85L		NAS5-15L	NAS171-5L	
-86L			NAS171-6L	
-87L			NAS171-7L	
-88L			NAS171-8L	

Code

L after first dash number indicates left-hand threads.

Second dash number is tube assembly length in inches and hundredths of an inch.


Example of part number:

NAS362-61-880 = control tube assembly, 8.80 inches long.

Finish:

Cadmium plating, Federal Specification QQ-P-416; apply one coat of epoxy primer, Military Specification MIL-P-23377.

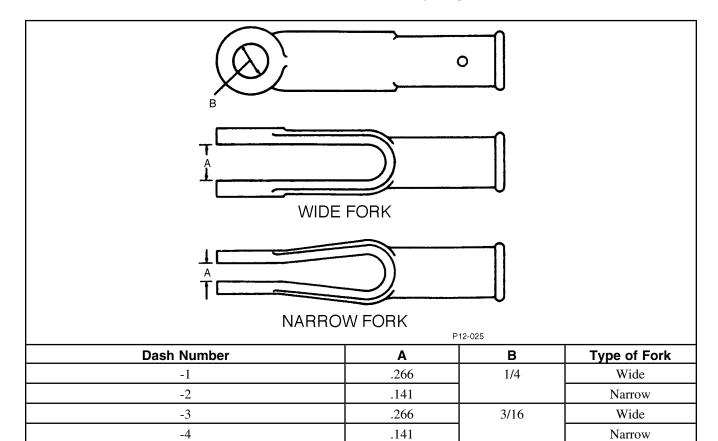
Table 12-30. AN481 Rod End Clevis

Dash Number	A	В	С	Type of Fork
-1	.266	1/4	.375	Wide
-2	.141			Narrow
-3	.266	3/16		Wide
-4	.141			Narrow
-5	.266	1/4	.375	Wide
-6	.141			Narrow
-7	.266	3/16		Wide
-8	.141			Narrow
-9	.266	1/4	.500	Wide
-10	.141			Narrow
-11	.266	3/16		Wide
-12	.141			Narrow

P after dash number indicates plated rod end clevis.

Example of part number:

AN481-6 = rod end clevis, unplated.


Material:

Steel, Military Specification MIL-S-8617.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-31. AN486 Rod End Adjusting Clevis

Material:

Steel, Military Specification MIL-S-8617.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-32. AN490 Threaded Rod End

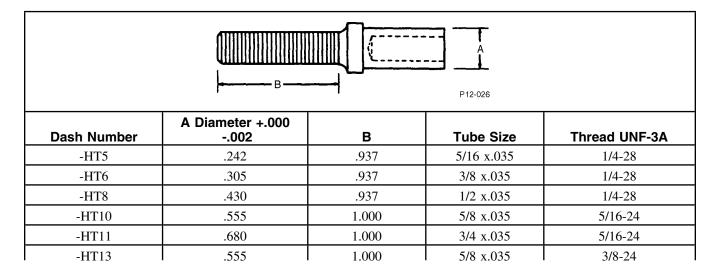


Table 12-32. AN490 Threaded Rod End - Continued

Dash Number	A Diameter +.000 002	В	Tube Size	Thread UNF-3A
-HT14	.680	1.000	3/4 x.035	3/8-24
-HT15	.372	1.000	1/2 x.058	5/16-24
-HT16	.372	1.000	1/2 x.058	3/8-24

P after dash Dumber indicates plated rod end.

Example of part number:

-34R

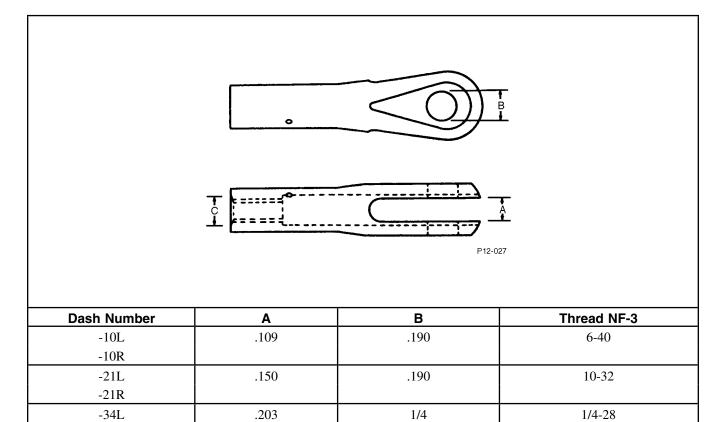
-46L

-46R -61L

-61R

AN490HT5 = rod end, threaded, unplated steel.

AN490HT5P = rod end, threaded, cadmium plated.


Material:

Steel, Military Specification MIL-S-6758.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-33. AN665 Tie Rod End Terminal

5/16

3/8

.203

.203

5/16-24

5/16-24

Table 12-33. AN665 Tie Rod End Terminal - Continued

Dash Number	Α	В	Thread NF-3
-80L	.266	3/8	3/8-24
-80R			
-80LA	.266	3/8	3/8-24
-80RA			
-115L	.344	7/16	7/16-20
-115R			
-155L	.406	1/2	1/2-20
-155R			
-202L	.453	9/16	9/16-18
-202R			
-247L	.516	5/8	5/8-18
-247R			
-430L	.656	3/4	3/4-16
-430R			
-580L	.781	7/8	7/8-14
-580R			
-760L	.906	1	1-14
-760R			

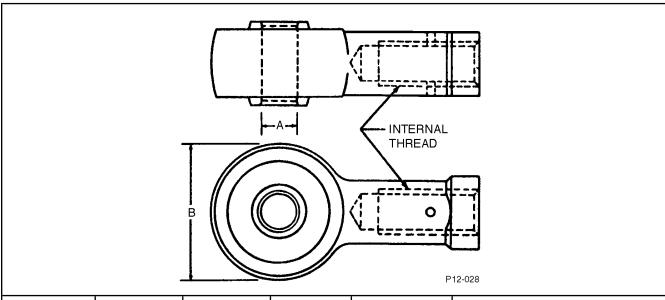
L after dash number indicates left-hand threads.

R after dash number indicates right-hand threads.

Example of part number:

AN665-10L = rod end terminal, left-hand threads.

AN665-10R = rod end terminal, right-hand threads.


Material:

Steel, Military Specification MIL-S-6050, MIL-S-6758, MIL-S-18732, or MIL-S-8503.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-34. AN943 Plain, Self-Aligning, Internal Thread, Rod End Bearing

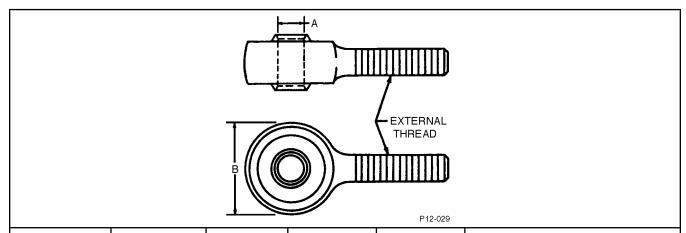
					Engineering Data	
Dash Number	A	В	Bore Size	Thread NF-3	Radial Test Load Pounds	Axial Test Load Pounds
-3	.1895	.781	No. 10	1/4-28	1300	920
-4	.2495	.938	1/4	5/16-24	2200	1520
-5	.3120	1.250	5/16	5/16-24	4200	2960
-6	.3745	1.500	3/8	3/8-24	6400	4430
-8	.4995	1.750	1/2	1/2-20	9000	6320
-10	.6245	2.000	5/8	5/8-18	11,400	8000

Dash number is bore size in 1/16 inch.

Example of part number:

AN947-4 = plain, self-aligning, external thread, rod end bearing with 1/4 bore size.

Material:


Steel, Military Specification MIL-S-6758.

Corrosion-resistant steel, Military Specification MIL-S-7720.

Finish:

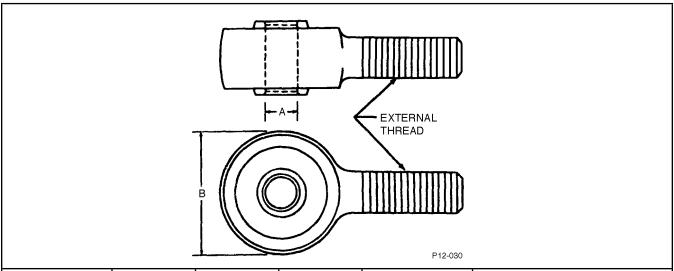
Cadmium plating, Federal Specification QQ-P-416.

Table 12-35. AN946 Antifriction, Self-Aligning, External Thread, Rod End Ball Bearing

					Engineering Data	
Dash Number	A	В	Bore Size	Thread NS-3	Radial Test Load Pounds	Axial Test Load Pounds
-RE3ML3	.1900	.781	No. 10	10-32LH	1000	200
-RE3MR3				10-32RH		
-RE3M6A		.969		3/8-24RH	1200	240
-RE3M6-2N		.781			1000	200
-RE3ML6-2N				3/8-24LH		
-RA3M4-2				1/4-28RH		
-RE4M6	.2500	.938	1/4	3/8-24RH	1720	345
-RE4ML6				3/8-24LH		
-RE5M6	.3125	1.250	5/16	3/8-24RH	2920	585
-RE5M7				7/16-20RH		
-RE5M10				5/8-18RH		
-RA10M10	.6250	2.000	5/8	5/8-18RH	7090	1420

Example of part number:

AN946-RE3ML3 = antifriction, self-aligning, rod end ball bearing, external left-hand thread, metal shield, size 3 bearing.


Material:

Steel, Military Specification MIL-B-6039.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-36. AN947 Plain, Self-Aligning, External Thread, Rod End Bearing

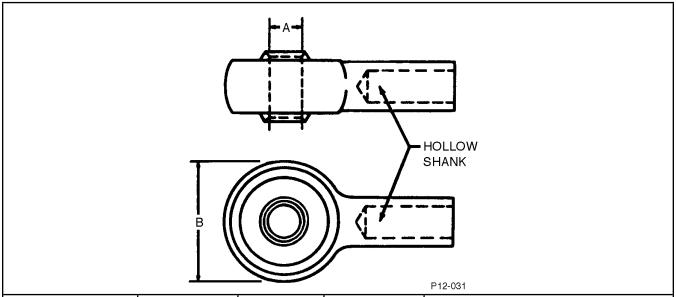
					Engineering Data	
Dash Number	A	В	Bore Size	Thread NF-3	Radial Test Load Pounds	Axial Test Load Pounds
-3	.1895	.781	No. 10	1/4-28	1300	920
-4	.2495	.938	1/4	5/16-24	2200	1520
-5	.3120	1.250	5/16	5/16-24	4200	2960
-6	.3745	1.500	3/8	3/8-24	6400	4430
-8	.4995	1.750	1/2	1/2-20	9000	6320
-10	.6245	2.000	5/8	5/8-18	11,400	8000

Dash number is bore size in 1/16 inch.

Example of part number:

AN947-4 = plain, self-aligning, external thread, rod end bearing with 1/4 bore size.

Material:


Steel, Military Specification MIL-S-6758.

Corrosion-resistant steel, Military Specification MIL-S-7720.

Finish:

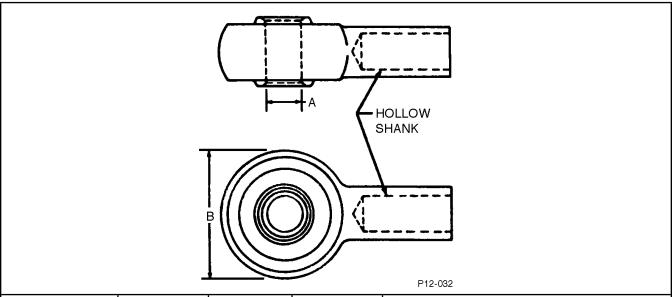
Cadmium plating, Federal Specification QQ-P-416.

Table 12-37. AN948 Antifriction, Self-Aligning, Hollow Shank, Rod End Ball Bearing

				Engineering Data	
Dash Number	A	В	Bore Size	Radial Test Load Pounds	Axial Test Load Pounds
-RE3H5	.1900	.781	No. 10	1000	200
-RE4H6	.2500	.938	1/4	1720	345
-RE4H8]		1/4		

Example of part number:

AN948-RE3H5 = antifriction, self-aligning, hollow shank, rod end ball bearing, size 3 bearing.


Material:

Steel, Military Specification MIL-B-6039.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-38. AN949 Plain, Self-Aligning, Hollow Shank, Rod End Bearing

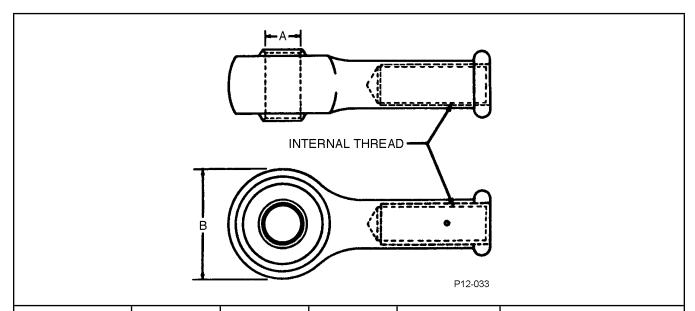
				Engineering Data		
Dash Number	A	В	Bore Size	Radial Test Load Pounds	Axial Test Load Pounds	
-3	.1895	.781	No. 10	1300	920	
-4	.2495	.938	1/4	2200	1520	
-5	.3120	1.250	5/16	4200	2960	
-6	.3745	1.500	3/8	6400	4430	
-8	.4995	1.250	1/2	9000	6320	
-10	.6245	2.000	5/8	11,400	8000	

Dash number is bore size in 1/16 inch.

Example of part number:

AN949-3 = plain, self-aligning, hollow shank, rod end bearing with number 10 or 3/16-inch bore size.

Material:


Steel, Military Specification MIL-S-6758.

Corrosion-resistant steel, Military Specification MIL-S-7720.

Finish:

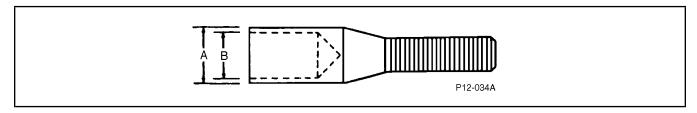
Cadmium plating, Federal Specification QQ-P-416.

Table 12-39. AN951 Antifriction, Self-Aligning, Internal Thread, Rod End Ball Bearing

					Engineeri	ng Data
Dash Number	A	В	Drill Size	Thread	Radial Test Load Pounds	Axial Test Load Pounds
-REB3N	.1900	.781	No. 10	1/4-28RH	1000	200
-REB3N2				5/16-24RH		
-RE3F4				1/4-28RH		
-RE3FL4				1/4-28LH		
-RE3FL4-3				1/4-28LH		
-RE4F5	.2500	.938	1/4	5/16-24RH	1700	345
-RE4FL5				5/16-24LH		
-RE4F7				7/16-20RH		
-RE4FL7				7/16-20LH		
-RE5F5	.3125	1.250	5/16	5/16-24RH	2920	585
-RE5FL5				5/16-24LH		

Example of part number:

AN951-RE3FL4 = antifriction, self-aligning, internal left-hand thread, rod end ball bearing, size 3 bearing.


Material:

Steel, Military Specification MIL-B-6039.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-40. NAS5 Threaded Rod End (For Resistance Welding)

Dash Number	Stock Diameter A	Drill Size B	Thread NF-3
-12	.375	.297	1/4-28
-13	.375	.297	5/16-24
-14	.500	.422	1/4-28
-15	.500	.422	5/16-24
-16	.563	.484	1/4-28
-17	.563	.484	5/16-24

L after dash number indicates left-hand threads.

Example of part number.

NAS5-12L = rod end, left-hand threads.

Material:

Steel, Military Specification MIL-S-6050

Finish:

Coat with corrosion preventive, Military Specification MIL-C-16173 or MIL-C-11796.

Table 12-41. NAS170 Engine Control Rod End, Adjustable Clevis

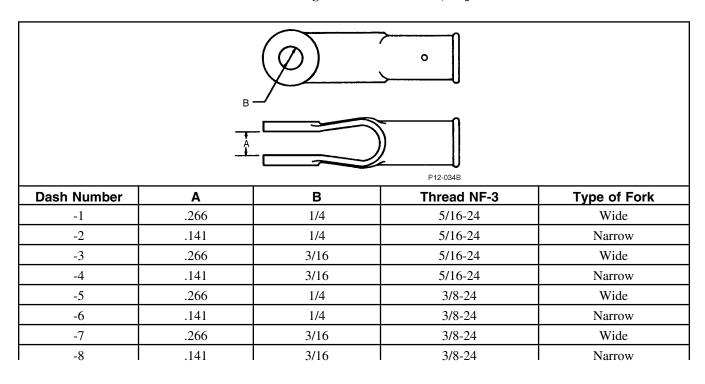
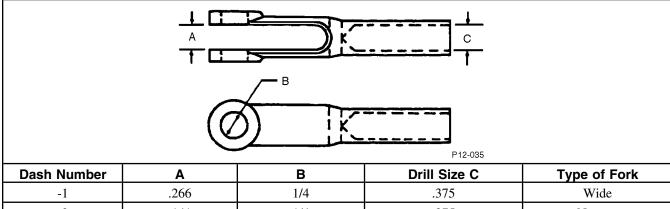



Table 12-41. NAS170 Engine Control Rod End, Adjustable Clevis - Continued

Dash Number	Α	В	Thread NF-3	Type of Fork			
Material:							
Steel, Military Speci	fication MIL-S-8617						
Finish:							
Cadmium plating, F	ederal Specification (QQ-P-416.					

Table 12-42. NAS171 Rod End Clevis (For Resistance Welding)

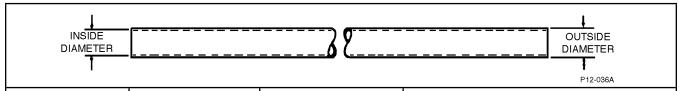
Dash Number	Α	В	Drill Size C	Type of Fork
-1	.266	1/4	.375	Wide
-2	.141	1/4	.375	Narrow
-3	.266	3/16	.375	Wide
-4	.141	3/16	.375	Narrow
-5	.266	1/4	.500	Wide
-6	.141	1/4	.500	Narrow
-7	.266	3/16	.500	Wide
-8	.141	3/16	.500	Narrow

S after dash number indicates short type rod end clevis.

L after dash number indicates long type rod end clevis.

Example of part number:

NAS171-1-S = rod end clevis, short type, drill size 0.375.


Material:

Steel, Military Specification MIL-S-8617.

Finish:

Coat with corrosion preventive, Military Specification MIL-C-16173 or MIL-C-11796.

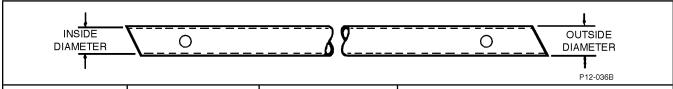
Table 12-43. NAS357 Control Tube

			Ream or Expanded Section		
First Dash Number	Outside Diameter	Wall Thickness	Inside Diameter +.000003	A (Min)	
-60	3/8	.035	.310	1.00	
-80	1/2	.035	.435	1.00	

Second dash number is tube length in inches and hundredths of an inch.

Example of part number:

NAS357-60-650 = control tube, 6.50 inches long.


Material:

Aluminum alloy tubing, Federal Specification WW-T-785.

Finish:

Anodize, Military Specification MIL-A-8625; apply two coats of epoxy primer, Military Specification MIL-P-23377.

Table 12-44. NAS360 Control Tube

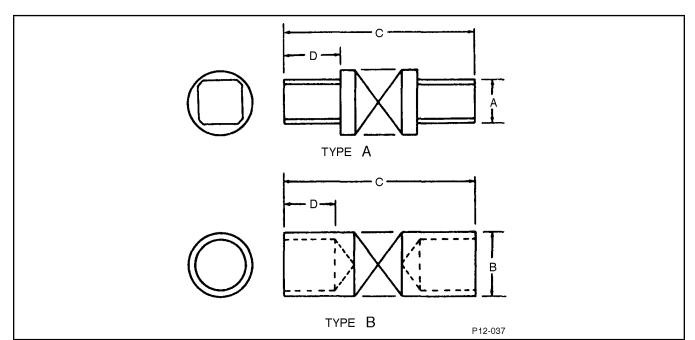
			Ream or Expanded Section		
First Dash Number	Outside Diameter	Wall Thickness	Inside Diameter ±.001	A (Min)	
-60	3/8	.035	.306	1.00	
-80	1/2	.035	.431	1.00	
-82	1/2	.058	.385	1.00	

Code:

Second dash number is tube length in inches and hundredths of an inch.

Example of part number:

NAS360-60-625 = control tube, 6.25 inches long.


Material:

Steel tubing, Military Specifications MIL-T-6731 and MIL-T-6736.

Finish:

Apply corrosion preventive.

Table 12-45. MS20270 Light Duty Universal Joint

Dash Number	Nominal Size	Α	В	С	D
-6*	3/8		.372	1-3/4	5/8
-8	1/2	.373	.495	1-7/8	5/8
-10	5/8	.436	.620	2-3/16	3/4
-12	3/4	.560	.745	2-1/2	7/8
-14*	7/8		.870	3	1-1/32
-16	1	.686	.995	3-3/8	1-1/8
-20	1-1/4	.873	1.245	3-3/4	1-3/16
-24	1-1/2	.998	1.495	4-1/2	1-3/8

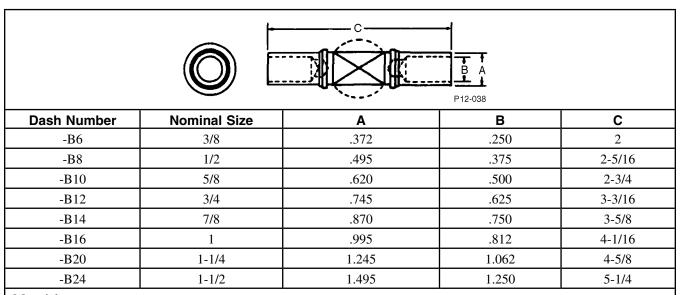
^{*}Available in Type B universal joint only.

A before dash number indicates Type A universal joint.

B before dash number indicates Type B universal joint.

Example of part number:

MS20270A8 = Type A, 1/2-inch universal joint.


Material:

Steel, Military Specification MIL-J-6193A.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

Table 12-46. MS20271 Heavy Duty Universal Joint

Material:

Steel, Military Specification MIL-J-6193A.

Finish:

Cadmium plating, Federal Specification QQ-P-416.

CHAPTER 13 TUBING SYSTEMS AND TUBING REPAIRS

13.1 TUBING SYSTEMS AND TUBING REPAIRS.

Tubing Systems and Tubing Repair Section of T.O. 1-1A-8 was removed from T.O. 1-1A-8. This information was incorporated into a Joint Services book with the Navy. For technical instructions on Tubing Systems and Tubing Repairs, use the following technical manuals:

Air Force Navy TO 42E1-1-1 NAVAIR 01-1A-20

CHAPTER 14 FLEXIBLE HOSE AND FITTINGS

14.1 FLEXIBLE HOSE AND FITTINGS.

AVCOM TM55-1500-204-25/1 (Rubber) TB750-125 (Teflon)

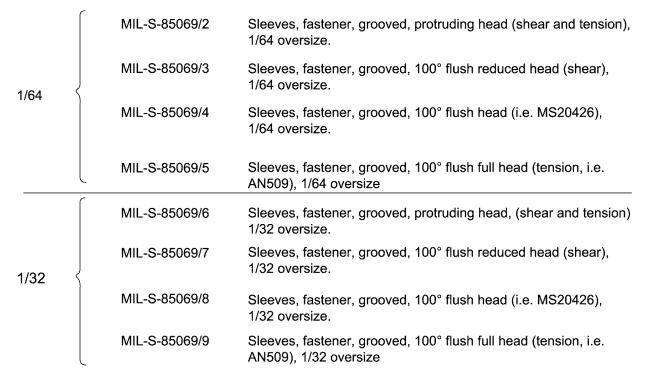
For technical instructions on flexible hose and fittings use the following technical manuals:

Air TO 42E1-1-1

Force

Navy NAVAIR 01-1A-20

CHAPTER 15 SELECTION AND INSTALLATION OF ACRES FASTENER SLEEVES MIL-S-85069


15.1 ACRES FASTENER SLEEVES.

15.1.1 <u>Introduction</u>. Acres Fastener Sleeves are precision formed, thin wall, tubular elements with a flared end. These sleeves were developed to meet several specific needs such as bushing oversize holes, protecting from corrosion, and to aid sealing.

15.1.2 <u>Purpose</u>. The primary purpose for Acres Fastener Sleeves is to repair enlarged holes, The sleeves come in standard fastener diameters with standard fastener heads. The sleeves are generally 1 inch long and are adjusted to the length of fastener being used. Acres Sleeves may be

bonded into areas where holes need protection such as vent holes, drain holes, or through composite structure.

15.1.3 <u>Description</u>. Acres Fastener Sleeves are manufactured from A286 stainless steel. There are in general four head styles; three flush and one protruding. (See Figure 15-2.) The sleeves have grooves on the shank spaced 1/16 of an inch apart for two reasons. The first reason is to trap sealant in between the sleeve and the wall of the hole to afford better seals. The second reason being to aid in adjusting the sleeve to length. MIL-S-85069 and associated slash pages cover the fastener sleeves as shown in Figure 15-1.

F15-099

Figure 15-1. MS Numbers for Acres Fastener Sleeves

SECOND INCREMENT OVERSIZE 1/32 1/64	MIL-S-85069 Configuration	For Fast. With These Head Styles	Sleeve Vendor Part Number	Tooling	Descrip tion	Tool Part Number
	MIL-S-85069/2	Prot. Hd. Fasteners Shear and Tension	JK5517CXX	5000000000 500000000000 50000000000	Step Plate Step Plate	JK6555-XX JK6557-05 JK6557-55
	MIL-S-85069/3	Reduced Shear Flush Hd. (NAS1097)	JK5512CXX		Break Off Handle	JK6548-XX
	MIL-S-85069/4	Shear Flush Head (MS20426)	JK5514CXX		Inserting Tool Inter- ference Only	JK6536-XX
	MIL-S-85069/5	Tension Flush Head (AN509)	JK5516CXX		Removing Tool	JK6526-XX
	MIL-S-85069/6	Prot. Hd. Fasteners Shear and Tension	JK5577C XX	000000000000000000000000000000000000000	Step Plate	JK6556-XX
	MIL-S-85069/7	Reduced Shear Flush Head (NAS1097)	JK5572C XX		Break Off Handle	JK6546-XX
	MIL-S-85069/8	Shear Flush Head (MS20426)	JK5574C XX		Inserting Tool	JK6536-XX
	MIL-S-85069/9	Tension Flush Head (AN509)	JK5576C XX		Removing Tool	JK6524-XX

F15-098

Figure 15-2. Acres Fastener Sleeves Styles

15.2 OVERSIZE FASTENER SLEEVES, TYPE I.

- Type I, Class 1, First Oversize, 1/64 MIL-S-85069/(2-5)
- Type I, Class 2, Second Oversize, 1/32, MIL-S-85069/(6-9)
- 15.2.1 Drill or ream the hole for the application fastener and sleeve in accordance with applicable slash sheet. If flush head fasteners are to be installed, the countersink in the material will have to be deepened 0.005 for 1/64 and 0.010 for 1/32 oversize to accommodate the countersunk portion of the sleeve. The installed sleeve and fastener shall meet the applicable aerodynamics smoothness requirements on exterior surfaces. Except where a smoother finish is specified on the engineering drawing or in the fastener installation document, the surface finish of the hole shall not exceed 125 RHR as defined in ANSI-B-46.1.
- 15.2.2 Sleeve shall correspond to the fastener configuration (flush or protruding head), fastener application (tension or shear), and fastener diameter. See slash sheet. Each type of sleeve is stocked in only one length. Diameters #10 through 3/8 inch have a 1 inch grip length. All sleeves have external circumferential grooves spaced 1/16 inch apart over the straight portion of their grip length.
- 15.2.3 Sleeves shall be prepared for installation by breaking or grinding them off at a groove so that the grip length will be the same as the fastener grip length. If the grip length or the fastener is longer than the maximum length of the sleeves as listed in paragraph 15.2.2, an additional cylindrical section broken from a second sleeve may be used to make up the required fastener grip length. Do not use a section of sleeve less than 1/4 of an inch long. Break off tools listed in Figure 15-2 must be used.

15.3 ADJUSTING TO LENGTH.

Using step plate (see Figure 15-2) and breakoff handle (see Figure 15-2), break sleeve to length per Figure 15-3 through Figure 15-6.

15.4 <u>ALTERNATE METHOD OF ADJUSTING</u> SLEEVE TO LENGTH IN STRUCTURE.

To adjust sleeve to length in a structure, be sure the structure sheets are firmly held together. Insert the sleeve into the hole until the head is fully seated. Examine the rear protrusion of the sleeve. If a groove is barely visible on the sleeve next to the sheet, use the break off handle to break off the protruding section of sleeve. If the back surface of the sheet falls in between grooves, use a standard washer,

1/32 inch thick, with the hole enlarged with the same drill or reamer used to manufacture the hole to accept the sleeve. Place this washer on the sleeve and push securely against the back sheet. Then using the break off handle, break off the portion of the sleeve standing above the washer. This will always leave the sleeve protruding slightly from the back sheet. The washer may be left on or may be removed and a nut or collar with the proper counterbore used on the bolt.

15.5 PROCEDURE FOR GRINDING SLEEVE TO PROPER LENGTH(FIGURE 15-4).

15.6 INSTALLATION.

Fastener sleeves must be installed with reasonable care to insure that they function properly in inhibiting corrosion, sealing, and in serving to restore the structural integrity of joints in modification, repair or in the original manufacture of aerospace or military hardware. The installation information available and the processing specification should be followed. Various tools are available which facilitate and insure that the sleeve installations may be properly performed.

15.6.1 Fasteners and sleeves shall be installed wet with sealing compounds as required. A thin coat of material shall be applied to the exterior of the sleeve and the sleeve inserted into the hole. If there is an interference fit between the sleeve and the hole, inserting tool JK6536-XX shall be used to install the sleeve into the hole. The same material shall be applied to the shank of the fastener and the fastener inserted or driven into the sleeve. Do not allow the compound to cure before completing the installation. (See Figure 15-5.)

15.7 <u>FLUSHING BACK SIDE WHEN</u> NECESSARY.

Normally the sleeve does not need to be flush on the back side. The sleeve protrusion will fit into the same counterbore in the attaching nut or collar as an oversize bolt. A washer may be used when necessary.

- 15.7.1 When the sleeve must be flush on the back side it may be trimmed by using a counterbore or countersink in a cage. Adjust the cage to cut flush. A pilot on the cutting tool to fit the sleeve hole must be used. Cut slowly.
- 15.7.2 To keep the sleeve from turning it is helpful to have it in an interference fit. It may be bonded into the material and held by tools as shown in Figure 15-6.

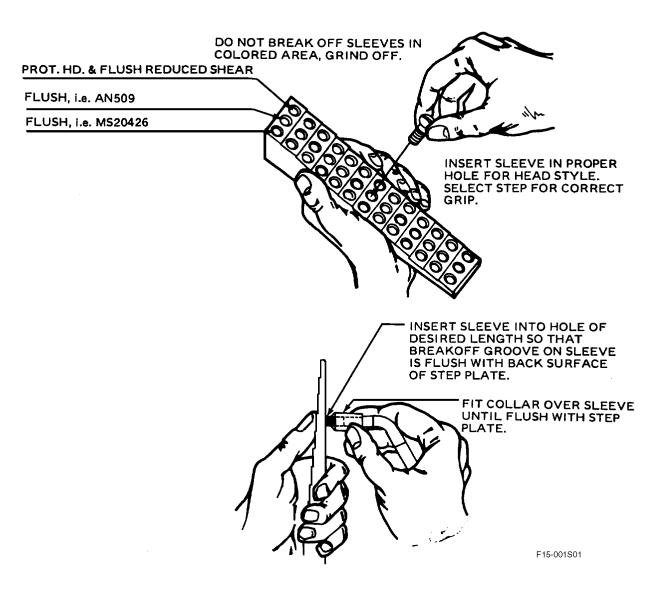


Figure 15-3. Adjusting Sleeve to Length (Sheet 1 of 2)

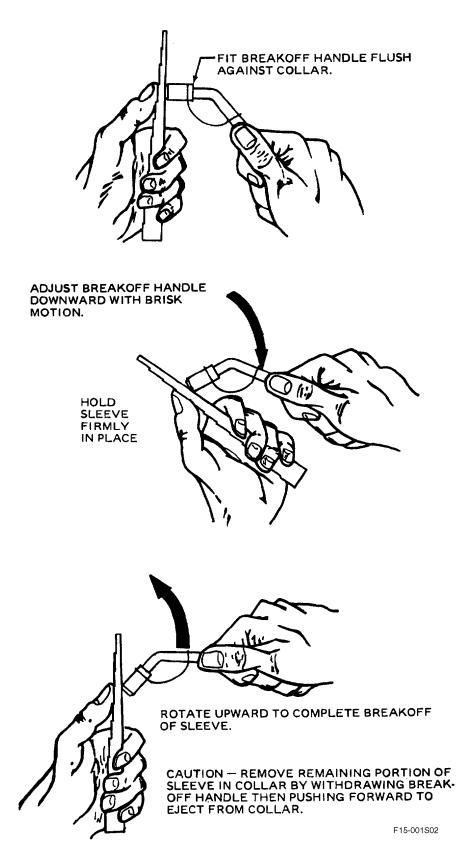
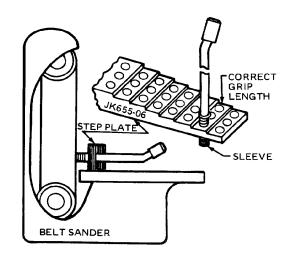



Figure 15-3. Adjusting Sleeve to Length (Sheet 2)

- MAY ALSO BE GROUND ON DISC SANDER.
 DEBURR INSIDE AND OUT.
 DO NOT GRIND THE BOTTOM OF THE STEP PLATE.

F15-002

Figure 15-4. Grinding Sleeve to Proper Length

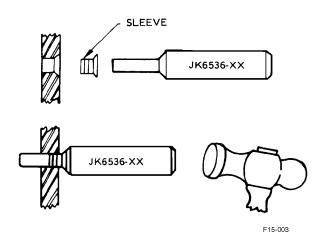
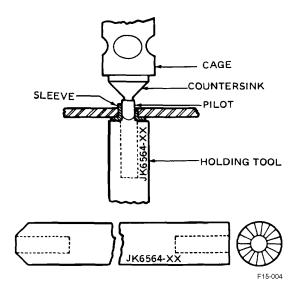



Figure 15-5. Installing Fasteners and Sleeves

Figure 15-6. Bonding Sleeve

15.8 SLEEVES, FASTENERS, DESIGN AND **USAGE LIMITATIONS.**

Fastener sleeves replace oversize shank fasteners. Use the sleeves with standard diameter straight fasteners. Use fastener sleeves under the same restrictions as oversize fasteners and in compliance with the specific users repair procedures and restrictions.

15.9 RESTRICTED APPLICATIONS.

- a. Fastener sleeves shall not be used in those applications utilizing tapered shank fasteners.
- b. Fastener sleeves shall not be used in interference that exceeds 0.003 (hole to sleeve).
- These repair sleeves will not be used with blind fasteners.
- The fastener or attaching element (nut or collar) must contain a counterbore to accept the protrusion of the sleeve or a washer must be used or the sleeve may be flushed on the back side.
- 15.9.1 Procuring activity or the appropriate engineering organization (i.e. stress, strength, fatigue/fracture) approval is required for the following applications:
 - a. In fluid applications.
 - Fatigue and fracture critical locations.
 - Edge distance, measured from the center of the hole, is less than 1 1/2 diameter.

- d. The number of discrepant holes being repaired in the pattern is greater than 10 percent of the total number of holes in the pattern.
- e. More than three (3) adjacent holes are discrepant.
- 15.9.2 Deviation from any of the above requirements must be approved by the procuring agency.

15.10 APPLICATION.

- a. When the edge distance measured from the center of the holes is 2D or greater, there is no restriction on the number or location of fasteners installed with sleeves.
- b. Sleeves are to be used only on/with fasteners ranging from 5/32 through 3/8 inch nominal diameter and up to 2 inches thick stack up.

CHAPTER 16 SAFETY METHODS

16.1 SAFETY METHODS.

(See WARNING listed before paragraph 16.1.2 prior to use.) This section presents instructions for securing screws, nuts, bolts, snap rings, oil caps, drain cocks, valves, and pins with lockwire (safety wire), Safety Cable and cotter pins.

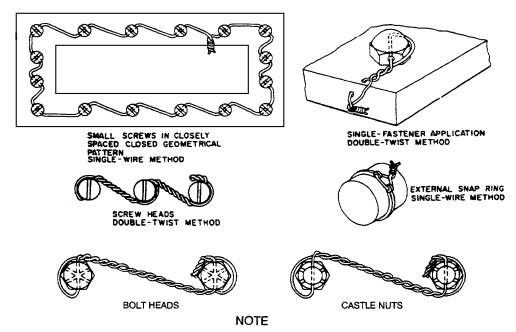
CAUTION

Electrical connectors shall not be lock-wired to any part of fuel, oil, hydraulic, or oxygen system (lines, tubes, elbows, flanges, jam nut, etc).

NOTE

Safetywire or Safety Cable shall not be used to secure nor shall it be dependent upon fracture as the basis for operation of emergency devices such as handles, switches, guards covering handles etc., that operate emergency mechanisms such as emergency exits, fire extinguishers, ejection seats, emergency cabin pressure releases, emergency bomb releases, emergency landing gear door releases, and the like. However, where existing structural equipment or safety of flight emergency devices require shear, single-strand copper safetywire (.020inch diameter lockwire only), or as identified in specific technical orders to secure equipment while not in use, but which are dependent upon shearing or breaking of the safetywire for successful emergency operation of equipment, particular care shall be exercised to assure that safetying under these circumstances shall not prevent emergency operation of these devices. Safety Cable shall not be used for emergency "Shear" or "Breakaway" applications.

16.1.1 <u>Securing Aircraft Hardware with Lockwire</u>. (See Figure 16-1.)


- a. Figure 16-1 and Figure 16-2 illustrate a typical lockwire procedure. Although there are numerous lockwiring operations performed on aircraft hardware, practically all are derived from the basic examples shown in Figure 16-1 and Figure 16-2.
- b. Aircraft hardware that requires lockwiring for security is secured with zinc coated soft steel wire, Federal Specification QQ-W-461. Annealed corrosion-resisting wire, Federal Specification QQ-W-423, condition A, should be used where non-magnetic qualities and heat resisting properties are desired. There are two methods of lockwiring, the double twist method that is most commonly used, and the single wire method used on screws, bolts, and/or nuts in a closely spaced or closed geometrical pattern such as a triangle, square, rectangle, or circle. The single wire method may also be used on parts in electrical systems and in places that are difficult to reach.

16.1.2 <u>Securing Aircraft Hardware with Safety</u> Cable.

WARNING

Eye protection shall be worn while installing or removing safety wire/safety cable. Keep fingers away from jaws and cutting edge.

- a. Safety cable may be used to secure aircraft hardware. When used, safety cable size, construction, and application procedures shall be in accordance with the guidelines specified in this manual.
- b. The selection of materials shall be in accordance with AS4536 (SAE), available from SAE International, 400 Commonwealth Avenue, Warrendale, PA 15096-0001, and shall be in accordance with the service limitation outlined herein.

THE SAFETYWIRE IS SHOWN INSTALLED FOR RIGHT-HAND THREADS. THE SAFETYWIRE IS ROUTED IN THE OPPOSITE DIRECTION FOR LEFT-HAND THREADS.

F16-001

Figure 16-1. Securing Screws, Nuts, Bolts, and Snap Rings

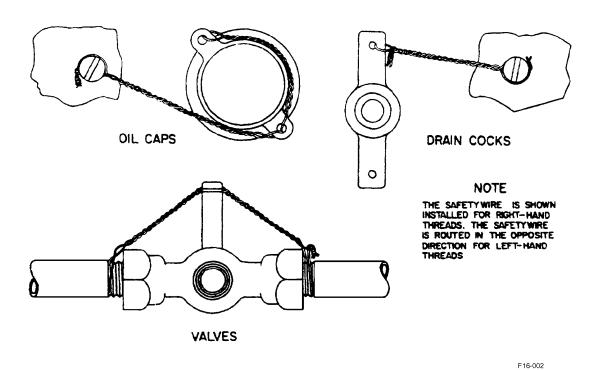


Figure 16-2. Securing Oil Caps, Drain Cocks, and Valves

16.1.3 <u>Lockwiring and Safety Cabling Procedures</u>. There are many combinations of lockwiring and safety cabling with certain basic rules common to all applications. These rules are as follows:

16.1.4 Lockwiring Procedures.

Lockwire ends must be bent under to prevent injury.

CAUTION

- Use only new wire when replacing wired electrical connectors or emergency devices.
 Do not re-use the old wire.
- Make sure wire does not become kinked or nicked during twisting operation. If wire is damaged, replace with new wire.
- When drilled head bolts, screws, or other parts are closely grouped it is more convenient to safetywire them in series or to each other. The number of bolts, nuts, screws, etc., that may be wired together depends on the application. When securing widely spaced bolts by the double-twist method, the maximum number of bolts that can be wired in a series is three. When securing closely spaced bolts, the number that can be secured by a 24-inch length of wire is the maximum number in a series. Widely spaced multiple groups shall not be safetied together when the fasteners are from 4 to 6 inches apart. Lockwiring shall not be used to secure fastenings or fittings which are spaced more than 6 inches apart, unless tie points are provided on adjacent parts to shorten the span of the lockwire to less than six inches.
- b. Drilled head bolts and screws need not be safetywired if installed with self-locking nuts or lockwashers in accordance with Chapter 5 and Chapter 6, respectively.
- c. Lockwire must be tight when installed.
 - (1) To prevent failure due to rubbing or vibration, lockwire must be tight after installation.
- d. Lockwire must tend to tighten.
 - By installing lockwire in a manner that tends to tighten and keep a part locked in place, the natural tendency of the part to loosen is counteracted.

- e. Lockwire must never be overstressed.
 - (1) Lockwire will break under vibrations if twisted too tightly. Lockwire shall be pulled taut when being twisted, but shall have a minimum of tension, if any, when secured.
- Lockwire ends must be bent under to prevent injury.
- (1) The remaining lockwire ends shall be bent into the part to avoid sharp or projecting ends which might present a safety hazard.
- g. Internal wiring must not cross over or obstruct a flow passage when an alternate method can be used.
- h. Check the units to be lockwired to make sure that they have been correctly torqued and that the wiring holes are properly positioned in relation to each other. When there are two or more units, it is desirable that the holes in the units be in the same relationship to each other. Never over torque or loosen units to obtain proper alignment of the holes. It should be possible to align the wiring holes when the units are torqued within the specified limits. However, if it is impossible to obtain a proper alignment of the holes without either over or under torquing, select another unit which will permit proper alignment within the specified torque limits.
- i. To prevent mutilation of the twisted section of wire when using pliers, grasp the wires at the ends. Lockwire must not be nicked, kinked or mutilated. Never twist the wire ends off with pliers and, when cutting off ends, leave at least four to six complete turns (1/2 to 5/8 inches long) after the loop. The strength of the lockwire hole are marginal. When removing a lockwire, never twist the wire off with pliers. Cut the lockwire close to hole, exercising caution.
- j. Turns per inch requirements are listed as follows:
- (1) .020 gauge wire to 9 12 turns.
- (2) .032 gauge wire to 7 12 turns.
- (3) .041 gauge wire to 7 10 turns.
- k. Lockwire should, where practicable, be installed with the wire positioned around the head of the bolt, screw, or nut and twisted in such a manner that the loop of the wire fits closely to the contour of the unit being lockwired.
- 16.1.5 <u>Twisting with Special Tools</u>. Twist wire with a wire twister as follows. (Refer to Figure 16-3):

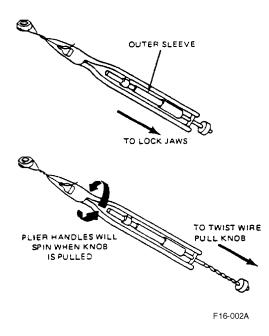


Figure 16-3. Use of Wire Twister

When using wire twisters and wire extends 3 inches beyond jaws of twisters, loosely wrap wire around pliers to prevent whipping and possible personnel injury.

- a. Grip wire in jaws of wire twister and slide outer sleeve down with thumb to lock handles.
- b. Pull knob; spiral rod spins and twists the wire.
- c. Squeeze handles together to release wire.

16.1.6 <u>Safety Cable Procedures</u>. The selection of materials shall be in accordance with AS4536 (SAE), available from SAE International, 400 Commonwealth Avenue, Warrendale, PA 15096-0001, and shall be in accordance with the service limitations outlined herein.

NOTE

Minimize mixing of safety wire and safety cable.

- a. AS3510 series (UNS S32100 CRES) safety cable shall be selected for general purpose use on all applications up to 649°C (1200°F).
- b. AS3509 series (UNS N6600 Nickel Alloy) safety cable shall be selected for applications up to 982°C (1800°F).

- Only safety cables and ferrules supplied by a manufacturer that meets all the requirements of AS4536 shall be allowed.
- d. Safety cable shall not be used for any shear, or break away applications.
- e. Safety cable shall be installed with a calibrated tool which is supplied by the safety cable manufacturer for the purpose of applying tension to the cable, crimping the ferrule, and cutting the excess cable without allowing tension to be lost.

16.1.7 The size of safety cable shall be in accordance with the following requirements:

- a. 0.020 inch diameter safety cable is intended for use on parts having a nominal hole diameter of 0.045 inch (1.14 mm) or smaller.
- b. 0.032 inch diameter safety cable is intended for use on parts having a nominal hole diameter of 0.075 inch (1.91 mm) or smaller.
- c. 0.040 inch diameter safety cable is intended for use on parts having a nominal hole diameter of 0.095 inch (2.41 mm) or smaller. For larger diameters see paragraph 16.5, step (5).
- d. The specified length of the cable shall be selected to accommodate the span between fasteners added to the length of cable required to correctly engage the application tool.

16.2 <u>SECURING OIL CAPS, DRAIN COCKS, AND VALVES.</u>

(See Figure 16-2 and Figure 16-4). When securing oil caps and drain cocks, the safetywire should be anchored to an adjacent fillister head screw. This method of safetywiring is applied to wing nuts, filler plugs, single drilled head bolts, fillister head screws, etc., which are safetywired or safety cabled individually. Safety cable may be substituted, where practical, as shown in Figure 16-4. When securing valve handles in the vertical position the wire is looped around the threads of the pipe leading into one side of the valve, double-twisted around the valve handle, and anchored around the threads of the pipe leading into the opposite side of the valve. When castellated nuts are to be secured with safetywire, tighten the nut to the low side of the selected torque range, unless otherwise specified, and if necessary continue tightening until a slot aligns with the hole. In blind tapped hole applications of bolts or castellated nuts on studs, the safetywiring or safety cabling shall be in accordance with the general instruction contained herein. Hollow head bolts are safetied in the manner prescribed for regular bolts.

16.2.1 Securing Snap Rings.

CAUTION

Do not loosen or tighten properly tightened nuts to align safetywire holes.

External snap rings shall be safetied in accordance with the applicable A/C publications. Where safety cable is used it shall be installed as illustrated in Figure 16-5.

- a. Safety Cable may be substituted for lockwire on external snap ring applications only.
- Internal snap rings shall not be safety wired or safety cabled.
- c. Correct Safety Cable diameter shall be selected using criteria specified in paragraph 16.5, step (1) and 16.5, (5).

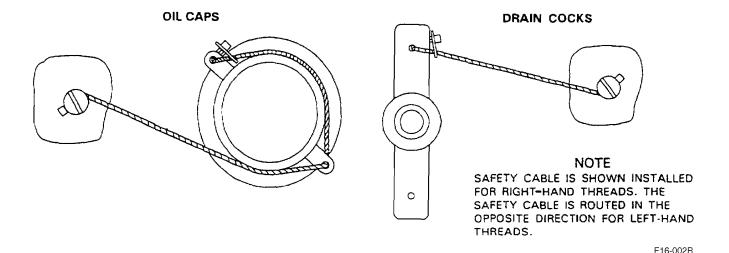


Figure 16-4. Self Looping Safety Cable used on Oil Caps and Drain Cocks

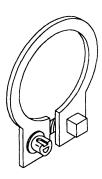


Figure 16-5. External Snap Ring Installation with Safety Cable

16.3 SECURING TURNBUCKLES.

16.3.1 Securing Turnbuckles with Safety Wire. (See Figure 16-9.) (Prior to securing turnbuckles, threaded terminals should be screwed into the turnbuckle barrel until no more than three threads of either terminal are outside the barrel. After the turnbuckle has been adjusted for proper cable tension, two pieces of safetywire are inserted one-half the wire length into the hole in the center of the turnbuckle barrel. The safetywires are bent so that each wire extends one-half the length of the turnbuckle on top and one-half on bottom. The ends of the wires are passed through the hole in the turnbuckle eyes or between the jaws of the turnbuckle fork, as applicable. The wires are then bent toward the center of the turnbuckle and each wire is wrapped around the shank four times, binding the wrapping wires in place as shown in Figure 16-9. When a swaged terminal is being secured, one wire is passed through the hole in the terminal and is looped over the free end of the other wire and both ends wrapped around the shank. All lockwire used in the safetying of turnbuckles shall be carbon steel, corrosion-resistant steel, nickel-chromium iron alloy (inconel), nickel-copper alloy (monel) or aluminum alloy. The minimum lockwire diameter shall be in accordance with Table 16-1. On aircraft where the present standard sizes have not been installed, no change is required to

T.O. 1-1A-8

comply with Air Force-Navy Aeronautical Standard 669. If hole sizes are not large enough to accommodate specified wire a substitute size wire is authorized. On turnbuckles having 3/32-inch or 1/8-inch diameter cables that would normally use 0.041-inch diameter safetywire, a 0.032-inch diameter safetywire may be substituted. On turnbuckles having cables greater than 1/8-inch diameter that would normally use 0.047-inch diameter safetywire, a 0.041-inch diameter safetywire is authorized. Care should be exercised when safetywiring, particularly where corrosion will present a problem because smaller wire sizes tend to crack when bent. Federal Specification QQ-W-461, is the standard turnbuckle safetywire. Annealed, corrosion-resisting wire, Federal Specification QQ-W-423, should be used where nonmagnetic or heat resisting qualities are desired.

16.3.2 <u>Securing Turnbuckles with Safety Cable</u>. (See Figure 16-10 and Figure 16-11.)

- a. Safety Cable may be substituted on turnbuckles. The standard procedure for securing turnbuckles with safety cable is shown in Figure 16-10 and Figure 16-11.
- (1) A self-looping safety cable is threaded through the turnbuckle. The free end shall be wrapped in one direction around the turnbuckle. The safety cable is then threaded through the hole in the self looping jumper, and terminated with the appropriate application tool (See Figure 16-11).
- (2) 0.032 inch diameter Safety Cable selection for turnbuckle applications, shall be used on assemblies where cable diameter is 1/16 inch or smaller, and 0.040 inch diameter safety cable or greater shall be used on turnbuckle cable diameters greater than 1/16 inch.

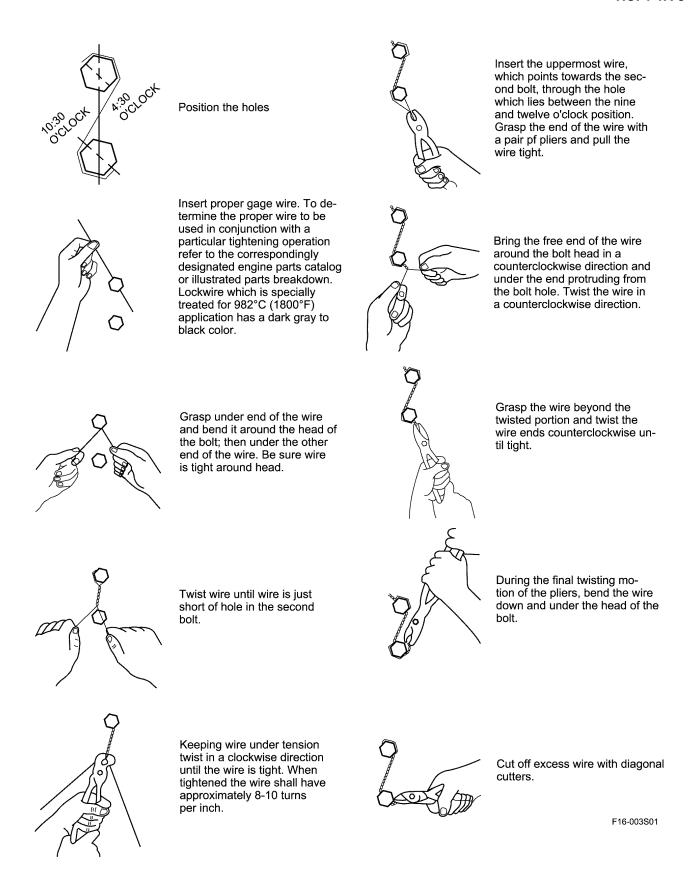
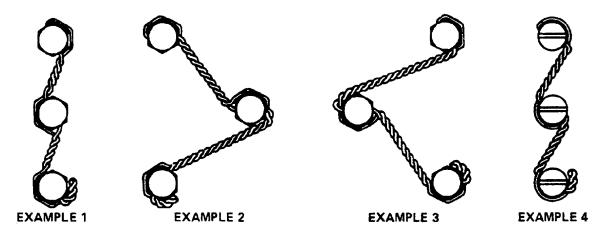
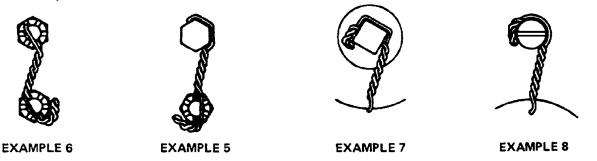




Figure 16-6. Safetywiring Procedures (Sheet 1 of 4)

Examples 1, 2, 3, and 4 apply to all types of bolts, fillister head screws, square head plugs, and other similar parts which are wired so that the loosening tendency of either part is counteracted by tightening of the other part. The direction of twist from the second to the third unit is counterclockwise in examples 1, 3 and 4 to keep the loop in position against the head of the bolt. The direction of twist from the second to the third unit in example 2 is clockwise to keep the wire in position around the second unit. The wire entering the hole in the third unit will be the lower wire except example 2 and by making a counterclockwise twist after it leaves the hole, the loop will be secured in place around the head of that bolt.

Examples 5, 6, 7, & 8 show methods for wiring various standard items. Note: Wire may be wrapped over the unit rather than around it when wiring castellated nuts or on other items when there is a clearance problem.

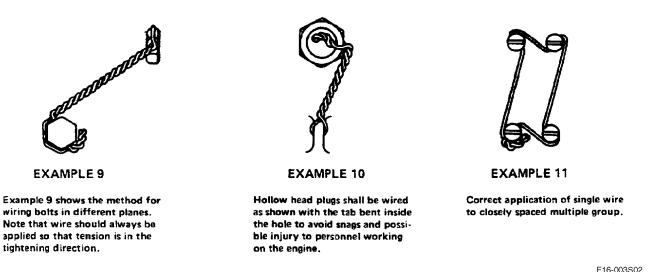
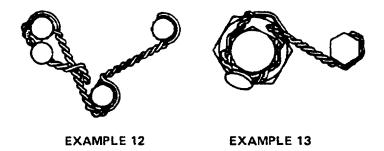
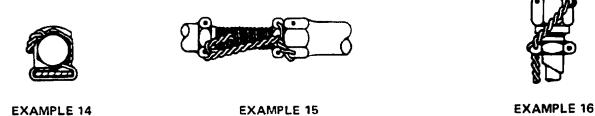
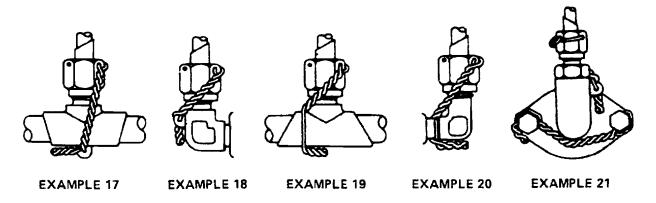




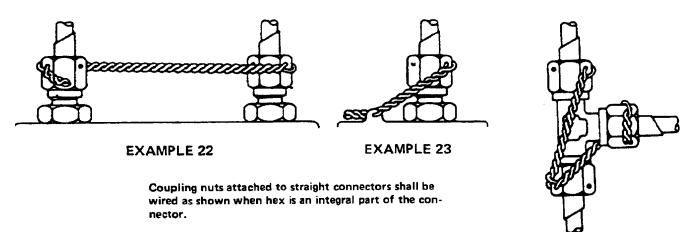
Figure 16-6. Safetywiring Procedures (Sheet 2)


Examples 12 & 13 show methods for attaching lead seal to protect critical adjustments.

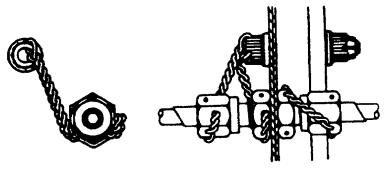
Example 14 shows bolt wired to a right angle bracket with the wire wrapped around the bracket.

Example 15 shows correct method for wiring adjustable connecting rod.

Example 16 shows correct method for wiring the coupling nut on flexible line to the straight connector brazed on rigid tube.

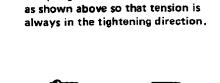


Fittings incorporating wire lugs shall be wired as shown in Examples 17 & 18. Where no lockwire lug is provided, wire should be applied as shown in Examples 19 & 20 with caution being exerted to ensure that wire is wrapped tightly around the fitting.

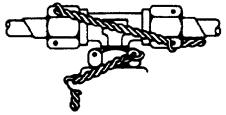

Small size coupling nuts shall be wired by wrapping the wire around the nut and inserting it through the holes as shown.

F16-003S03

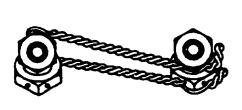
Figure 16-6. Safetywiring Procedures (Sheet 3)



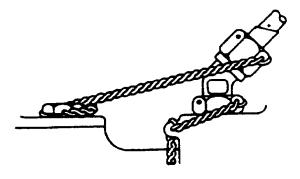
_


EXAMPLE 25

Straight Connector (Bulkhead Type)



EXAMPLE 24


Coupling nuts on a tee shall be wired

EXAMPLE 26

EXAMPLE 27

EXAMPLE 28

Examples 26, 27, & 28 show the proper method for wiring various standard fittings with check nut wired independently so that it need not be disturbed when removing the coupling nut.

F16-003S04

Figure 16-6. Safetywiring Procedures (Sheet 4)

16.3.3 Addition to Safety Wire.

- a. Hollow Headed Bolts with Four Tapped Holes.
 - (1) Install safety wire on hollow headed bolts with four tapped holes or other similar types of bolts, so that tightening of the other part counteracts loosening tendency of either part.
- (2) Starting on an outside bolt, insert wire through two holes crossing in the middle and extend out through opposite set of holes.
- (3) Twist wire clockwise for number of twists prescribed by wire gauge used. Repeat for next two bolts.
- (4) After the final twist, cut off excess wire and bend the end into hollow bolt.

Suggested

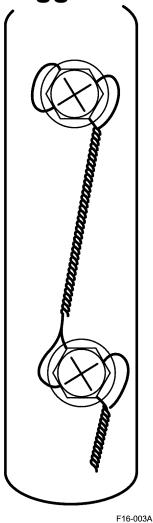


Figure 16-7. Hollow Headed Bolts

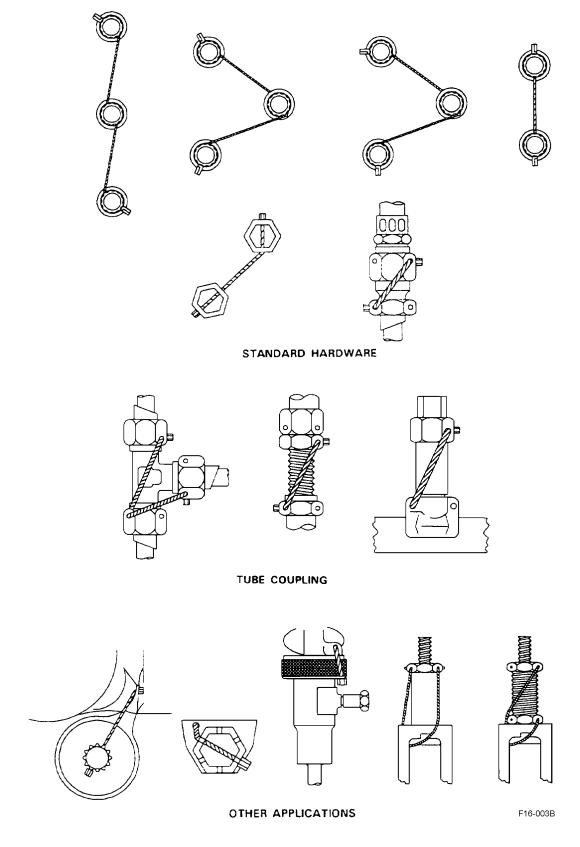


Figure 16-8. Examples of Installed Safety Cable

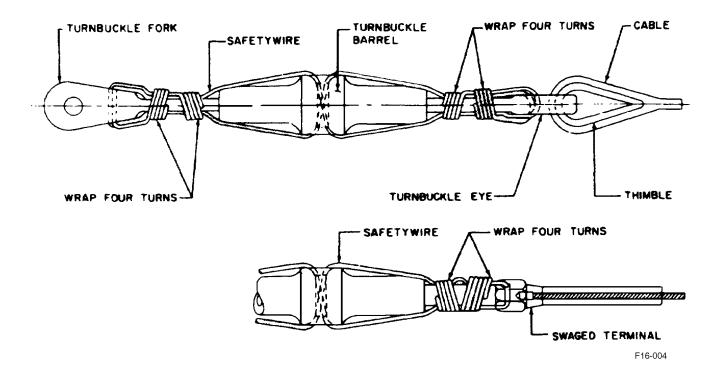


Figure 16-9. Securing Turnbuckles

Table 16-1. Safetywire, Type and Size for Various Turnbuckle Cable Diameters

Cable Diameter	1/16	3/32 or 1/8	5/32, 3/16, 7/32, 1/4, 9/32, 5/16
Turnbuckle, AN155 Dash No.	-5S, 8-S, or- 8L	-16S, -16L, -32S or - 32L	-32S, -32L, -46L, -80L, -125L or-175L
Carbon Steel	0.032	.041	0.047
Monel			0.040
Inconel	0.020	0.032	
Corrosion-Resistant Steel			0.041
Aluminum Alloy	0.023	0.041	0.047

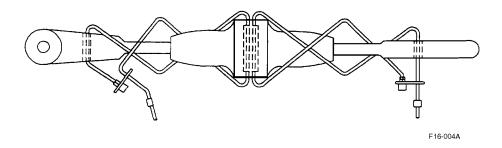


Figure 16-10. Routing of Safety Cable on Turnbuckles

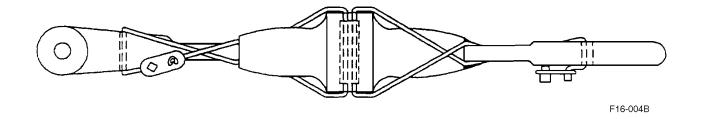


Figure 16-11. Example of Final Safety Cable Turnbuckle Installation

Table 16-2. Safetywire, Number of Turns for Various Turnbuckle Cable Diameters

Turnbuckle	No. of Turns
Short for 1/16 Cable	5 to 7
Short for 1/8 Cable	2 to 3
Long for 3/32 Cable	10
Long for 5/32 Cable	
Long for 3/16 Cable	6 to 8
Long for 1/8 Cable	10

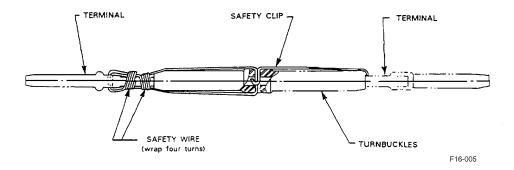


Figure 16-12. Securing Turnbuckle with Safety Clips

Table 16-3. Maximum Thread Extension for Various Cable Sizes and Threads

Cable Dia	Thread	Maximum Thread Extension
1/16	6-40	0.75
3/32	10-32	
1/8		0.85
5/32	1/4-28	
3/16	5/16-24	
7/32	3/8-24	
1/4		
9/32	7/16-20	1.00

Table 16-3. Maximum Thread Extension for Various Cable Sizes and Threads - Continued

Cable Dia	Thread	Maximum Thread Extension
5/16	1/2-20	1.10

16.3.4 Safetywire Sizes.

Care should be taken not to confuse steel with aluminum wire.

When using the double-twist method of safety-wiring, 0.032-inch minimum diameter wire should be used on parts that have a hole diameter larger than 0.045 inch. Safetywire of 0.020-inch diameter (double strand) may be used as applicable on parts that have a hole diameter of 0.045 inch or less; or, on parts having a nominal hole diameter between 0.045 and 0.062 inches with a spacing between parts of less than 2 inches. When using the singlewire method, the largest size wire that the hole will accommodate should be used. Copper wire, 0.020-inch diameter, aluminum wire, 0.031-inch diameter, or other similar wire called for in specific technical orders should be used as seals on equipment such as first aid kits, portable fire extinguishers, emergency valves, or oxygen regulators.

A secure seal indicates that the component has not been opened. Some emergency devices require installation of safety or shear wire. Particular care should be exercised to assure that the use of safetywire will not prevent emergency operation of the devices.

16.4 <u>ASSEMBLING AND SECURING CLIP</u> LOCKING TURNBUCKLES.

(See Figure 16-13 and Table 16-4.) Clip locking turnbuckles are assembled and secured as follows:

 Engage threads of turnbuckle barrel with threads of cable terminal and turn barrel until proper cable tension is reached.

- b. Align slot in barrel with slot in cable terminal.
- c. Hold lock clip between thumb and forefinger at loop end and insert straight end of clip into opening formed by aligned slots.
- d. Bring hook end of lock clip over hole in center of turnbuckle barrel and seat hook loop into hole.
- e. Apply pressure to hook shoulder to engage hook lip in turnbuckle barrel and to complete safety locking of one end of turnbuckle.

NOTE

Repeat the above steps to safety lock the opposite end of turnbuckle. Both lock clips may be inserted in the same turnbuckle barrel hole or they may be inserted in opposite holes.

f. After assembly, examine both lock clips to insure that hook lip is properly engaged in turnbuckle barrel hole by applying a slight amount of pressure in the disengaging direction.

NOTE

The turnbuckle assemblies on one or both ends shall be secured by clip locking wherever feasible. The clips shall be installed when the AN part is replaced by an MS turnbuckle on a repair/replacement basis. It is permissible to use a clip locking device on one end and safety wire on the opposite end. (See Figure 16-10, Figure 16-11, and Figure 16-12).

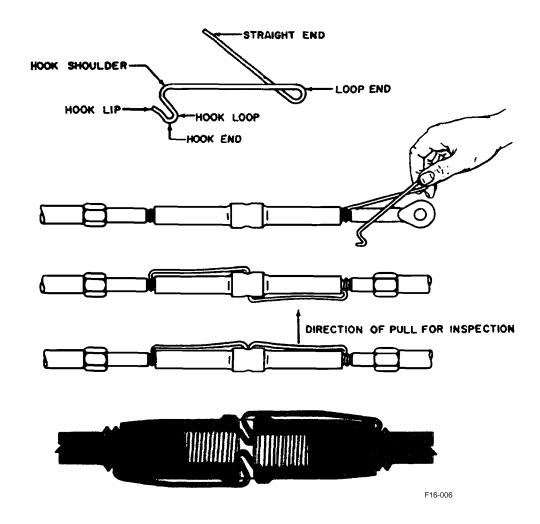


Figure 16-13. Assembling and Securing Clip Locking Turnbuckles

Table 16-4. Locking Clip Application

Nominal Cable Dia.	Thread UNF-3	Locking Clip MS21256	Turnbuckle Body MS21251
1/16	No. 6-40	-1	-2S
3/32	No. 10-32		-3S
		-2	-3L
1/8	1/4-28	-1	-4S
		-2	-4L
5/32		-1	-5S
		-2	-5L
3/16	5/16-24	-1	-6S
		-2	-6L
7/32	3/8-24		-7L
1/4			-8L
9/32	7/16-20	-3	-9L

Table 16-4. Locking Clip Application - Continued

Nominal Cable Dia.	Thread UNF-3	Locking Clip MS21256	Turnbuckle Body MS21251
5/16	1/2-20		-10L

16.5 SAFETY CABLE.

a. Safety Cable Installation. Safety cable may be used as a substitute for lockwire to prevent loosening during service. Threaded parts, such as drilled-head bolts, fillister head screws, turnbuckles, thumbscrews, hose fittings and electrical connectors, plugs, caps, and similar items are within the scope of the safety cable application. The following rules shall apply when using safety cable.

NOTE

Routing of safety cable may vary from that of lockwire in order to achieve a proper installation.

- (1) When safety cable is being substituted for lockwire in an existing installation (maintenance, rework, etc.), equivalent diameter safety cable to that of the lockwire shall be selected for use, providing that selection criteria for safety cable as defined in the safety cable procedures, paragraphs 16.1.6 and 16.3.2 and 16.5 are met.
- (2) Adjacent Units: Safety cable shall be installed in such a manner that any tendency for a fastener to loosen will be counteracted by an additional tension on the cable. Safety cable shall be threaded through the fasteners in such a way as to produce installed safety cable with either positive or neutral pull.
- (3) Maximum Span: The maximum span of safety cable between two termination points shall be 6 inches (152.4 mm) unless otherwise specified.
- (4) Installing Defects: Any cable defect (nick, fray, kink, or any other mutilation of the safety cable) found prior to, during, or subsequent to installation, is not acceptable.

NOTE

Avoid kinks or sharp bends while handling and threading safety cable.

(5) Applications where safety cable is to be installed through a hole having a nominal diameter of greater than 0.095 inch (2.41 mm), but less than 0.200 inch (5.08 mm) shall require a flat washer (same material composition as the safety cable) which is supplied by the safety

cable manufacturer for this purpose, and shall be used as shown in Figure 16-14.

(6) Safety cable shall be installed with an application tool which has been calibrated to meet the performance requirements of AS4536 (SAE) and this manual.

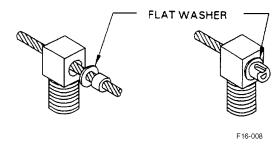


Figure 16-14. Flat Washer Safety Cable Installation

(7) Installing Holes: Safety cable must be installed through the holes intended for this purpose in the part being secured, or through the holes provided in a self looping device secured to the safety cable by the safety cable manufacturer (Refer to Figure 16-15). In applications where holes are not provided for safety cable in the component to which it is attached, the self looping safety cable may be used in a manner like, or similar to Figure 16-16.

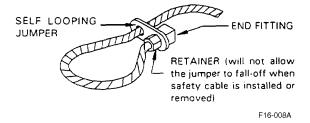


Figure 16-15. Self-Looping Safety Cable

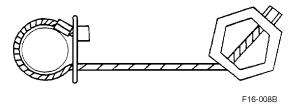
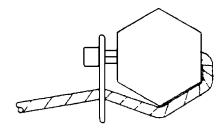


Figure 16-16. Self-Looping Safety Cable Anchored to a Pin Assembly

- (8) Safety Cable/Ferrule Reuse: Safety cable and ferrule shall be new upon each application. Reuse is not allowed.
- (9) Installation: Various examples of safety cable installation are shown in Figure 16-7. All possible combinations and applications are not shown. Unless otherwise specified, safety cable shall be installed in two or three bolt patterns with two bolt patterns being the preferred method where an even number of fasteners are to be secured. The installer must adhere to the basic rules outlined in this manual.
- (10) Hose fittings and Electrical Connector Requirements: Hose Fittings and electrical coupling nuts shall have safety cable installed in the same manner as tube coupling nuts.

- (11) Excess Cable: After installing safety cable, excess cable from the crimped ferrule shall be cut by the installation tool. The maximum allowable length of cable extending beyond the ferrule shall be 0.031 inch (0.79 mm).
- (12) Crimping Requirements (Pull-Off Load Refer to Table 16-5): Safety Cable shall be installed with the Safety Cable manufacturers recommended tool, which has been tested and calibrated in accordance with procedures specified in paragraph 16.6.2 of this manual.

Table 16-5. Safety Cable Minimum Crimp Requirements (Pull-Off Load)


Nominal Cable Diam- eter inch (mm)	Safety Cable Construc- tion	Minimum Pull- Off Load lbf (N)
.020 (0.51)	1 x 7	30 (133.4)
.032 (0.81)	3 x 7	70 (311.4)
.040 (1.02)	7 x 7	110 (489.3)

(13) Hole Alignment: Undertorquing or overtorquing to obtain proper alignment of the holes is not permitted. Apply recommended torque values to parts to be secured, and alignment of holes shall be evaluated before attempting to proceed with safety cable installation.

WARNING

The maximum bend exit limit of safety cable, when applied to a threaded fastener head, shall be 145°. This does not apply to hose fittings, electrical connector coupling mechanisms, turnbuckles, and similar applications where the safety cable is constrained by the shape of the component being secured.

(14) In applications where safety cable shall be required to exceed the 145° maximum bend exit limit in order to achieve neutral to positive pull on a threaded fastener head, a self looping device which is secured to the safety cable by the safety cable manufacturer may be used to obtain a secured installation as shown. (Refer to Figure 16-15 and Figure 16-17).

F16-008C

Figure 16-17. Self-Looping Safety Cable in High Bend Exit Application

This method should only be used in applications where the safety cable can not "flip" over the corner or over the head of the fastener being secured.

(15) Cable Flex Limits: After installing safety cable, the maximum flex between termination points shall be no greater than the specified in the Cable Flex Limit Table. (Refer to Table 16-6).

NOTE

Light finger pressure of approximately 2 pounds shall be applied at mid-span when inspecting total flex limit of installed safety cable.

Table 16-6. Flex Limits, Inch (mm)

Α	В	С
0.5 (12.7)	0.125 (3.18)	0.062 (1.59)
1.0 (25.4)	0.250 (6.35)	0.125 (3.18)
2.0 (50.8)	0.375 (9.52)	0.188 (4.76)
3.0 (76.2)	0.375 (9.52)	0.188 (4.76)
4.0 (101.6)	0.500 (12.70)	0.250 (6.35)
5.0 (127.0)	0.500 (12.70)	0.250 (6.35)
6.0 (152.4)	0.625 (15.88)	0.312 (7.94)

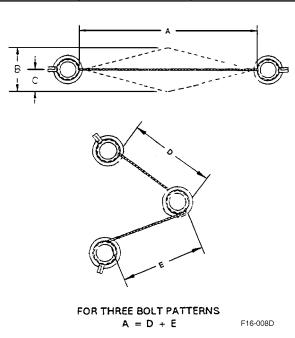


Figure 16-18. Safety Cable Flex Limits

NOTE

It is important to hold the tool as steady and perpendicular to the fastener as possible during the crimp/cut cycle in order to maintain consistent tensioning of the cable after the tool is removed.

b. Elongated Ferrules: Ferrules of extra length, having a radius at one end and a straight surface at the other end, may be used in applications which restrict the clearance for the installation tool nose to be placed in correct alignment with the fastener (such as low profile fastener heads, recess locations, or obstructions by structures or installed components) Refer to Figure 16-19.

NOTE

- Always install elongated ferrules with the radius end toward the fastener, and the straight end in the tool crimp cavity. Double check cable tension between fasteners after removal of application tool.
- Radius required on 0.032 inch diameter and larger elongated ferrules. Radius optional on 0.020 inch diameter elongated ferrules.

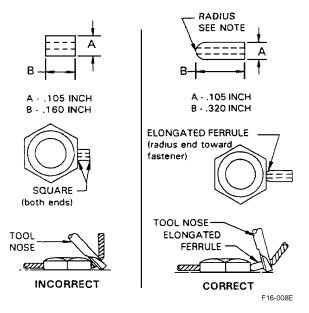


Figure 16-19. Low Profile Application for 0.032 and 0.040 Inch Safety Cable

c. Safety cable identification stamp. In applications where the user requires a logo or ID code to be a permanent part of the safety cable installation (for warranty or traceability), it shall be applied by the safety cable manufacturer to one or more surfaces of the square end fitting of the safety cable. Only impression stamping is permitted, no paint, ink, or labels are acceptable (Refer to Figure 16-20).

Figure 16-20. Safety Cable Identification Stamp

d. Safety Cable Jacketing for Protection. It is recommended to use a tubular jacket over safety cable when it is installed in a location where it is in contact with (or may contact) surfaces which may damage the safety cable. A tubular jacket material shall be capable of meeting the temperature range of the application, and shall be resistant to oil and chemical environments (Refer to Figure 16-21).

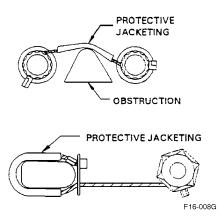


Figure 16-21. Safety Cable Jacketing for Protection

 e. A self-looping safety cable is used to secure threaded tube fittings as shown in Figure 16-22.
 After torquing, the cable is threaded through the safety holes in the fitting, and terminated at the self looping jumper.

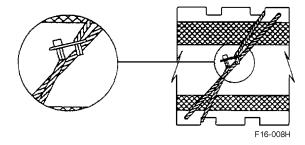


Figure 16-22. Safety Cable on Tube Couplings

16.6 SAFETY CABLE APPLICATION TOOLS.

- a. Procedures. When safety cable is used, the following basics apply for the application tools and calibration equipment.
 - (1) Minimize mixing of safety wire and safety cable.
 - (2) Install the ferrule cartridge into the tool body under the handle grip.

NOTE

When loading and using the safety cable application tools, be certain that the correct size safety cable and ferrules are being used with the tools.

- (3) Install the Safety Cable through the fasteners to be secured.
- (4) The nose can index to four positions at 90° increments. To select the position, push the nose in towards the tool and rotate to the desired position. Release the nose, if the nose does not lock into the indexed position, turn it slightly until it locks (Refer to Figure 16-23).
- (5) Insert the free end of the cable through the ferrule in the cartridge, and remove the ferrule by pulling the cable away from the end of the cartridge (Refer to Figure 16-23).

NOTE

Do not release the free end of the cable until it has been inserted through the tool nose (Refer to Figure 16-24).

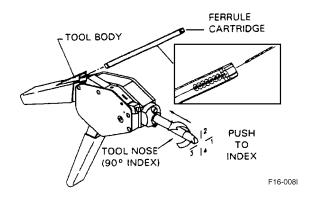


Figure 16-23. Pre-Set Tension Safety Cable Tool

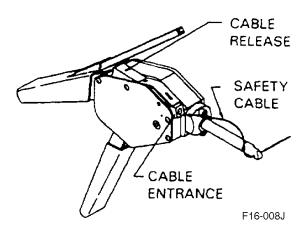


Figure 16-24. Safety Cable Tools

(6) Insert the free end of the cable through the tool nose and slide the tool along the cable to the fastener being secured (Refer to Figure 16-25).

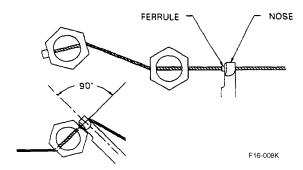


Figure 16-25. Position of Safety Cable Tool

16.6.1 Types of Safety Cable Tools.

a. The pre-set tension tool. (Refer to Figure 16-23 and Figure 16-24). Insert the free end of the cable into the cable entrance and continue to push the cable into the cavity. When the free end of the cable appears at the bottom of the tool, grip the cable and pull the slack from the cable until resistance is felt. Begin removing slack from the cable by repeatedly closing the tool handle allowing the handle to open fully before closing again. When all slack is removed from the cable, snug the tool against the fastener by using several short strokes of the handle. Release the handle to the full open position and fully close the handle to crimp securely and cut flush.

NOTE

It is important on this final stroke to hold the tool as steady and perpendicular to the cable as possible while completing a full stroke. This assures consistent tensioning of the cable (Refer to Figure 16-25).

b. Adjustable tension tool. (Refer to Figure 16-26). Thread the safety cable through the fastener, ferrule, and tool nose in the same way as with other models. Wrap the cable one full revolution (clockwise) around the tension wheel, and with slight pressure applied by pulling the cable, secure the cable into the slot. Rotate the tension knob until several clicks are heard and felt. If additional tension is required, adjustment can be made with the tension adjuster on the opposite side of the tool.

Do not overtighten safety cable. It is a good practice to find a tension setting which removes the slack from the cable, (in order to meet the flex limit requirement) without over stressing the safety cable components.

- (1) Completely close the handle to crimp and cut the cable. Hold the tool steady and perpendicular to the cable to maintain consistent cable tension. Release the handle and remove the tool from the crimped ferrule. Remove the excess cable segment from the tool prior to the next application.
- (2) If it is more convenient to use the adjustable tension tool with the knob located on the opposite side, you may remove the retaining ring located below the tension adjuster, slide the knob assembly out of the tool body, and reinsert it on the opposite side. Re-install the retaining ring. (Refer to Figure 16-26)

NOTE

When using a hand tool, the tool handle is to remain fully open during the cable entry process (in both tool models). The handle is to be actuated in the pre-set tension model after the tension pawl is engaged with the cable, and in the adjustable tension model only after the desired tension is achieved.

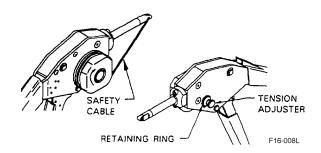


Figure 16-26. Adjustable Tension Safety Cable Tool

- c. The pneumatic safety cable application tool. (Refer to Figure 16-27). Connect the Pneumatic Safety Cable Tool to a clean, dry air supply of 80 to 100 psi.
 - (1) Install the safety cable through the fasteners which are to be secured.

(2) The nose can be indexed to four positions in 90° increments. To select the position, push the nose in towards the tool and rotate to the desired position. Release the nose. If the nose does not lock into the indexed position, turn it slightly until it snaps into position and locks.

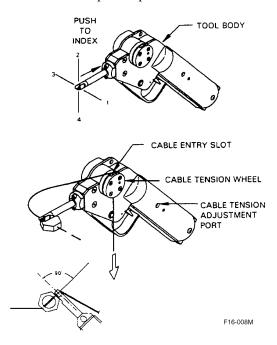


Figure 16-27. Pneumatic Safety Cable Application Tool

Do not actuate the pneumatic tool unless the nose is locked into position. Actuation of the tool without the nose being locked will severely damage the nose or other tool components.

- (3) Insert the free end of the cable through the ferrule in the cartridge and remove the ferrule by pulling the cable away from the end of the cartridge. Insert the free end of the cable through the nose of the tool and slide the tool along the cable to the desired position.
- (4) Rotate the cable tensioning wheel clockwise if necessary to move the cable entry slot to an accessible position. Align the nose such that the ferrule is pressed squarely against the fastener.

Make certain that the ferrule is fully seated into the nose. Insert the free end of the cable into the cable entry slot of the cable tensioning wheel. When the end of the cable exits the wheel, grip the cable and pull the slack from the cable. Do not leave more than 1 1/2 inch of total slack in the cable.

- (5) Press the trigger and hold. The tool will apply tension to the cable, crimp and cut. When the trigger is released, the crimp mechanism will retract (after the cycle is complete), and the tool nose can be removed from the ferrule. The excess cable shall be discarded.
- (6) The tension is adjustable by inserting the adjustment key (to be supplied by the manufacturer) into the adjustment port located on the tool handle. Clockwise rotation increases tension, and counter clockwise rotation decreases tension.

16.6.2 Safety Cable Application Tool Maintenance and Calibration. The safety cable tools should be stored in a clean, dry place when not in use. Clean any debris (especially in the crimp cavity in the tool nose) from the tool with a small brush and solvent if necessary. Lubricate the tool nose (into the crimp cavity) with a drop of oil on a regular basis.

a. Tool calibration verification with the safety cable test fixture or electronic pull tester.

NOTE

Indenter Calibration should be verified periodically and must always be checked if the nose assembly has been removed or changed.

- (1) Use of the calibration test fixture and torque wrench to verify safety cable tool indenter adjustment. (Refer to Figure 16-28). Thread the safety cable into the 12 pt. screw and through the swivel, holding the lever against the built-instop. If the lever is not kept against the stop, the results may be adversely affected. Terminate the safety cable with the tool being tested.
- (2) Apply approximately 2 lbs force to the cable with your finger at the line marked "test area." The cable shall not touch either the side or bottom surface of the test fixture.

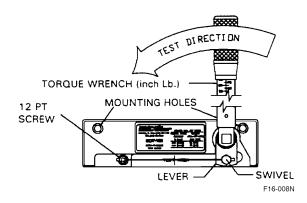


Figure 16-28. Calibration Test Fixture and Torque Wrench

(3) Place a calibrated 3/8 inch drive torque wrench (capable of indicating 30 inch. lb. for 0.020 inch safety cable, 70 inch. lb. for 0.032 inch safety cable and 110 inch. lb. for 0.040 inch safety cable) into the square drive hole, as shown in Figure 16-28, orienting the test block and torque wrench on a stable surface. Slowly and steadily apply the required torque for the cable size being tested, do not over torque the cable.

Table 16-7. Torque Wrench Pull-off Loads for Safety Cable

Safety Cable Diameter Inch	Torque Wrench Minimum Pull-Off-Load Inch- Pounds
.020	30 IN/LB
.032	70 IN/LB
.040	110 IN/LB

(4) The safety cable should remain in place during application of the measured torque (specified in Table 16-7). Apply approximately 2 lbs. force to the safety cable with your finger at the line marked "test area." If the safety cable touches either the side (or bottom) surface of the test fixture, the tool indenter should be adjusted.

(5) Use of an electronic pull tester to verify Safety Cable tool indenter adjustment. (Refer to Figure 16-29). It may be required in some applications to pull test safety cable to destruction. If this is required, an electronic pull tester may be used in place of the calibration test fixture/torque wrench method.

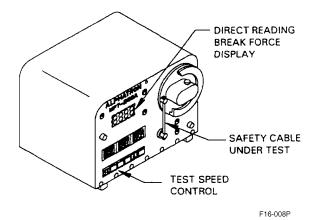


Figure 16-29. Electronic Safety Cable Pull Tester

b. Indenter adjustment for all safety cable application tools.

NOTE

Calibration should be checked frequently by the use of the calibration test fixture, or the electronic pull tester.

- (1) Remove the nose assembly by removing the two 8-32 socket head cap screws with a 9/64 inch hex wrench. (Refer to Figure 16-30.)
- (2) Adjust the pushrod adjustment screw with a flat blade screw driver, or the adjustment key (to be supplied by the manufacturer). (Refer to Figure 16-31.) Turn the pushrod adjustment screw clockwise to loosen the crimp (enlarge the gaging dimension), or counterclockwise to tighten the crimp (reduce the gaging dimension). Replace the nose assembly and the two 8-32 socket head cap screws, being sure that they are firmly tightened. Check calibration as previously described.

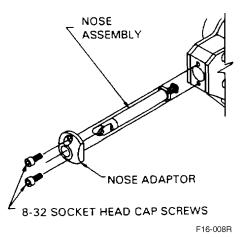


Figure 16-30. Removal of Safety Cable Tool Nose Assembly

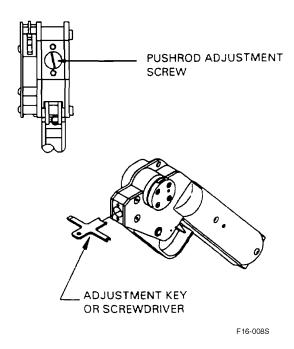


Figure 16-31. Adjustment of Safety Cable Indenter (Same for Hand or Pneumatic Tool Models)

16.7 SECURING WITH COTTER PINS.

Do not adjust the pushrod more than a quarter of a turn at a time, severe adjustment may damage the tool.

NOTE

Some tool models utilize a pushrod lock nut. This must be loosened prior to adjustment, and tightened after adjustment with the adjustment key provided by the manufacturer.

(See Figure 16-32 and Figure 16-33.) MS24665 reflects a variety of cotter pins for selection.

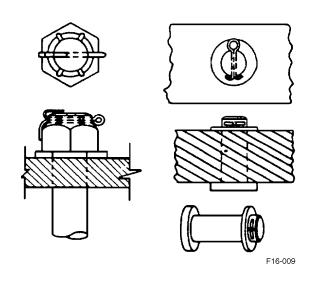


Figure 16-32. Securing with Cotter Pins

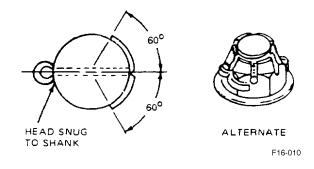
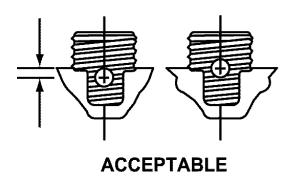


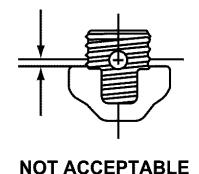
Figure 16-33. Alternate Method

Installation of cotter pins should be in accordance with NASM33540. To prevent injury during and after pin installation, the end of the cotter-pin, upper prong, can be rolled and tucked.

CAUTION

In using the method of cotter pin safetying, as shown in Figure 16-32, insure the prong bent over the bolt is seated firmly against the bolt shank, not to exceed bolt diameter, and the prong bent down and firmly against the nut flat does not contact the surface of the washer.


16.7.1 Cotter pins are used to secure such items as bolts, screws, pins, and shafts. Their use is favorable because they


can be removed and installed quickly. The diameter of cotter pins selected for any application should be the largest size that will fit consistent with the diameter of the cotter pin hole and/or the slots in the nut, unless otherwise specified in the applicable maintenance or overhaul technical manual for the item or assembly in question. Cotter pins will not be re-used on aircraft and missiles.

16.7.2 Using the lowest specified torque value, tighten nut until shank aligns with the slot in nut (Figure 16-34). If alignment is not proper for insertion of pin, tighten nut (without exceeding torque specification) until hole appears in slot

NOTE

When properly installed, the cotter pin hole is aligned so that no more than one-half the diameter of the cotter pin protrudes above the nut castellation. If necessary, a maximum of two washers may be installed under the nut to properly locate the cotter pin.

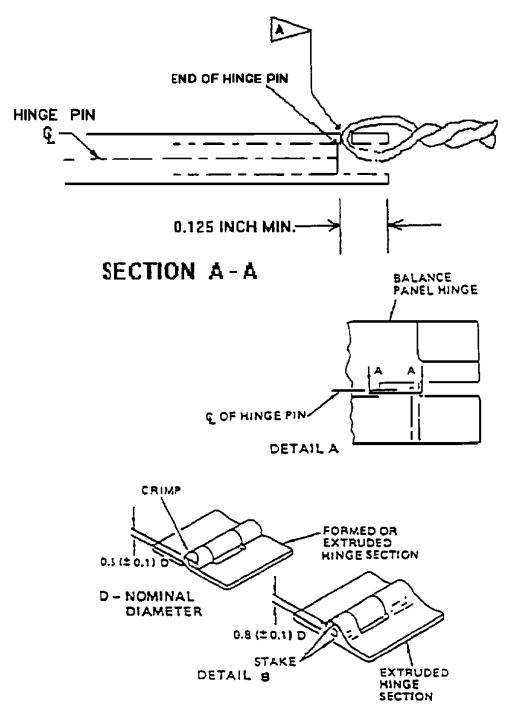

F16-010A

Figure 16-34. Castellated Nut Installation

16.8 SAFETYING HINGE PINS.

Balance hinge pins shall be secured with safety wire wherever possible per Detail A of Figure 16-35. Other

hinge pins not retained by mechanical means are crimped or staked as shown in Detail B. The hinge pin is cut to leave an 1/8 inch recess before crimping or staking.

NOTE

Drill 0.04 (+0.01/-0.03) inch diameter hole 0.125 inch minimum from inboard end of hinge, through half of hinge loop only, and safety as shown with 0.032 inch corrosion resistant safety wire.

F16-011

Figure 16-35. Safetying Hinge Pins

CHAPTER 17 QUICK CONNECT/DISCONNECT COUPLINGS, SELF-SEALING, MANUAL OPERATING TYPE

17.1 HISTORY AND ADVANTAGES.

Development of these type couplings is directly related to the advent of compact high performance aircraft and aerospace ground equipment. Advantages include ease and speed of connecting and disconnecting plumbing systems, particularly in congested areas. Other advantages fostered by incorporation of self-sealing valves are elimination of system fluid or gas loss, hazards related thereto and cleanup time in addition to eliminating or lessening introduction of air into system. These advantages are afforded without compromise of system reliability if certain basic principles of coupling operation are understood and coupling is given normal care and proper maintenance.

17.2 <u>TYPES OF QUICK DISCONNECT COUPLINGS.</u>

The more common type quick disconnect couplings, their principles of operation and other related information are outlined as follows:

17.2.1 Screw Type.

- 17.2.1.1 <u>Connecting Coupling Halves</u>. (See Figure 17-1.) Join coupling halves by rotating the union nut in direction (X). Tighten until the teeth (A) of the union nut, fully engage the teeth (B) of the lock spring. There is a distinct clicking noise as the teeth engage.
- 17.2.1.2 Proper tightening may be determined by visual inspection of the lock spring or by feel. The legs of the lock spring will extend gap (C) beyond the main-plate. The inner ring and outer sleeve of the union nut will be flush as indicated (D). Note that the outer sleeve (E) remains loose. Its only function is to release the teeth of the union nut from the lock spring when disconnecting the coupling.
- 17.2.1.3 The union nut may be tightened easily by hand. However, in inaccessible locations, a wrench may be used.

Excessive torque may damage the union nut and cause malfunctioning of the lock spring releasing mechanism. A crowfoot type wrench is highly recommended. Never use a striking block, pipe wrench, or water pump pliers on the union nut.

- 17.2.1.4 The lock spring is provided for safety and in no case should the coupling be connected without the lock spring.
- 17.2.1.5 When these coupling halves are properly connected the valve assembly in the S1 half and the valve in the S4 half will force each other to the full open position. In this position, the valve springs will be depressed and under sufficient tension to immediately return the valves to the closed position and seal off system fluid or gas flow when coupling halves are separated. Refer to Figure 17-1 for basic instructions and torque values.
- 17.2.2 Quick Threading Indicating Type. This type coupling (Figure 17-2) is readily connected by twisting the socket in a clockwise direction onto the threaded nipple portion. The 3 equally spaced indicating pins on the socket half will assume an extended position when these coupling halves are properly connected and will assume a retracted position when coupling halves are separated (see Figure 17-2). Their only function is to provide a see or feel means of determining whether or not the coupling is fully connected. The 3 indicating pins have no effect whatever on locking the coupling in the connected position.
- 17.2.2.1 Disconnect is accomplished by pulling back the knurled socket outer shell and turning counterclockwise. This type coupling employs spring loaded valves which open each other when coupling is connected and immediately return to the closed position when disconnected. Do not employ gripping tools to connect or disconnect these type couplings as these actions can be readily accomplished by hand.

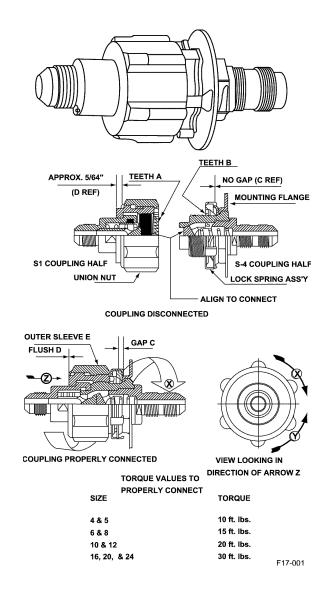
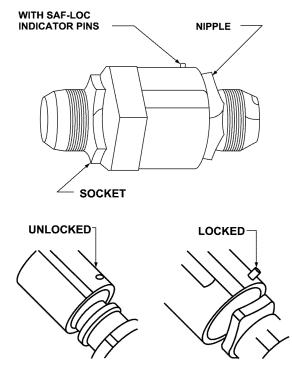


Figure 17-1. Screw Type Couplings


17.2.3 Inst-o-Matic Push-Pull Type.

CAUTION

The socket half of this type coupling is permanently assembled by a wire lock ring. Excessive wear on this ring and the pressure flank of the Acme thread will allow the poppets to move from a stationary open position and

restrict flow through the coupling. Refer to paragraph 17.7 for inspection procedures and acceptable wear limits.

This type coupling (Figure 17-3) is readily connected by pulling back the spring loaded outer shell of the socket, and while in this condition, push socket firmly onto the nipple and release the socket shell. In the connected condition, the socket locking dogs will engage in the nipple lock collar and prevent separation. The socket and nipple spring loaded valves will force each other to the FULL OPEN position.

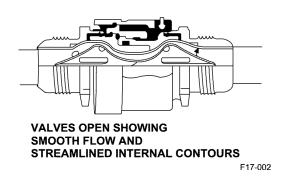


Figure 17-2. Quick Thread-Indicating Type

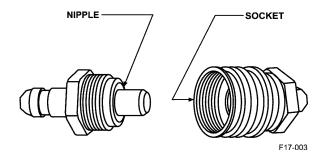


Figure 17-3. Inst-o-Matic Push-Pull Type

17.2.3.1 Disconnect is readily accomplished by pulling in a backward motion on the socket outer shell. In the disconnected condition, the nipple and socket spring loaded valves will assume a closed attitude and prevent system leakage.

17.2.3.2 The number of locking dogs incorporated in the socket portion will vary with the size of the coupling and will increase in number in the larger coupling sizes. The principle of operation, however, will remain the same regardless of the size.

17.2.4 Full Grip - Push-Pull Type. This type coupling (Figure 17-4) is similar in operation to the coupling shown in Figure 17-3. Connection is accomplished by pushing the mating halves together. Disconnect is easily accomplished by pulling back on the nipple outer shell. The coupling spring loaded valves will force each other to the FULL OPEN position when connected and will automatically close and seal off the system when the coupling is disconnected.

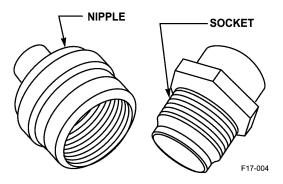


Figure 17-4. Push-Pull Type

17.2.5 <u>Straight-Flow Ball Valve Type</u>. This type coupling (Figure 17-5) employs a drilled ball valve in each coupling half to effect open and closed valve condition.

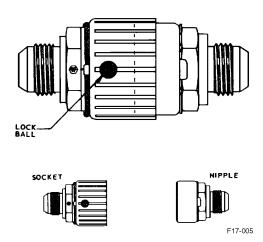


Figure 17-5. Straight-Flow Ball Valve Type

17.2.5.1 To connect, mate the socket to the nipple portion and turn socket in a clockwise direction. In the coupling connected condition the lock ball on the socket half will protrude through the socket outer shell. To disconnect, push down the lock ball and simultaneously rotate the socket in a counterclockwise direction. In the disconnected condition the lock ball will disappear under the socket shell.

17.2.5.2 The drilled ball valves (not visible in Figure 17-5) are gear driven and when coupling halves are connected will rotate and match their drilled passages allowing system media to free flow. When uncoupled the drilled ball valves will rotate and match their undrilled portions and seal off the system flow.

17.2.5.3 Avoid side loading of this type coupling as severe damage to the coupling locking lugs and locking ears may occur. Dirt contamination must also be avoided as an abrasive action will occur between the polished ball valves and their upper and lower teflon seals when the ball valves are caused to rotate. This abrasive action will produce scratching of these components and cause the coupling to leak at the ball valve when the coupling is disconnected and system is under pressure.

17.2.6 <u>Ball-Lock Type</u>. This type coupling (Figure 17-6) employs a cam ring and a ball cage in the socket to effect connection and locking action onto the nipple portion. Valve action is same as couplings in Figure 17-2 and Figure 17-3.

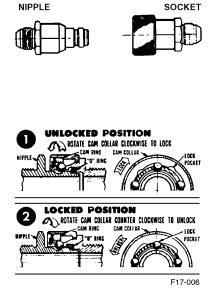


Figure 17-6. Ball Lock Type

- 17.2.6.1 To connect, push socket onto nipple assembly and rotate socket cam collar clockwise. A distinct "snap" will be heard and felt when the lock balls reach the end of the cam travel and they drop into a lock pocket. To disconnect the coupling, rotate the socket cam collar counterclockwise. This releases the balls from the lock pocket and permits them to travel along the cam until they clear the outside diameter of the nipple.
- 17.2.7 End Fitting Styles (Common Types). The more common coupling end fitting styles are shown in Figure 17-7. Other variations of end fittings are also employed on quick disconnect couplings.
- 17.2.7.1 It should be remembered that the type of end fitting employed has no effect upon the operating principles of a coupling.
- 17.2.7.2 Refer to AF Technical Order 42E1-1-1 for information that outlines and illustrates fitting repairs that are authorized. These repair procedures should be employed where practical and when required, on quick disconnect coupling end fittings.

17.3 CARE AND HANDLING PRACTICES.

Proper care and handling of quick disconnect couplings must be exercised to prolong coupling life and insure the integrity of the system in which they are employed.

STYLE OF END FITTING	MIL SPEC
	MS 33656 FLARED TUBE
	MS 33657 FLARED TUBE BULKHEAD
	MS 33514 FLARELESS TUBE
	MS 33515 FLARELESS TUBE BULKHEAD
	F17-007

Figure 17-7. End Fitting Style

- 17.3.1 Do not use gripping tools to connect or disconnect coupling halves as these actions can normally be readily accomplished by hand.
- 17.3.2 Couplings of the types listed have undergone extensive engineering prior to production. All have been subjected to extensive vibrational and other testing. They will perform satisfactorily and will not separate during use if they have been properly connected and are otherwise in serviceable condition.
- 17.3.3 Avoid dirt or other foreign matter contamination when couplings are in the disconnected condition. Contamination can inflict coupling damage and will when coupling halves are connected cause system contamination. Should contamination occur, wipe with a clean, dry lint-free cloth or use a clean brush. If a brush is used, assure no bristles remain in the coupling connecting areas after brushing.
- 17.3.4 Handle quick disconnects as you would any other fine piece of equipment. Although they are not delicately designed, do not abuse them by dropping or inflicting other types of abuse.

17.4 TECHNICAL MANUAL COVERAGE.

Technical manual coverage (Repair Instructions/Parts Breakdown and Test) was procured for some couplings where warranted. The following Technical Order series should be consulted to ascertain Technical Order assignment:

- 9H8
- 9H11
- 9P8
- 35DA3

17.5 TROUBLESHOOTING HINTS.

The following is offered to assist in determining cause of coupling leakage and to spot signs of impending failure.

- 17.5.1 If leakage occurs between the connected halves, the most probable cause is wear or damage to the seal that encircles the nipple and/or damage to the sealing portion of the nipple.
- 17.5.2 Leakage at the point where the end fitting engages the coupling body seldom occurs. In the event it does occur the end fitting seal is the most probable cause.
- 17.5.3 Leakage that occurs at the coupling end fitting and hose or tube connection point may be attributed to such causes as follows:
- 17.5.3.1 Insufficient coupling nut torque.
- 17.5.3.2 Over-torque which may have damaged the sealing surfaces of component parts.
- 17.5.3.3 Dirt or other foreign material on the sealing surfaces, when leakage occurs to a flared end connection.
- 17.5.4 Leakage that occurs at the valve end of either the nipple or socket half when coupling is disconnected can be attributed to worn or damaged valve seal or to the metal to metal sealing surfaces if coupling does not employ a valve seal.
- 17.5.5 Refer to Figure 17-1 "Screw Type" coupling. Signs of impending failure are:
- 17.5.5.1 Major thread damage on either coupling half.
- 17.5.5.2 Major thread damage on the union nut.
- 17.5.5.3 Damaged or badly worn union nut teeth.
- 17.5.5.4 Damaged or badly worn locking spring assembly.
- 17.5.6 Refer to Figure 17-2, "Quick Thread Type" coupling. Signs of impending failure are:
- 17.5.6.1 Major thread damage on either coupling half end fitting.
- 17.5.6.2 Major damage to the quick lead acme threaded portion of either coupling half.
- 17.5.6.3 Damage to the spring loaded valve stems of either coupling half.
- 17.5.6.4 Loss of spring tension on the socket outer shell.
- 17.5.7 Refer to Figure 17-3, "Push-Pull Type" coupling. Signs of impending failure are:
- 17.5.7.1 Major thread damage on either coupling half.

- 17.5.7.2 Damaged or broken locking dogs on socket half.
- 17.5.7.3 Loss of spring tension on the socket outer shell.
- 17.5.7.4 Damage to the nipple sealing surface and/or to the lock collar of the nipple half.
- 17.5.7.5 Damage to the spring loaded valve stems of either coupling half.
- 17.5.8 Refer to Figure 17-4, Full Grip "Push-Pull Type" coupling. Signs of impending failure are same as outlined in paragraph 17.5.7 for type shown in Figure 17-3.
- 17.5.9 Refer to Figure 17-5, "Ball Valve Type" coupling. Signs of impending failure are:
- 17.5.9.1 Major thread damage on either coupling half.
- 17.5.9.2 Damaged or badly worn locking lugs on the socket half.
- 17.5.9.3 Damaged or badly worn locking ears on the nipple half.
- 17.5.9.4 Scratched ball valves. The ball valves can be examined when the coupling halves are disconnected.
- 17.5.10 Refer to Figure 17-6, "Ball-Lock Type" coupling. Signs of impending failure are:
- 17.5.10.1 Major thread damage on either coupling half.
- 17.5.10.2 Major damage or brinelling of the nipple locking collar area.
- 17.5.10.3 Damage to the extreme end portion of the nipple that enters the socket. Leakage in the coupling connected condition can occur if nipple sealing end is damaged.
- 17.5.10.4 Damage to the spring loaded valve stems of either coupling half.
- 17.5.10.5 Binding of the socket knurled cam collar.
- 17.5.11 The foregoing is offered to familiarize using personnel with quick disconnect type couplings. Proper care, handling, and understanding of quick disconnect couplings will greatly enhance the integrity of the many systems in which they are employed.

17.6 SEAL REPLACEMENT.

As previously stated in paragraph 17.5, Leakage which may occur between the connected halves is most probably caused by a defective seal and/or a damaged nipple. Seal replacement can be readily accomplished without tear down on the following type couplings. When leakage is evident in these type couplings replace the seal and inspect the nipple sealing surface for damage. All reference to socket or nipple will be as shown in the foregoing illustrations.

17.6.1 Quick Thread-Indicating Type, Figure 17-2. One O-ring type seal is employed and located at the extreme inner end of nipple at the acme threaded area.

17.6.2 <u>Inst-o-Matic</u>, "Push Pull Type," <u>Figure 17-3</u>. This type employs one flat round seal and one O-ring type seal in the inner open area of the socket.

17.6.3 <u>Full Grip "Push-Pull Type," Figure 17-4</u>. This type employs one O-ring type seal in the socket to effect both coupled and uncoupled attitude sealing. Depress the socket valve; seal will be visible at the outer end of the socket inner portion.

17.6.4 Straight-Flow "Ball Valve Type," Figure 17-5. One O-ring type seal is employed and is located in the nipple at the outer end of the nipple inner portion.

17.6.5 <u>Ball-Lock Type</u>, <u>Figure 17-6</u>. One O-ring type seal is employed and is located in the socket inner portion slightly below the lock balls.

To ascertain part number assignment for seals, consult applicable coupling technical orders, system -4 technical manual and/or vendor drawings. Federal Stock Number assignment can be ascertained by use of USAF Master Cross Reference Index S-00-1-1.

Test after seal replacement as per applicable technical order, vendor drawing or local engineering instructions.

17.7 INSPECTION OF AEROQUIP CORP SERIES 3700 AND 3750 QUICK THREAD COUPLINGS.

(Figure 17-2) Installation side load and vibration will impose wear upon the internal lock ring and flank of the Acme thread of this type coupling that can disrupt the flow characteristics and adversely affect system operation. As wear occurs in the coupling assembly internal springs force the poppet guides apart, allowing movement of the poppet valves. As the wear progresses, movement of the poppets increases, reducing volume of the flow cavity or allowing fluid to push the valves downstream to restrict the flow by closing the poppet in the upstream coupling half.

17.7.1 Installed couplings can be inspected for excessive wear by measuring the length variation of the coupling assembly which is accomplished as follows:

17.7.1.1 With system pressure at zero and the coupling connected, compress the coupling lengthwise and measure from the back of the nipple half adapter hex to the back of the socket half adapter hex.

17.7.1.2 Record the measurement as value "A."

17.7.1.3 Extend the coupling by pulling lengthwise and repeat the measurement.

17.7.1.4 Record this measurement as value "B."

17.7.1.5 Compare values "A" and "B" to determine amount of length variation.

17.7.2 Refer to Table 17-1 if length variation exceeds the given value for the particular dash size early failure is indicated. Replace the coupling assembly.

Table 17-1.	Values for	Inspection of Series	3700 and 3750	Quick Disconnects
--------------------	------------	----------------------	---------------	--------------------------

Coupling Dash Size	Maximum Allowable Length Variation
-4	0.050
-6	0.050
-8	0.050
-10	0.068
-12	0.068
-16	0.081
-20	0.099
-24	0.099

CHAPTER 18 INSPECTION AND INSTALLATION OF V-BAND COUPLINGS

18.1 V-BAND COUPLINGS.

The instruction given is a brief outline of precautionary procedures and installation techniques to improve the reliability of V-couplings used in aircraft and missiles.

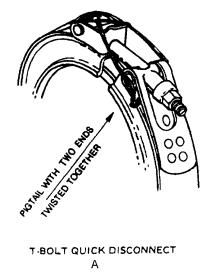
NOTE

The instructions are general and are applicable except when otherwise specified in the manuals for the specific aerospace vehicle. If there is a conflict between this manual and the manuals for a particular aerospace vehicle, subsequent technical orders, technical notes, or change orders, the latter will govern in all cases.

18.2 PRE-INSTALLATION CHECKS.

Exercise particular care during handling and installation of ducts and tubes to ensure that flange faces are not scratched, distorted or deformed.

- Clean flange faces free of dirt, grease and corrosion.
- b. Use protective flange caps on the ends of all ducts until the installation progresses to the point where removal of the cap is essential to continuing with the installation.
- c. Use care during the installation of ducts and tubes to ensure mating and alignment of flanges. A poorly-fitted joint requires excessive torque on the T-bolt to close the joint and imposes structural loads on the V-Band Clamp. Adjacent support clamps or brackets should remain loose until installation of the coupling has been completed. When connections are by V-Band Couplings, the weight of the components should be fully supported during the fit-up and installation of the coupling. Refer to the applicable maintenance, overhaul or service instructions for joint and clearances.
- d. Clean the flange faces and inspect every time a clamp is removed. Clean the flange faces by wiping with a clean cloth. Do not use a wire brush to remove dirt.

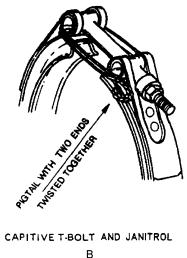

18.3 INSTALLATION.

Check the part number to ensure that the proper coupling is being installed.

- a. When re-installing a used coupling, check it for twist or distortion. Visually check the V-section for spreading at the open ends or other signs of distortion. Check spot weld or rivets for condition and security. The corner radii should be carefully checked for tool marks and cracks. Couplings in poor condition should be replaced.
- Check the threads on the T-bolt for wear and condition. If there is any sign of wear, galling or deformation, install a new T-bolt or coupling.
- c. Check the T-bolt for straightness; however, if it is bent it will be necessary to determine if the bend is intentional. Some small diameter couplings have curved T-bolts. Check the applicable illustrated parts breakdown for part identification. If in doubt, install a new T-bolt or coupling.
- d. The trunnion and latch should be checked for freedom of movement or other evidence of overloading.
- e. Avoid twisting, spreading or bending of the coupling when positioning the coupling on the joint.
- 18.3.1 <u>Gaskets</u>. When gaskets are used in the joint, exercise particular care in handing to avoid nicks and burrs on the gasket surfaces. Whenever a joint is disassembled after service operations, a new gasket should be used when reassembling to ensure maximum sealing efficiency. Exercise care to ensure that the gasket is properly seated.
- 18.3.2 <u>Torque</u>. Before installing the coupling, determine the correct torque for tightening the T-bolt nut by referring to the applicable Maintenance, Overhaul, or Service Instructions. Correct torque is vital in assuring reliability of the coupling.
- 18.3.3 <u>Nuts</u>. Several different types of nuts are used on the T-bolts. If a nut is lost or damaged, replace it with a clean and undamaged identical type nut. Be careful to match the T-bolt threads.

WARNING

- V-Band coupling for bleed airlines will not use fiber lock retaining nuts. Non-metallic inserts, self-locking nuts shall not be subjected to temperatures in excess of 250°F in accordance with Military Specification MIL-N-25027.
- Do not use cadmium plated nuts on V-Band couplings for any engine applications. Catastrophic failure of the clamp may occur during operation.
- a. To install the coupling on the joint, place the coupling over one of the tube ends far enough to clear the flange. Install the gasket and mate the flanges. Relocate the coupling over both flanges and press the coupling closed. Engage the quick coupler latch or install the nut. Be sure the T-bolt is correctly seated. Tighten the nut to about two-thirds of the specified torque and tap the coupling lightly around the circumference of the band with a plastic or other non-metallic mallet. On multibolt assemblies, nuts should be drawn up equally. Continue, alternately tightening and tapping where possible until the torque indicated on the torque wrench stabilizes at the specified value. Exercise caution to avoid overtorquing.


WARNING

Use of improper size clamp, overtightening T-Bolt or missing, defective gasket could cause separation of the coupling and injury may result.

- b. Do not attempt to seal a leaking joint by overtightening the T-bolt. Check for a wrong coupling, a damaged flange, or a defective gasket.
- c. To prevent complete separation of the joint in the event of T-bolt failure, lock wire the coupling. Lockwire shall be Federal Specification QQ-W-423 type and diameter shall be 0.032 to 0.041 inch steel safety wire. Quick Disconnect V-Band couplings are required to be lock wired by the X method as per Figure 18-1, view A. Unless specifically directed by an aerospace vehicle maintenance manual, the captive T-bolt type coupling is not required to be safetied.

NOTE

When safety wire is required, Captive T-Bolt V-band maybe lock wire using either method in Figure 18-1. Lock wire will be installed through band loops which retain the T-bolt and T-bolt trunnion or quick-disconnect coupler, see Figure 18-1. A double loop of single strain wire is required. Install first loop firmly in place, second loop should not be over stressed by twisting end of wires.

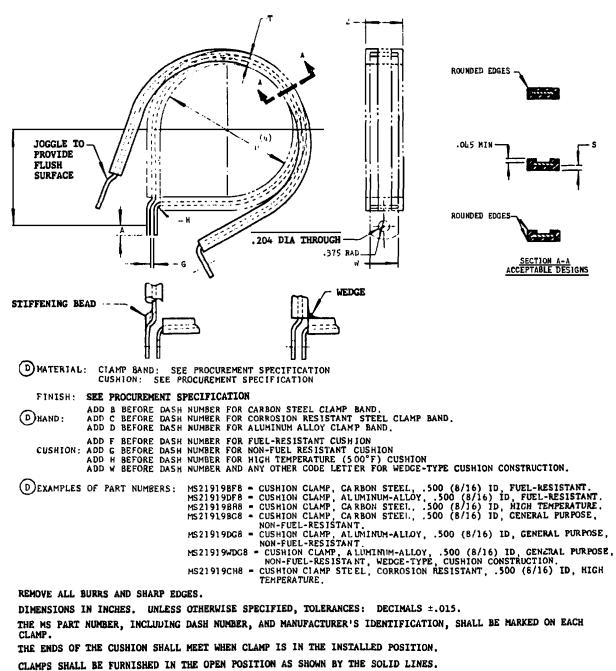

F18-001

Figure 18-1. V-Band Coupling Safety Wiring Techniques

CHAPTER 19 CLAMP LOOP GENERAL DATA

19.1 The information given is general, its primary purpose is to aide the technician in selecting the proper clamp or a suitable replacement, except when otherwise specified in the manuals for the specific aerospace vehicle. If there is

a conflict between this manual and the manuals for a particular aerospace vehicle subsequent technical orders, technical notes, or change orders, the latter will govern in all cases.

FUEL-RESISTANT CLAMPS EMPLOYING RUBBER CUSHION MATERIAL ARE TO BE USED ONLY IN APPLICATIONS WHERE CLAMPS ARE EXPOSED TO FUEL OR FUEL VAPORS UNDER NORMAL CONDITIONS. THIS TYPE OF RUBBER WILL DETERIORATE EXCESSIVELY WHEN EXPOSED TO AIR.

INACTIVE FOR DESIGN AFTER 1 JULY 1967. SEE MS21105 AND MS21122 REINSTATED AFTER 17 DECEMBER 1968

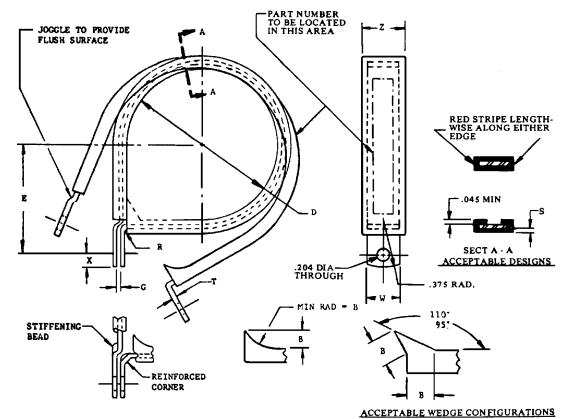
THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERRED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

THIS DOCUMENT HAS BEEN PROMULGATED BY THE DEPARTMENT OF DEFENSE AS THE MILITARY STANDARD TO LIMIT THE SELECTION OF THE ITEM, PRODUCT, OR DESIGN COVERED HEREIN IN ENGINEERING, DESIGN, AND PROCUREMENT. THIS STANDARD SHALL BECOME EFFECTIVE NOT LATER THAN 90 DAYS AFTER THE LATEST DATE OF APPROVAL SHOWN.

F19-001S01

Figure 19-1. Drawing MS21919 (ASG) (Sheet 1 of 2)

		I	I					DIMI	ENSIONS	.					***************************************	
MS PART	FIIN	RIGID TUBE	D		 E	G	R	s	T	Г	١ ١	N	Х	ΖI	WAX	
NUMBERS		NOMINAL OD (REF)	±.015 DIA		CARBON STEEL		±.016 RAD	±.016 000	ALUMI- NUM ALLOY	CARBON STEEL	ALUMI- NUM ALLOY	CARBON STEEL		ALUMI- NUM ALLOY	CARBON STEEL	
MS21919-2		1/8	.125	.457	.457											
MS21919-3		3/16	.188	.498	.498											
MS21919-4 MS21919-5		1/4 5/16	.250	.529 .560	.529 .560	ł	.062		. 0320			.375	.188		.497	
MS21919-6		3/8	.375	.592	.592		.002		± .0025			.575	.100		.407	
MS21919-7		7/16	.438	.623	.623	.062										
MS21919-8		1/2	.500	.654	.654	+.016										
MS21919-9		9/16	.563	.752	.749	000		.045						.622		
MS21919-10		5/8	.625	.783	.780	1										
MS21919-11		11/16	.688	.814	.811]										
MS21919-12		3/4	.750	.845	.842				. 050							
MS21919-13		13/16 7/8	.813	.877	.858		.109		± .004						.622	
MS21919-14			.875	.908	.889											
MS21919-15 MS21919-16		15/16 1	.983 1.000	.939	.920 .951	1				. 0320						
MS21919-17		1-1/16	1.063	1.002	.983					±.0035						
MS21919-18		1-1/8	1.125	1.062	1.030											
MS21919-19		1-3/16	1.188	1.093	1.061	1										
MS21919-20		1-1/4	1.250	1.124	1.092	1										
MS21919-21		1-5/16	1.313	1.156	1.124											
MS21919-22		1-3/8	1.375	1.187	1.155]										
MS21919-23		1-7/16	1.438	1.218	1.186	.094					.500					
MS21919-24		1-1/2	1.500	1.249	1.217	+ .031										
MS21919-25		1-9/16	1.563	1.281	1.259	000	000									
MS21919-26		1-5/8	1.625	1.312	1.280											
MS21919-27 MS21919-28		1-3/4	1.688 1.750	1.344	1.312	l										
MS21919-29		1-3/4	1.813	1.406	1.374											
MS21919-30		1-7/8	1.875	1.437	1.405							.500	.218			
MS21919-31			1.938	1.468	1.414											
MS21919-32		2	2.000	1.499	1.475											
MS21919-33			2.062	1.531	1.507											
MS21919-34		2-1/8	2.125	1.562	1.539	1	.125	.062	. 063					.656	.656	
MS21919-35		0.414	2.188	1.594	1.570				± .005							
MS21919-36		2-1/4	2.250	1.624	1.600											
MS21919-37 MS21919-38		2.2/0	2.312	1.655 1.687	1.631 1.663											
MS21919-38		2-3/8 2-1/2	2.500	1.752	1.728											
MS21919-40		Z-11Z	2.625	1.752	1.788	.125				. 040						
MS21919-43			2.688	1.844	1.820	1				± .004						
MS21919-44		2-3/4	2.750	1.875	1.851	000										
MS21919-45			2.812	1.906	1.882											
MS21919-46			2.875	1.937	1.913											
MS21919-48		3	3.000	2.000	1.976											
MS21919-50		0.414	3.125	2.062	2.038											
MS21919-52		3-1/4	3.250	2.125	2.101	1										
MS21919-54		2.4/2	3.375	2.187	2.163	1										
MS21919-56 MS21919-58		3-1/2	3.500 3.625	2.250 2.312	2.226	1										
MS21919-58 MS21919-64		4	4.000	2.500	2.288 2.476											
MS21919-66		·	4.125	2.562	2.538											


THIS STANDARD TAKES PRECEDENCE OVER DOCUMENTS REFERENCED HEREIN.

REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

F19-001S02

Figure 19-1. Drawing MS21919 (ASG) (Sheet 2)

THIS DOCUMENT HAS BEEN PROMULGATED BY THE DEPARTMENT OF DEFENSE AS THE MILITARY STANDARD TO LIMIT THE SELECTION OF THE ITEM, PRODUCT, OR DESIGN COVERED HEREIN IN ENGINEERING, DESIGN, AND PROCUREMENT. THIS STANDARD SHALL BECOME EFFECTIVE NOT LATER THAN 90 DAYS AFTER THE LATEST DATE OF APPROVAL SHOWN.

NOTES:

1. CLAMP BAND: ALUMINUM ALLOY 2024-0 CLAD PER QQ-A-250/5.

CORROSION RESISTANT STEEL, COMPOSITION TYPES TI OR Cb PER MIL-S-6721, ANNEALED.

CUSHION: MOLDED OR EXTRUDED ELASTOMER THAT MEETS REQUIREMENTS OF PROCUREMENT SPECIFICATION. MATERIAL SHALL BE COLORED BLACK WITH A RED STRIPE LENGTHWISE ALONG ONE EDGE.

- 2. PROTECTIVE TREATMENT: ALUMINUM ALLOY NONE.

 CORROSION RESISTANT STEEL PASSIVATE PER QQ-P-35.

 3. HEAT TREATMENT: ALUMINUM ALLOY, T4 TEMPER PER MIL-H-6088, AFTER FORMING. (A) 3. HEAT TREATMENT: CORROSION RESISTANT STEEL - NONE.
 - REMOVE ALL BURRS AND SHARP EDGES.
 - DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: DECIMALS ± .015. DIMENSION D IS APPLICABLE IN CLOSED POSITION ONLY.

 ADD D BEFORE DASH NUMBER FOR ALUMINUM ALLOY CLAMP.

 ADD C BEFORE DASH NUMBER FOR CORROSION RESISTANT STEEL CLAMP. 5.
- (A) B. ADD W BEFORE DASH NUMBER FOR WEDGE-TYPE CUSHION CONSTRUCTION. FOR THE -2 AND -3 SIZES ONLY
 - EXAMPLES OF PART NUMBERS: MS21104D8 CUSHION CLAMP, ALUMINUM, .500 ID, FUEL-WEATHER RESISTANT.
 - MS21104C8 CUSHION CLAMP, CRES, .500 ID, FUEL-WEATHER RESISTANT. THE MS PART NUMBER, INCLUDING DASH NUMBER, AND MANUFACTURER'S IDENTIFICATION, SHALL BE MARKED ON EACH CLAMP. 10.
 - THE ENDS OF THE CUSHION SHALL MEET WHEN THE CLAMP IS IN THE INSTALLED POSITION.
 - CLAMPS SHALL BE FURNISHED IN THE OPEN POSITION. (SEE PROC. SPEC.)
 - 13. WEDGE IS INTEGRAL PART OF CUSHION.
 - 14.
 - 15.
 - WEDGE IS MANDATORY ON ALL CLAMPS ABOVE -3 SIZE,
 REINFORCED CORNER AND STIFFENING BEAD ARE MANDATORY.
 INTERCHANGEABILITY RELATIONSHIP: MS21104 CLAMPS CAN UNIVERSALLY REPLACE THE MS21919DF, MS21919DG, MS21919WDF, AND MS21919WDG CLAMPS OF THE SAME DASH NUMBER. MS21104C CLAMPS CAN UNIVERSALLY REPLACE THE MS21919G CLAMPS OF THE SAME DASH NUMBER. STOCKS OF THE MS21919 CLAMPS MAY BE USED UNTIL THE SUPPLY IS DEPLETED.

FOR DESIGN FEATURE PURPOSES, THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

(A) FOR CHANGES SEE SHEETS 1 AND 2.

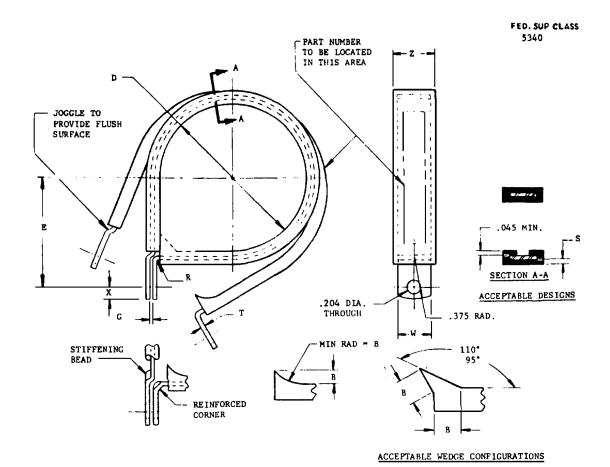

F19-002S01

Figure 19-2. Drawing MS21104 (Sheet 1 of 2)

No. No.		B. C. C. C.														
NOST NOTISKE 0, 00 (287) 2, 0.13	DASH		10.	מ	F				s		r	1	u)	l x	Z MAX	
1/8	NOS.			±.015			•	*.016	+.016					1		
-3 37/16 .078 .188 .498 .498 .498 .494 .294 .250 .529 .52								RAD	000	ALUM.	CRES	ALUM.	CRES	* .015	ALUM.	CRES
-4			.078													
-5	_		.094	_						.0320						
-6 3/8 3/3 5/32 5/32 5/32 -7/37 -7/16 -1/3 -5/3 -7/37 -7/37 -7/16 -1/3 -7/37 -7/	-5	5/16						.062					.375	.188		.49
-8 1/2 .125 .500 .654 .654 .654 .065 .005				_												
-9 9/16 -10 5/8 -10 1/16 -11 11/16 -12 9/4 -13 13/16 -14 7/6 -15 15/16 -16 1 -17 1-1/16 -16 1 -17 1-1/16 -18 1-18 -19 1-3/16 -20 1-1/4 -20 1-1/4 -21 1-5/16 -22 1-3/8 -23 1-7/16 -24 1-1/2 -25 1-9/16 -27 2-28 1-3/4 -28 1-3/4 -29 -30 1-7/8 -31 1-7/8 -31 1-7/8 -31 1-7/8 -32 2-3/8 -33 2-3/8 -43 1-31 -32 2-3/8 -43 1-31 -32 2-3/8 -43 1-31 -33 2-3/8 -43 1-31 -34 2-1/8 -35 3-3/2 -36 3-1/2 -37 3-38 1-39/8 -39 1-39			100						۸, د							
-10 5/8 .625 .783 .780 .780 .781 .781 .781 .776 .811 .776 .813 .877 .858 .814 .811 .776 .813 .877 .858 .875 .908 .885 .875 .908 .885 .875 .908 .885 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .875 .908 .909 .920 .703 .706 .706 .707 .706 .707 .706 .707			. 123	_					(40.						.622	_
-12 3/4 -13 13/16 -14 7/8 -15 15/16 -15 15/16 -16 1 -17 1- 1/16 -16 1 -17 1- 1/16 -18 1- 1/8 -19 1- 3/16 -22 1- 1/4 -22 1- 1/4 -22 1- 1/4 -22 1- 1/8 -22 1- 3/8 -22 1- 3/8 -21 1- 5/8 -22 1- 3/8 -21 1- 5/8 -22 1- 3/4 -22 1- 3/8 -23 1- 3/4 -24 1- 1/2 -25 1- 1/8 -31 1-35 1.34 1.355 -33 1-35 1.87 1.155 -33 1-35 1.87 1.155 -33 1-35 1.87 1.155 -33 1-35 1.87 1.341 -300 -31 1- 7/8 -31 2- 1/8 -33 2- 1/8 -33 2- 3/8 -40 2- 1/4 -33 2- 3/8 -40 2- 1/4 -33 2- 3/8 -40 2- 1/4 -33 2- 3/8 -40 2- 1/4 -33 2- 3/8 -40 2- 1/4 -37 -42 1.35 1.35 1.631 -38 2- 3/8 -40 2- 1/4 -37 -42 1.35 1.35 1.631 -38 2- 3/8 -40 2- 1/4 -37 -42 1.35 1.35 1.631 -38 2- 3/8 -40 2- 1/4 -37 -42 1.35 1.35 1.631 -38 2- 3/8 -40 2- 1/4 -37 -38 2- 3/8 -40 2- 1/4 -37 -38 2- 3/8 -40 2- 1/4 -37 -38 2- 3/8 -40 2- 1/4 -37 -38 2- 3/8 -40 3- 3000 2.000 1.976 -38 2- 3/8 -40 3- 3000 2.000 1.976 -39 2.50 1.624 1.600 -2.312 1.631 -3.300 2.000 1.976 -31 2.375 1.831 1.931 -3.000 2.000 1.976 -3.375 2.187 1.831 -0.00 -3.375 2.187 1.831 -0.00 -3.375 2.187 2.163 -0.00 -3.375 2.187 2.163 -0.00 -5.50 -2.18 -0.00 -5.50 -2.18 -0.00 -5.50 -2.18 -0.00 -5.50 -2.18 -0.00 -	_						,,,,,									
-13 13/16 -14 7/8 -15 15/16 -16 1 -17 1-1/16 -16 1 -17 1-1/16 -18 1-1/8 -19 1-3/16 -20 1-1/4 -21 1-5/16 -22 1-3/8 -23 1-7/16 -24 1-1/2 -25 1-9/16 -26 1-5/8 -27 -27 -28 1-3/4 -29 -30 1-7/8 -31 1.31 1.55 1.621 1.322 -31 1.32 1.625 1.331 1.507 -31 2-29 -30 1-7/8 -31 1.33 1.681 1.444 2.000 1.374 1.392 -33 2-38 2-3/8 -40 2-1/2 -38 2-3/8 -40 2-1/2 -42 1-42 -44 2-3/4 -45 1.30 1.30 1.50 1.281 1.750 -36 2-1/4 -37 1.30 1.30 1.50 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3																
-14 7/8 -13 15/16 -16 1 -17 1 1/16 -18 1 - 17 1 1/16 -18 1 - 17 1 1/16 -18 1 - 17 -17 1 1/16 -18 1 - 17 -17 1 1/16 -18 1 - 17 -17 1 1/16 -18 1 - 17 -17																,,
-13 15/16 1								1.109		2.004						. 62
1.1																
-18 1- 1/8 -19 1- 3/16 -19 1- 3/16 -19 1- 3/16 -20 1- 1/4 -21 1- 5/16 -21 1- 5/16 -22 1- 3/8 -23 1- 7/16 -24 1- 1/2 -25 1- 9/16 -26 1- 5/8 -27 -27 -27 -29 -30 1- 7/8 -19 1- 3/8 -29 -30 1- 7/8 -19 1- 3/8 -29 -30 1- 7/8 -31 1- 5/6 -29 -30 1- 7/8 -31 1- 5/6 -29 -30 1- 7/8 -31 2- 3/8 -32 2- 3/8 -34 2- 1/8 -35 3- 38 2- 3/8 -46 3 3- 3/2 -43 3- 48 3 3- 3.000 2.000 1.752 -44 1-304 -30 1- 300 1.752 -45 1.912 -45 1.912 -45 1.912 -46 1.938 -46 3 3- 3.12 -38 2- 3/4 -48 3 3- 3.000 2.000 1.976 -38 1.25 2.062 -39 1.25 3.112 -39 1.468 -39 1.468 -48 3 3- 3.12 2.262 -38 1.374 -39 2.375 1.687 -39 2.281 1.996 -39 2.875 1.937 -39 3.125 2.062 2.038 -3.125 2.062 2.038 -3.125 2.062 3.312 -3.89 2.384 -3.900 2.000 1.976 -3.900 2.000 2.0000 -3.900 2.0000 2.0000 -3.900 2.0000 2.0000 -3.900 2.0000 2.0000 -3.900 2.0000 2.0000 -3.	-16			_												
-19 1- 3/16 -20 1- 1/4 -21 1- 5/16 -21 1- 5/16 -22 1- 7/16 -23 1- 7/16 -24 1- 1/2 -25 1- 9/16 -26 1- 5/8 -2729 1- 3/4 -2930 1- 7/8 -31 1											± .0035					-
-20 1- 1/4 -21 1- 5/16 -22 1- 3/8 -23 1- 7/16 -24 1- 1/2 -25 1- 9/16 -26 1- 5/8 -27 -28 1- 3/4 -29																
-22 1- 3/8 -23 1- 7/16 -24 1- 1/2 -25 1- 9/16 -26 1- 5/8 -27 -28 1- 3/4 -29 -30 1- 7/8 -31 1 -32 2 -30 1- 7/8 -31 1 -32 2 -33 1 -34 2- 1/8 -35 2- 3/8 -36 2- 1/4 -37 -39 2- 3/8 -40 2- 1/2 -42 2- 44 2- 3/4 -44 2- 3/4 -45 3 -50 3 -50 3 -50 3 -50 3 -50 3 -55 3 -75 3- 1/2 -58				_												
1-7/16																
-24 1- 1/2 -25 1- 9/16 -26 1- 5/8 -27 -28 1- 3/4 -29 -30 1- 7/8 -31 -31 -32 2 -33 -34 2- 1/8 -35 -35 -36 2- 1/4 -37 -38 2- 3/8 -40 2- 1/2 -42 -42 -42 -43 -44 2-3/4 -44 2-3/4 -48 3 -30 -30 -36 2- 3/4 -40 3-30 -30 -30 -30 -30 -30 -30 -30 -30 -							004					500				
-25 1-9/16 1.563 1.281 1.259 000 1.625 1.312 1.280 1.688 1.344 1.312 1.750 1.374 1.342 1.750 1.374 1.342 1.813 1.406 1.374 1.938 1.468 1.444 2.000 1.499 1.475 2.062 1.531 1.570 2.125 1.562 1.538 2.188 1.594 1.570 2.250 1.624 1.600 2.312 1.655 1.631 2.375 1.687 1.687 1.687 1.687 1.687 1.683 1.464 1.344 2.000 1.499 1.475 2.062 1.538 2.188 1.594 1.570 2.250 1.624 1.600 2.312 1.655 1.631 2.375 1.687												. 500				
-27	_															
-28 1- 3/4 -29		1- 5/8		1.625												
-29		1. 2/6	\bigcirc			_										
-30 1-7/8 -31		1- 3/4	(a)													
-32 2 -33 2.000 1.499 1.475 2.062 1.531 1.507 2.125 1.562 1.538 2.188 1.594 1.570 2.250 1.624 1.600 2.312 1.655 1.631 2.375 1.687 1.663 2.500 1.752 1.728 2.625 1.812 1.788 2.625 1.812 1.788 2.625 1.812 1.788 2.625 1.812 1.788 2.625 1.812 1.788 2.688 1.844 1.820 2.750 1.875 1.851 2.812 1.906 1.882 2.875 1.937 1.913 3.000 2.000 1.976 3.125 2.062 2.038 3.250 2.125 2.101 3.375 2.187 2.163 3.500 2.250 2.226 3.625 2.312 2.288		1- 7/8	.187										.500	.218		
-33				1.938	1.468	1.444										
-34 2-1/8 -35		2														
-35 2.188 1.594 1.570 -36 2-1/4 2.250 1.624 1.600 -37 2.312 1.655 1.631 -38 2-3/8 2.375 1.687 1.663 -40 2-1/2 2.500 1.752 1.728 -42 2.625 1.812 1.788 -43 2.750 1.875 1.851 -44 2-3/4 2.812 1.906 1.882 2.812 1.906 1.882 2.875 1.937 1.913 3.000 2.000 1.976 3.125 2.062 2.038 3.125 2.062 2.038 3.250 2.125 2.101 3.375 2.187 2.163 3.500 2.250 2.226 -58 3.625 2.312 2.288		2- 1/8						.125	.062	.063					. 656	.650
-37		2,0							''''						,	'
-38 2- 3/8 -40 2- 1/2 -42 2.625 1.812 1.788 2.688 1.844 1.820 2.750 1.875 1.851 2.812 1.906 1.882 2.875 1.937 1.913 3.000 2.000 1.976 3.125 2.062 2.038 3.250 2.125 2.101 3.375 2.187 2.163 3.500 2.250 2.226 3.625 2.312 2.288		2- 1/4				1.600										
-40 2- 1/2 -42 2.625 1.812 1.788 2.625 1.812 1.788 2.688 1.844 1.820 2.750 1.875 1.851 2.812 1.906 1.882 2.875 1.937 1.913 3.000 2.000 1.976 3.125 2.062 2.038 3.250 2.125 2.101 3.375 2.187 2.163 3.500 2.250 2.226 3.625 2.312 2.288		2 2/9														
-42 2.625 1.812 1.788																
-44 2-3/4 2.750 1.875 1.851000 2.812 1.906 1.882 2.875 1.937 1.913 3.000 2.000 1.976 3.125 2.062 2.038 3.250 2.125 2.101 3.375 2.187 2.163 -54 3.500 2.250 2.226 -58 3.625 2.312 2.288	-42						. 125				.040					
-45 2.812 1.906 1.882 -46 2.875 1.937 1.913 -48 3 3.000 2.000 1.976 -50 3.125 2.062 2.038 -52 3 - 1/4 3.250 2.125 2.101 -54 3.375 2.187 2.163 -56 3 - 1/2 3.500 2.250 2.226 -58 3.625 2.312 2.288	_	2.211									±.004					
-46 2.875 1.937 1.913 -48 3 3.000 2.000 1,976 -50 3.125 2.062 2.038 -52 3-1/4 3.250 2.125 2.101 -54 3.375 2.187 2.163 -56 3-1/2 3.500 2.250 2.226 -58 3.625 2.312 2.288		2-3/4					000									
-50 3.125 2.062 2.038 -52 3-1/4 3.250 2.125 2.101 -54 3.375 2.187 2.163 -56 3-1/2 3.500 2.250 2.226 -58 3.625 2.312 2.288																
-52 3-1/4 -54 3.250 2.125 2.101 3.375 2.187 2.163 -56 3-1/2 -58 3.625 2.312 2.288		3														
-54 3.375 2.187 2.163 3.500 2.250 2.226 3.625 2.312 2.288				_												
-56 3-1/2 -58 3.625 2.312 2.288		3- 1/4														
-58 3.625 2.312 2.288		3- 1/2														
-64 4 4 000 2 500 2 475																
	-64	4														
-66 4.125 2.562 2.538	-66			4.125	2,562	2.538		<u> </u>						<u> </u>		<u> </u>

F19-002S02

Figure 19-2. Drawing MS21104 (Sheet 2)

(A)

- CLAMP BAND: CORROSION RESISTANT STEEL, COMPOSITION TYPES TI OR Cb, PER MIL-S-6721, ANNEALED.
 CUSHION: MOLDEDOR EXTRUDED HIGH POLYMER OR OTHER NON-METIALLIC MATERIAL THAT MEETS
 REQUIREMENTS OF PROCUREMENT SPECIFICATION. MATERIAL SHALL BE COLORED RED.
 PROTECTIVE TREATMENT: CORROSION RESISTANT STEEL PASSIVATE PER QQ-P-35.
- REMOVE ALL BURRS AND SHARP EDGES.
- DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCIES: DECIMALS ± .015.
- DIMENSION D IS APPLICABLE IN CLOSED POSITION ONLY.

 - ADD W BEFORE DASH NUMBER FOR WEDGE-TYPE CUSHION CONSTRUCTION FOR THE -2 AND -3 SIZES ONLY.

 EXAMPLES OF PART NUMBERS: MS21105-8 CUSHION CLAMP, CRES, .500 ID, FLUID RESISTANT, 500°F.

 THE MS PART NUMBER, INCLUDING DASH NUMBER, AND MANUFACTURER'S IDENTIFICATION, SHALL BE MARKED
 - ON EACH CLAMP.
 - THE ENDS OF THE CUSHION SHALL MEET WHEN THE CLAMP IS IN THE CLOSED POSITION.
 CLAMPS SHALL BE FURNISHED IN THE OPEN POSITION. SEE PROCUREMENT SPECIFICATION.

 - FLUID RESISTANCE: TESTS IN MIL-L-7808 AND MIL-H-5606 OILS ARE CONDUCTED AT 275°F TEMPERATURE AND DO NOT NECESSARILY INDICATE FLUID RESISTANCE TO 500°F. SEE PROCUREMENT SPECIFICATION.
 - 12, WEDGE IS INTEGRAL PART OF CUSHION.
 - WEDGE IS MANDATORY ON ALL CLAMPS ABOVE -3 SIZE.
 REINFORCED CORNER AND STIFFENING BEAD ARE MANDATORY.

 - 15. INTERCHANGEABILITY RELATIONSHIP: MS21105 CLAMPS CAN UNIVERSALLY REPLACE THE MS21919H CLAMPS OF THE SAME DASH NUMBER, STROCKS OF THE MS21919H CLAMPS MAY BE USED UNTIL SUPPLY IS DEPLETED.

FOR DESIGN FEATURE, PURPOSES THIS STANDARD TAKES PRECEDENCE OVER PROCUREMENT DOCUMENTS REFERENCED HEREIN. REFERENCED DOCUMENTS SHALL BE OF THE ISSUE IN EFFECT ON DATE OF INVITATIONS FOR BID.

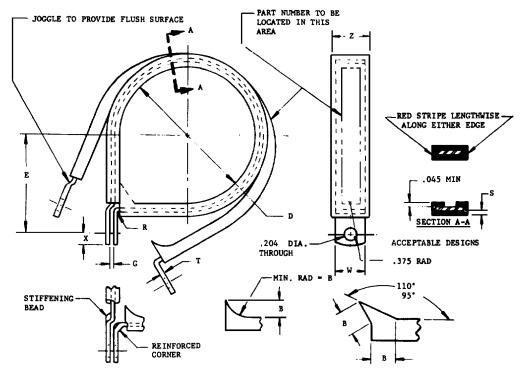

FOR CHANGES SEE SHEETS 1 AND 2 F19-003S01

Figure 19-3. Drawing MS21105 (Sheet 1 of 2)

DASH	RIGID TUBE				DIM	ens ions					
NUMBERS	NOMINAL OD (REF)	B ±.032	D ±.015 DIA	E ±.015	G	R ±.016 RAD	\$ +.016 000	T	w ±.015	X ±.015	Z MAX
-2	1/8		.125	. 457							
-3	3/16		.188	. 498							
-4	1,/4	.094	.250	.529						1 .	
-5 -6	5/16 3/8	.109	.313	.560	1	.062			.375	.188	.497
-7	7/16	-	.438	.623	.062						
-8	1/2	1	.500	. 654	+.016		.045				
-9	9/16	.125	. 563	.749	000		1				
-10	5/8		. 625	.780]						
-11	11/16		.688	.811							
-12	3/4	1	.750	. 842							
-13	13/16		.813	.858	1	.109					.622
-14 -15	7/8 15/16	ł	.875	.889	1						
-16	1	1	1.000	.951	1			.0320			
-17	1- 1/16	1	1.063	.983	ł			±.0035			
-18	1- 1/8		1.125	1.030							
-19	1- 3/16]	1.188	1.061	1						
-20	1- 1/4		1,250	1.092]						
-21	1- 5/16		1.313	1.124							
-22	1- 3/8		1.375	1.155							
-23 -24	1- 7/16	-	1.438	1.186	.094 +.031						
-25	1- 9/16	ł	1.563	1.259	000						
-26	1- 5/8	1	1.625	1.280	000						
-27]	1.688	1.312	1						
-28	1- 3/4		1.750	1.342]						
-29	ļ		1.813	1.374]						
-30	1- 7/8	A .187	1.875	1.405		ł			.500	.218	
-31 -32	2	1.50	2.000	1.444	1						
-33	-	1	2.062	1.475	ł						
-34	2- 1/8	1	2.125	1.538	1	.125	.062				.656
-35		1	2.188	1.570	1						
-36	2- 1/4		2,250	1,600]						
-37			2.312	1.631]						
-38	2- 3/8	4	2.375	1.663	l						
-40 -42	2- 1/2	1	2.500	1.728	,,,						
-42	1	1	2.625	1.788	+.031			.040 ±.004			
-44	2- 3/4	1	2.750	1.851	000						
-45		1	2.812	1.882	''''						
-46		1	2.875	1.913	1						
-48	3	1	3.000	1.976]						
-50			3.125	2.038							
-52	3- 1/4	4	3.250	2,101							
-54	9 1/6	-	3,375	2,163	-						
-56 -58	3- 1/2	1	3.500	2.226	1						
-64	4	1	4.000	2.476	1						
-66		1	4.125	2.538	1						

F19-003S02

Figure 19-3. Drawing MS21105 (Sheet 2)

ACCEPTABLE WEDGE CONFIGURATIONS

ALUMINUM ALLOY 2024-0 CLAD PER QQ-A-250/5.
CORROSION RESISTANT STEEL, COMPOSTION TYPE TI OR Cb PER MIL-S-6721, ANNEALED.
EXTRUDED POLYTETRAFLUOROETHYLENE PER L-P-403, NATURAL COLOR WITH RED STRIPE CUSHION:

LENGTHWISE ALONG EITHER EDGE.

PROTECTIVE TREATMENT:

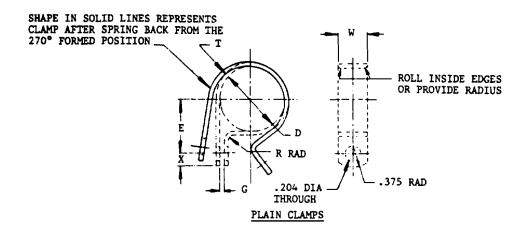
ALUMINUM ALLOY - NONE. CORROSION RESISTANT STEEL - PASSIVATE PER QQ-P-35.

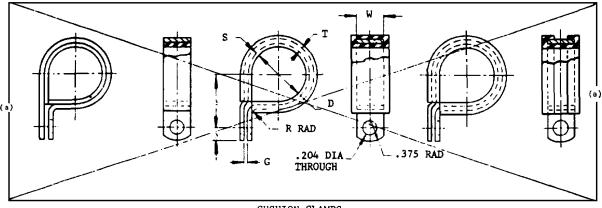
ALUMINUM ALLOY, TEMPER T-4 PER MIL-H-6088, AFTER FORMING CORROSION RESISTANT STEEL NONE. HEAT TREATMENT:

REMOVE ALL BURRS AND SHARP EDGES.

- DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: DECIMALS ± .015
- ADD C BEFORE DASH NUMBER FOR CORROSION RESISTANT STEEL CLAMP.
- ADD W BEFORE DASH NUMBER FOR WEDGE TYPE CUSHION CONSTRUCTION FOR THE -2 AND -3 SIZES ONLY
 - EXAMPLES OF PART NUMBERS: MS21122-8 CUSHION CLAMP, ALUMINUM, .500 ID. MS21122C8 CUSHION CLAMP, CRES, .500 ID.
 - THE MS PART NUMBER, INCLUDING DASH NUMBER, AND MANUFACTURER'S IDENTIFICATION SHALL BE MARKED ON EACH CLAMP.
- 10. THE ENDS OF THE CUSHION SHALL MEET WHEN THE CLAMP IS IN THE INSTALLED POSITION.
- CLAMPS SHALL BE FURNISHED IN THE OPEN POSITION. SEE PROCUREMENT SPECIFICATION.
- DIMENSION D IS APPLICABLE IN CLOSED POSITION ONLY.
- WEDGE IS MANDATORY ON ALL CLAMPS ABOVE -3 SIZE.
- WEDGE IS INTEGRAL PART OF CUSHION.
- 15. REINFORCED CORNER AND STIFFENING BEAD ARE MANDATORY.

(A) FOR CHANGES SEE SHEETS 1 AND 2


F19-004S01


Figure 19-4. Drawing MS21122 (Sheet 1 of 2)

DASH	RIGID						DIMENS	IONS							
NOS.	TUBE	3	D	E			R	S	1	•	W	1	X	Z MAX	ζ.
	NOMINAL OD (REF)	= .032	±.015 DIA	ALUM.	CRES	G	±.016 RAD	+.016 000	ALUM.	CRES	ALUM.	CRES	±.015	ALUM.	CRE
-2	1/8		,125	.457	.457										
-3	3/16		,188	.498	.498										
-4	1/4	.094	,250	.529	.529				.0320						
-5	5/16	.109	,313	.560	.560		.062		±.0025			.375	.188		.49
-6	3/8		,375	.592	.592										
-7	7/16	100	,438	.623	.623	.062									
-8 -9	1/2 9/16	.125	.500	.654	.654	+.016		\dashv \vdash		1			.622	\vdash	
-10	5/8		,625	.783	.780	1000									
-11	11/16		.688	.814	.811										
~12	3/4		.750	,845	.842				.050						
-13	13/16		.813	.877	.858		.109		±.004						.62
-14	7/8		.875	.908	.889										
-15	15/16		,938	.939	.920										
-16	1 1/16		1.000	.970 1.002	.951					.0320 ±.0035					
-17 -18	1-1/16				1.030			1		- ,0033					┢
-19	1-3/16			_	1.061										
-20	1-1/4		1.250	1.124	1.092										
-21	1-5/16		1.313	1.156	1.124										
-22	1-3/8		1.375	1.187	1.155										
-23	1-7/16			1.218	1.186	4 1					.500				
-24	1-1/2				1,217										
-25 -26	1+9/16			1.281	1.259										
-27	1-570		1.688		1,312				.025						
-28	1-3/4	// 1 750 1 37/ 1 3/2													
-29		(A)	1.813	1.406	1.374										
-30	1-7/8	.187		1,437	1.405						.500	.218			
-31			1.938		1.444										
-32 -33	2		2.000		1.475										
-34	2-1/8			1.562			.125		,063					.656	.6
-35	, .				1.570				±.005						
-36	2-1/4		2.250	1.624	1.600										
-37				1.655											
-38	2-3/8			1.387	_										
-40 -42	2-1/2		2.500	1.752	1.728	.125				.040					
-43				1.844						±.004					
-44	2-3/4			1.875						1.004					
-45				1.906											
-46			2.875	1.937	1.913										
-48	3			2.000	_										
-50				2.062											
-52	3-1/4			2.125											
-54	3.1/0			2.187											
-56 -58	3-1/2			300 2.250 2.226 525 2.312 2.288											
-64	4			2.500											
-66	7			2.562				1	1						I

F19-004S02

Figure 19-4. Drawing MS21122 (Sheet 2)

CUSHION CLAMPS

FOR DEFINITION AND APPLICATION OF DRAFTING STATUS NOTES, SEE MIL-STD-32.

MATERIAL: STEEL, ALUMINUM ALLOY, CORROSION-RESISTANT STEEL, HIGH-TEMPERATURE STEEL: SEE PROCUREMENT SPECIFICATION.

FINISH: SIEEL, CADMIUM PLATE, QQ-P-416, TYPE II, CLASS 3.

ADD F BEFORE DASH NO. FOR CORROSION-RESISTANT STEEL CLAMP.

ADD D BEFORE DASH NO. FOR ALUMINUM-ALLOY CLAMP. ADD H BEFORE DASH NO. FOR HIGH-TEMPERATURE STEEL CLAMP.

EXAMPLES OF PART NUMBERS: AN742-8 = CLAMP, STEEL, .500 (8/16) ID.

AN742F8

AN742D8

AN742H8

- CLAMP, CORROSION-RESISTANT STEEL, 500 (8/16) ID.
- CLAMP, ALUMINUM-ALLOY, .500 (8/16) ID.
- CLAMP, HIGH-TEMPERATURE STEEL, .500 (8/16) ID.
- CLAMP, HIGH-TEMPERATURE STEEL, .500 (8/16) ID.
- CLAMP, HIGH-TEMPERATURE STEEL, .500 (8/16) ID.
- CLAMP, HIGH-TEMPERATURE STEEL, .500 (10/16-1/8) ID.
- CLAMP, HIGH-TEMPERATURE STEEL, .500 (10/16-1/8) ID.
- CLAMP, ALUMINUM-ALLOY, .500 (10/16-1/8) ID.
- CLAMP, ALUMINUM-ALLOY, .500 (10/16-1/8) ID. AN742D10C - CUS

THE AN PART NUMBER, INCLUDING THE DASH NUMBER, AND THE MANUFACTURER'S IDENTIFICATION SHALL BE MARKED ON EACH CLAMP.

REMOVE ALL BURNS AND SHARP EDGES.

DIMENSIONS IN INCHES. UNLESS OTHERWISE SPECIFIED, TOLERANCES: DECIMALS = ±.015.

CLAMPS SHALL BE FURNISHED IN OPEN POSITION.

INACTIVE FOR DESIGN AFTER I JULY 1967. SEE MS21103, MS21104, MS21105, MS21106 AND MS21122.

(3) REINSTATED AFTER 17 DECEMBER 1968.

F19-005S01

Figure 19-5. Drawing AN742 (Sheet 1 of 2)

	F	OR USE WI	TH						DIMENS	IONS				
				Ω	l E	Ξ	G	R		T		Ĭ,	1	X
			COATED FLEXIBLE CONDUIT ID	±.015 DIA	ALUMI NUM ALLOY	ALL STEELS		±.016 RAD	ALUMI · NUM ALLOY	CARBON STEEL	HIGH TEMP AND ORE STEEL	ALUMI NUM ALLOY	ALL STEELS	
2	1/8	<u> </u>		.125	.360	.360					01211			H
3	3/16			.188	.423	.423		l						
4	1/4			.250	.457	.457		l						
5	5/16	3/16	- /-	.313	.498	.498		063	.0320		.020		.375	.1
6	3/8	1/4	3/16	.375	.529	.529		1.002	±.0025		±.003		• 3, 3	••
7	7/16 1/2	3/8	1/4	.438	.560	.560								l
9	9/16	1 13/6	3/8	.563	.623	.623								l
10	5/8	1/2	7,0	.625	.654	.654	.062	l						l
11	11/16	7, -	1/2	.680	.752		+.016		<u> </u>	1				T
12	3/4	5/8		.750	. 783	,780	000	l						l
73	13/16		5/8	.813	.814	.811		l						l
14	7/8	3/4	1	.875	.845	,842		1	.050					l
15	15/16	 	/3/4	.93B	.877	,858		1.109	±.004					l
16 17	1-1/16	 	 	1.000	.908	,889 .920		l		.0320 ±.0035				l
18	1-1/8	 	 	1.125	.970	.951		l		±,0055				l
19	1-3/16	1	 		1.002	.983		l						l
20	1-1/4	- 1	/ 1		1.062					1				l
21	1-5/16	1	17			1.061		l			.032			l
22	1-3/8	1	1/			1.092		l			±.004			l
23	1-7/16	1-1/4	/			1.124		l						
24	1-1/2		1-1/4		1.187			l				.500		
25 26	1-9/16 1-5/8	ļ <i>i</i>	}			1.186	.094	31						
27	1-3/8	1-1/2	\		1.281		+.031 000							
28	1-3/4	1-1/2	1-1/2		1.312									
29		 	1/-		1.344			l						l
30	1-7/8	1	1		1.374									l
31		1-3/4	Ì		1.406	1.374		l					.500	•:
32	2		1-3/4			1.405		l						l
33	2 1 /0		 \ 		1.468			l						l
34	2-1/8	2 /	 		1.499			.125	.063					l
36	2-1/4	-	1 3		1.562			• • • •	±.005					l
37	2 1/4	 	1		1.594			l						l
38	2-3/8		1		1.624			l						l
40	2-1/2				1.687			l						l
42					1.752			l						l
44	2 2 11	2-1/2	1		1,778		.125	l		.040	.040			l
	2-3/4	 	2-1/2		1.812		+.031 000	!		±.004	±.004			l
45 46		 	 		1.844		000	l		00-	2.004			l
48	3	\vdash	 		1.937									
50	_		1			1.976								1
52	3-1/4		1		2.062									
54						2.101	1 3 6	1	1	1				
56	3-1/2			3.500	2.187									
58					2.250			l						
64	4	II.	1	I /	12 437	2.413			ı				1	1

SEE SHEET 3 FOR DIMENSIONS OF CUSHION CLAMPS.

F19-005S02

Figure 19-5. Drawing AN742 (Sheet 2)

CHAPTER 20 PULLEYS

20.1 PULLEYS.

This chapter presents information about Pulleys, pulley wear and damage criteria. (See Figure 20-1)

20.2 PULLEY DEFINITION.

A wheel for supporting, guiding, or transmitting force or direction to or from a moving rope, chain, belt, or cable passing over its edge.

20.3 PULLEY MATERIAL.

Only material approved by the qualifying agency shall be used, typically a molded or machined phenolic of light alloy metal such as aluminum. The phenolic type pulleys have a metal housing case formed into the phenolic for a bearing housing.

20.4 PULLEY INSPECTION.

20.4.1 Flange Area. The flange is the protruding rim of the pulley. The flange is subject to failure in the form of breaking, chipping, and cracking. Any crack shall be considered a failure of the pulley, and is cause for rejection. A chip whose depth exceeds half the difference between the pulley outside radius and the pulley groove radius shall be considered a failure of the pulley, and is cause for rejection.

20.4.2 <u>Sheave Area</u>. The sheave is the body of the pulley, where the moving cable, wire, belt etc. contacts the

pulley. The sheave area is susceptible to excessive wear should the pulley bind or the bearings fail. The effects of such wear are flat spots, detectable by a rise and fall of the cable as the pulley rotates. Should the groove diameter of the pulley be reduced by more that 1/32 inch, the pulley shall be considered to have failed.

20.4.3 Depressions or pitting of the sheave groove are additional effects of wear. To determine the existence of a defect, a 0.030-inch radius ball point scribe or a 0.032-inch lock-wire is to be held perpendicular and at right angles to the surface being examined, and then pulled slowly across the sheath groove. Only light pressure should be applied to the scribe. If the inspector is able to feel a slight but definite pull on the 0.030-inch radius scribe or a 0.032-inch lock-wire when it is passed over the defect, it is an indication that the defect has considerable depth or rough sides or lock-wire. Such a defect may cause a cable to separate and allow foreign objects to penetrate the cable, initiating corrosion. Such defects shall be considered a failure of the pulley, and is cause for rejection.

20.4.4 <u>Pulley Bearings</u>. The bearings are considered part of the pulley sheave. Bearing failure requires replacement. Refer to T.O. 44B-1-2 for inspection of pulley bearing and lubrication.

20.4.5 <u>Cables</u>. Condition of cables shall be checked any time a defect is found with a pulley. Cable inspections should be made in accordance with T.O. 1-1A-8.

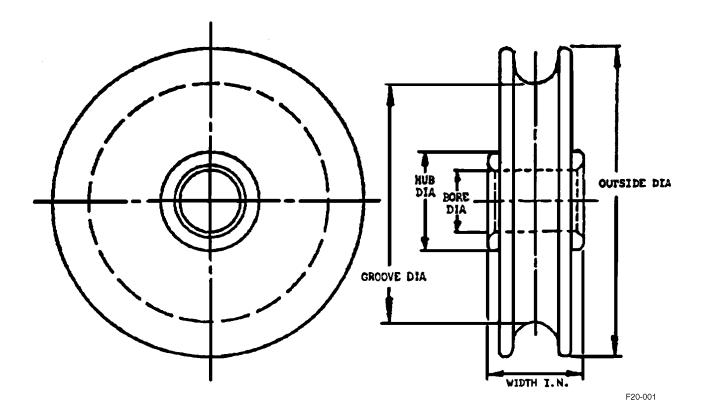


Figure 20-1. Pulley Inspection

APPENDIX A PERMASWAGE FITTINGS

A.1 The Permaswage fittings are formed of corrosion-resistant steel, Type 21-6-9, passivated per MIL-S-5002. These fittings are Teflon coated on internal surfaces only,

to a short distance into each end of the fitting bore. Dimensional data of these fittings are shown in this Appendix.

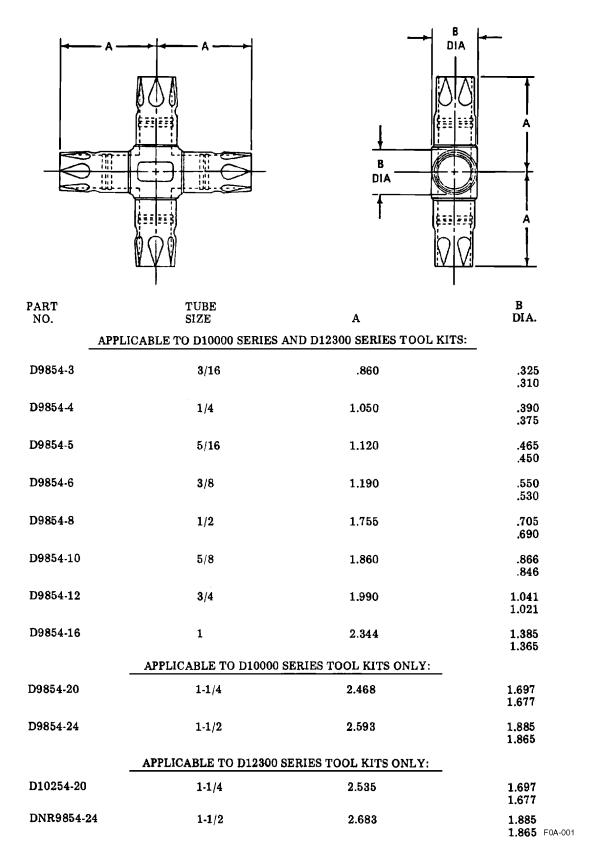
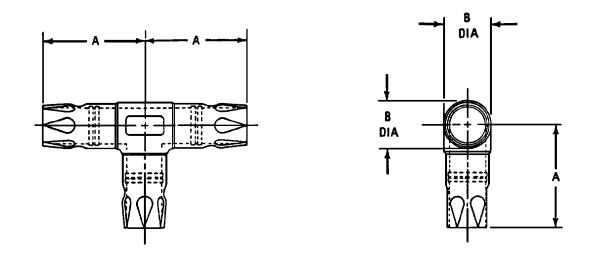
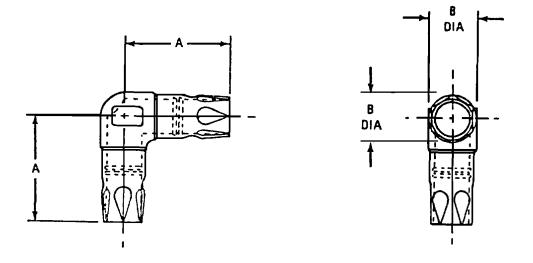




Figure A-1. Permaswage Cross

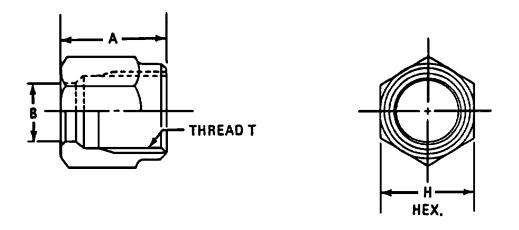
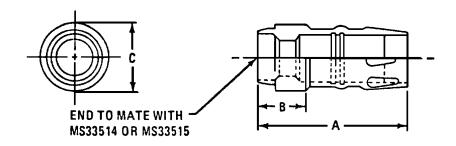

PART NO,	TUBE SIZE	A	B DIA.
	APPLICABLE TO D10000 SERIES A	ND D12300 SERIES TOOL	KITS:
D9855-3	3/16	.860	.325 .310
D9855-4	1/4	1.050	.390 .375
D9855-5	5/16	1.120	.465 .450
D9855-6	3/8	1.190	.550 .530
D9855-8	1/2	1.755	.705 .690
D9855-10	5/8	1.860	.866 .846
D9855-12	3/4	1.990	1.041 1.021
D9855-16	1	2.344	1.385 1.365
	APPLICABLE TO D10000 SE	RIES TOOL KITS ONLY:	
D9855-20	1-1/4	2.468	1.697 1.677
D9855-24	1-1/2	2.593	1.885 1.865
	APPLICABLE TO D12300 SE	RIES TOOL KITS ONLY:	
D10255-20	1-1/4	2.535	1.697 1.677
DNR9855-24	4 1-1/2	2.683	1.865 F0A-002

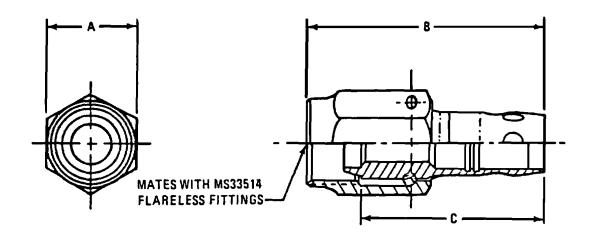
Figure A-2. Permaswage Tee

PART NO.	TUBE SIZE	A	B DIA.
	APPLICABLE TO D10000 SERIE	S AND D12300 SERIES TOOL KITS:	
D9856-3	3/16	.860	.325 .310
D9856-4	1/4	1.050	.390 .375
D9856-5	5/16	1.120	.465 .450
D9856-6	3/8	1.190	.550 .530
D9856-8	1/2	1.755	.705 .690
D9856-10	5/8	1.860	.866 .846
D9856-12	3/4	1.990	1.041 1.021
D9856-16	1	2.344	$\frac{1.385}{1.365}$
	APPLICABLE TO D10000	SERIES TOOL KITS ONLY:	
D9856-20	1-1/4	2.468	1.697 1.677
D9856-24	1-1/2	2.593	1.885 1.865
	APPLICABLE TO D12300	SERIES TOOL KITS ONLY:	
D10256-20	1-1/4	2.535	1.697 1.677
DNR9856-24	1-1/2	2.683	1.885 1.865 F0A-003


Figure A-3. Permaswage Elbow

PART NO.	TUBE SIZE	A	В	н нех
D10006-3	3/16	.609	.2770	.438
D10006-4	1/4	.660	.3175	.562
D10006-5	5/16	.700	.3845	.625
D10006-6	3/8	.736	.4505	.687
D10006-8	1/2	.870	.6140	.875
D10006-10	5/8	.970	.7370	1.000
D10006-12	3/4	1.060	.8670	1.250

Note: For sizes -16, -20 and -24, refer to D10059 and D10060 assemblies. D10006 nuts may not be used with MS20819 flared and MS21922 flareless sleeves.


Figure A-4. Nut Permaswage Flared and Flareless

PART NO.	TUBE SIZE	A	В	C
D10007-3	3/16	1.040	.296	.330
D10007-4	1/4	1.175	.322	.385
D10007-5	5/16	1.215	.333	.446
D10007-6	3/8	1.198	.370	.506
D10007-8	1/2	1.770	.410	.684
D10007-10	5/8	1.777	.440	.801
D10007-12	3/4	1.877	.440	.976
D10007-16	SEE D10059			
D10007-20	SEE D10059			
D10007-24	SEE D10059			

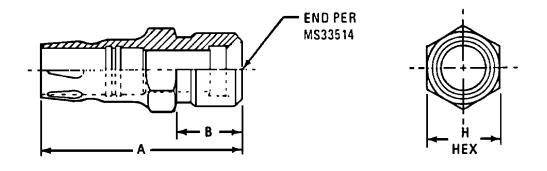

Note: Sizes -3 thru -16 applicable to both D10000 series and D12300 series tool kits. D10006 nuts must be used with D10007 permaswage flareless sleeves. MS21921 nuts are not compatible with permaswage sleeves.

Figure A-5. Sleeve Permaswage Flareless

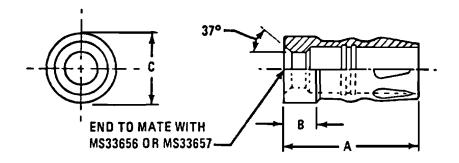
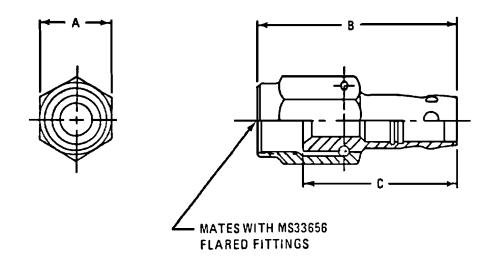

PART NO.	TUBE SIZE	A	В	C
	APPLICABLE TO D100	000 SERIES AND D1230	00 SERIES TOOL KITS:	
D10059-16	1	1.625	3.718	3.153
	APPLICABLE T	O D12300 SERIES TOO	L KITS ONLY:	
D10059-20	1-1/4	1.875	3.185	2.660
D10059-24	1-1/2	2.125	3.291	2.736
				F0A-006

Figure A-6. Permaswage Separable Flareless Sleeve Assembly

PART NO.	TUBE SIZE	A	В	HEX H
	APPLICABLE TO D10000 SI	ERIES AND D12300	SERIES TOOL KITS:	
D10008-3	3/16	1.318	.422	.375
D10008-4	1/4	1.484	.453	.437
D10008-5	5/16	1.528	.453	.500
D10008-6	3/8	1.530	.469	.562
D10008-8	1/2	2.332	.562	.750
D10008-10	5/8	2.357	.625	.875
D10008-12	3/4	2.460	.688	1.062
D10008-16	1	2.858	.688	1.500
	APPLICABLE TO D	2300 SERIES TOOL	KITS ONLY:	
D10008-20	1-1/4	3.050	.688	1.812
D10008-24	1-1/2	2.905	.688	2.125
				F0 A -007


Figure A-7. Union Permaswage Flareless

PART NO.	TUBE SIZE	A	В	c
D10010-3	3/16	.900	.156	.330
D10010-4	1/4	1.035	.182	.385
D10010-5	5/16	1.075	.194	.446
D10010-6	3/8	1.061	.233	.506
D10010-8	1/2	1.580	.220	.684
D10010-10	5/8	1.582	.245	.967
D10010-16	SEE D10060			
D10010-20	SEE D10060			
D10010-24	SEE D10060			

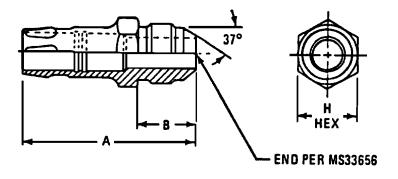

Note: Sizes -3 thru -16 applicable to both D10000 series and D12300 series tool kits. D10006 nuts must be used with D10010 permaswage flared sleeves. AN818 nuts are not compatible with permaswage sleeves.

Figure A-8. Sleeve Permaswage Flared - Female

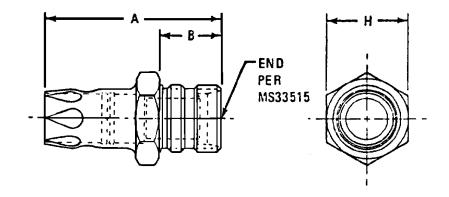

PART NO.	TUBE SIZE	A	В	C
	APPLICABLE TO D100	00 SERIES AND D1230	0 SERIES TOOL KITS:	
D10060-16	1	1.625	3.870	3.240
	APPLICABLE T	D D12300 SERIES TOO	L KITS ONLY:	
D10060-20	1-1/4	1.875	3.355	2.730
D10060-24	1-1/2	2.125	3.570	2.865
				F0A-009

Figure A-9. Permaswage Separable Flared Sleeve Assembly

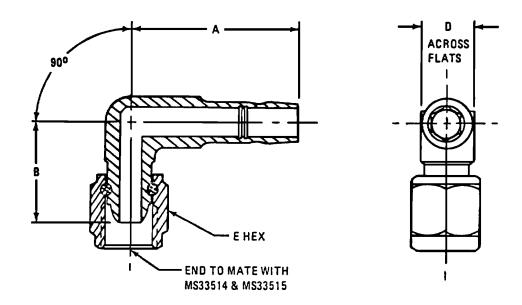

PART NO.	TUBE SIZE	A	В	HEX H
	APPLICABLE TO D10000 S	SERIES AND D12300	SERIES TOOL KITS:	
D10011-3	3/16	1.375	.479	.375
D10011-4	1/4	1.581	.550	.437
D10011-5	5/16	1.625	.550	.500
D10011-6	3/8	1.617	.556	.562
D10011-8	1/2	2.427	.657	.750
D10011-10	5/8	2.480	.758	.875
D10011-12	3/4	2.636	.864	1.062
D10011-16	1	3.081	.911	1.500
	APPLICABLE TO D	12300 SERIES TOOL	KITS ONLY:	
D10011-20	1-1/4	3.320	.958	1.812
D10011-24	1-1/2	3.300	1.083	2.125

Figure A-10. Union Permaswage Flared - Male

PART NO.	TUBE SIZE	A	В	H HEX
	APPLICABLE TO D10000	SERIES AND D12300 S	SERIES TOOL KITS:	
D10019-3	3/16	1.853	.906	.625
D10019-4	1/4	2.046	.969	.688
D10019-5	5/16	2.096	.969	.750
D10019-6	3/8	2.174	1.015	.813
D10019-8	1/2	2.853	1.156	1.000
D10019-10	5/8	2.994	1.297	1.125
D10019-12	3/4	3.153	1.406	1.375
D10019-16	1	3.490	1.406	1.625
	APPLICABLE TO I	012300 SERIES TOOL	KITS ONLY:	
D10019-20	1-1/4	3.490	1.406	1.875
D10019-24	1-1/2	3.490	1.406	2.125

Figure A-11. Union Permaswage to Flareless Bulkhead

PART NO.	TUBE SIZE	A	В	D	E HEX
	APPLICABLE T	O D10000 SERIES A	ND D12300 SERIE	S TOOL KITS:	
D10021A-3	3/16	1.276	.966	.325/.310	.500
D10021A-4	1/4	1.423	.870	.390/.375	.562
D10021A-5	5/16	1.529	1.002	.465/.450	.625
D10021A-6	3/8	1.625	1.112	.550/.530	.688
D10021A-8	1/2	2.150	1.156	.705/.690	.875
D10021A-10	5/8	2.275	1.391	.866/.846	1.000
D10021A-12	3/4	2.672	1.625	1.041/1.021	1.250
D10021A-16	1	2.750	1.781	1.385/1.365	1.500 F0A-012

Figure A-12. Adapter 90° Permaswage Flareless

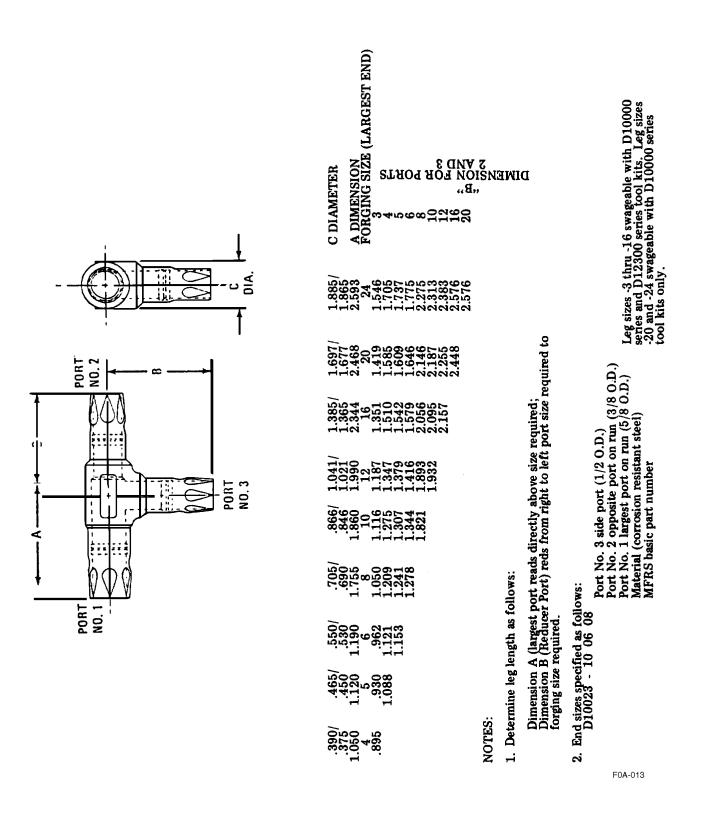
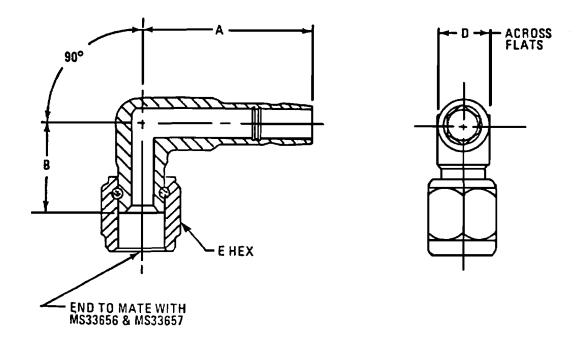
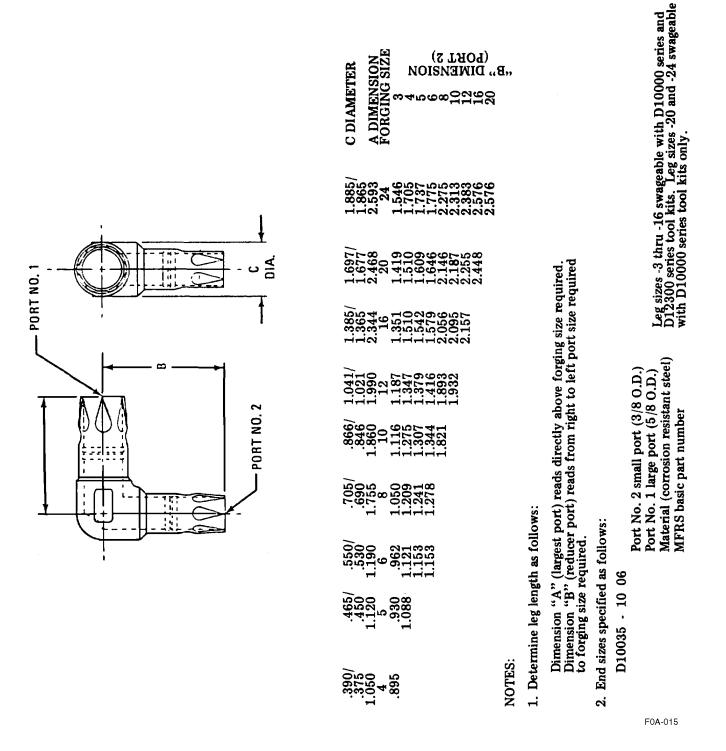
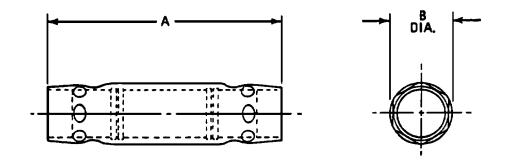
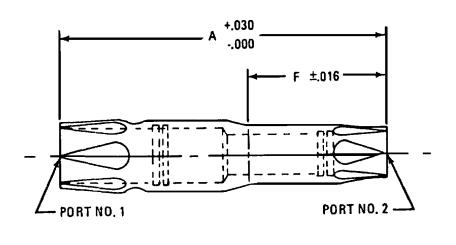
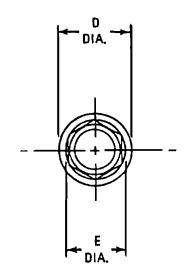



Figure A-13. D10023 Tee Permaswage Reducer

PART NO.	TUBE SIZE	A	В	D	E HEX
	APPLICABLE TO	D D10000 SERIES A	ND D12300 SERIE	S TOOL KITS:	
D10027A-3	3/16	1.276	.750	.325/.310	.500
D10027A-4	1/4	1.423	.719	.390/.375	.562
D10027A-5	5/16	1.529	.844	.465/.450	.562
D10027A-6	3/8	1.625	.922	.550/530	.688
D10027A-8	1/2	2.150	.938	.705/.690	.875
D10027A-10	5/8	2.275	1.125	.866/.846	1.000
D10027A-12	3/4	2.672	1.375	1.041/1.021	1.250
D10027A-16	1	2.750	1.500	1.385/1.365	1.500 FOA-014

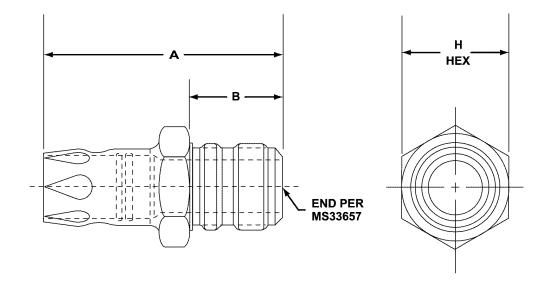
Figure A-14. Adapter 90° Permaswage Flared


Figure A-15. D10035 Elbow 90° Permaswage Reducer

PART NO.	TUBE SIZE	A	B DIA.	
	APPLICABLE TO D10000 SERIE	S AND D12300 SERIES TOOL KIT	<u>'S:</u>	
D10036-3	3/16	1.255/1.245	.275/.272	
D10036-4	1/4	1.540/1.530	.338/.335	
D10036-5	5/16	1.620/1.610	.413/.410	
D10036-6	- 3/8	1.690/1.680	.480/.477	
D10036-8	1/2	2.700/2.686	.655/.652	
D10036-10	5/8	2.780/2.766	.787/.784	
D10036-12	3/4	2.920/2.906	.929/.926	
D10036-16	1	3.209/3.195	1.257/1.253	
	APPLICABLE TO D10000	SERIES TOOL KITS ONLY:		
D10036-20	1-1/4	3.414/3.400	1.393/1.390	
D10036-24	1-1/2	3.664/3.650	1.648/1.645	
APPLICABLE TO D12300 SERIES TOOL KITS ONLY:				
D10136-20	1-1/4	3.414/3.400	1.489/1.486	
D10136-24	1-1/2	3.664/3.650	1.786/1.783	
			F0 A -016	

Figure A-16. Permaswage Union



			A (OVERAL	L LENG	TH)						
.275 3	.338 4	.413 5	.480 6	.655 8	.787 10	.929 12	1.257 16	1.489 20	1.786 24	"D" DIA PORT N	(REF.) O. 1	"E" DIA. (REF.)
_	_	_	_	_	_	_	_	_	_	2		_
	1.640	1.688	1.790	2.375	2.500	2.570	2.985	_	_	3		.275
		1.765	1.850	2.415	2.550	2.620	3.070	3.425	_	4		.338
			1.875	2.425	2.575	2.630	3.150	3.475	3.710	5	R.T.	.413
				2.425	2.590	2.640	3.340	3.688	3.915	6). 2 Port)	.480
					2.953	3.030	3.420	3.796	3.984	8	5 H	.655
						3.030	3.375	3.770	3.955	10		.787
							3.375	3.770	3.955	12	Port no. Educer P	.929
								3.850	4.040	16	S E	1.257
									4.140	20	PORT NG (REDUCER	1.489
											_	
3	4	5	6	8	10	12	16	20	24	PORT NO). 1	
_	_	_	_	_	_	_	_	_	_	2		
	.775	.775	.775	.775	.775	.775	.850	_	_	3		
		.875	.875	.875	.875	.875	.975	.975	_	4		<u> </u>
			.925	.925	.925	.925	1.075	1.075	1.075	5		PORT NO. 2 (REDUCER PORT)
				.940	.940	.940	1.240	1.240	1.240	6		. 2 PO
					1.420	1.420	1.420	1.420	1.420	8		PORT NO. EDUCER P
						1.460	1.460	1.460	1.460	10		I 8
NOTE	C:						1.520	1.520	1.520	12		SO OC
End si	zes speci	fied as fol	lows:					1.780	1.780	16		조절
	0045 - 3								2.075	20		E)
			Port No. 2	Reducer	port (1/	2 O.D.)			2.010			
					F (5/6	,						
]	Port No. 2 Port No. 1 Material									

NOTE: Leg sizes -3 thru -16 swageable with D10000 series and D12300 series tool kits. Leg sizes -20 and -24 swageable with D12300 series tool kits only.

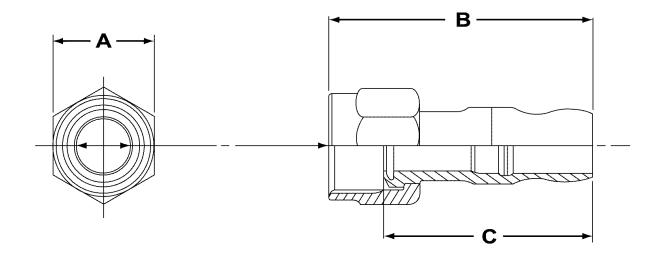

MFRS Basic Part Number

Figure A-17. Permaswage Reducer Union

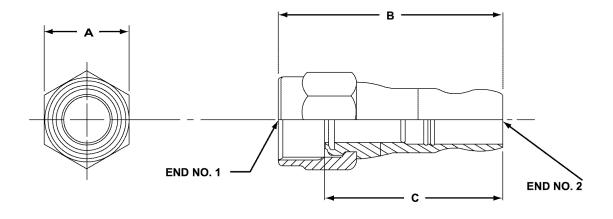

PART NO.	TUBE SIZE	A	В	H HEX
	APPLICABLE TO D1000	0 SERIES AND D12300	SERIES TOOL KITS:	
D10046-3	3/16	2.047	.953	.625
D10046-4	1/4	2.275	1.047	.688
D10046-5	5/16	2.325	1.047	.750
D10046-6	3/8	2.437	1.125	.813
D10046-8	1/2	3.140	1.281	1.000
D10046-10	5/8	3.280	1.422	1.125
D10046-12	3/4	3.470	1.593	1.375
D10046-16	1	3.888	1.593	1.625
				F0A-018

Figure A-18. Union Permaswage to Flared Bulkhead

PART NO.	TUBE SIZE	A HEX. (REF.)	B (REF.)	C (REF.)	
	APPLICAB	SLE TO D10000 SERIES	AND D12300 SERIE	S TOOL KITS:	
DD00200AP-3	3/16	.500	1.610	1.455	
DD00200AP-4	1/4	.562	1.801	1.620	
DD00200AP-5	5/16	.625	1.836	1.640	
DD00200AP-6	3/8	.687	1.925	1.715	
DD00200AP-8	1/2	.875	2.502	2.275	
DD00200AP-10	5/8	1.000	2.645	2.360	
DD00200AP-12	3/4	1.125	2.713	2.295	
DD00200AP-16	1	1.500	3.038	2.720	
	APF	PLICABLE TO D12300 S	SERIES TOOL KITS C	NLY:	
D11200P-20	1-1/4	1.875	2.927	2.562	
SPI	ECIAL FITT	ING FOR F-14 ONLY, IN	STALLED WITH D12:	300 SERIES KIT:	
DD00200AP-24	1-1/2	2.125	3.322	2.895	
EXAMPLE OF CODE: DD00200AP - 8 W					
		Tube—Mate	ety Wire Holes (optio size (1/2") rial - corrosion resist Part Number	tant steel	
				F0A-019	

Figure A-19. Female Adapter Permaswage Lipseal Assembly

PART NO.	TUBE SIZE	A HEX. (REF.)	B (REF.)	C (REF.)
DD00300AP-0403	1/4	.562	1.656	1.475
DD00300AP-0504	5/16 - 1/4	.625	1.764	1.550
DD00300AP-0604	3/8 - 1/4	.687	1.835	1.625
DD00300AP-0804	1/2 - 1/4	.875	1.852	1.625
DD00300AP-0806	1/2 - 3/8	.875	1.952	1.715
DD00300AP-1006	5/8 - 3/8	1.000	2.015	1.730
DD00300AP-1008	5/8 - 1/2	1.000	2.575	2.290
DD00300AP-1206	3/4 - 3/8	1.125	2.168	1.850
DD00300AP-1208	3/8 - 1/2	1.125	2.643	2.325
DD00300AP-1210	3/4 - 5/8	1.125	2.713	2.395
DD00300AP-1608	1-1/2	1.500	2.738	2.420
DD00300AP-1610	1-5/8	1.500	2.808	2.490
DD00300AP-1612	1-3/4	1.500	2.878	2.490
DD00300AP-2016	1-1/4-1	1.812	3.077	2.735

Note: All of the above configurations may be swaged with either D10000 series or D12300 series tool kits. The - 2016 configuration uses an obsolete thread size applicable to the F-14 aircraft only.

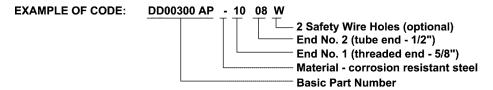
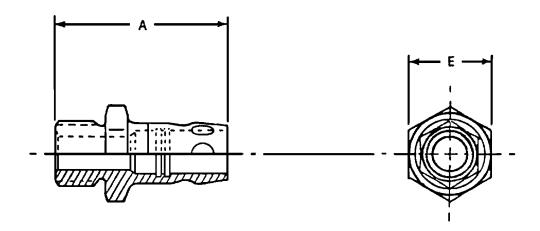



Figure A-20. Reducer, Female Adapter Permaswage Lipseal Assembly

PART NO.	A	D HEX		
APPLICABLE TO D10000 SE	RIES AND D12300 SERIE	S TOOL KITS:		
D11007-3	1.129	.375		
D11007-4	1.306	.438		
D11007-5	1.349	.500		
D11007-6	1.356	.562		
D11007-8	2.078	.750		
D11007-10	2.104	.875		
D11007-12	2.184	1.062		
D11007-16	2.630	1.500		
APPLICABLE TO D12300	SERIES TOOL KITS ON	LY:		
D11007-20	2.819	1.625		
D11007-24	2.759	2.125		
EXAMPLE OF CODE: D11007 - 8 W Tube size (1/2") Material — corrosion resistant steel Basic Part Number				

Figure A-21. Male Adapter Permaswage Lipseal

INDEX

Subject	Paragraph, Figure Table Number
A	
Acres Fastener Sleeves	15.1
Adjusting to Length	
Alternate Method for Permanent Repair of Tube Assemblies	
Alternate Method of Adjusting Sleeve to Length in Structure	15.4
AN101001 through AN101900, Hex Head Bolts; AN101901 through AN102800, Drilled	
Shank, Hex Head Bolts; AN102801 through AN103700, Drilled Hex Head (One Hole)	
Bolts; and AN103701 through AN104600, Drilled Hex Head (Six Holes) Bolts	T3-5
AN104601 through AN105500, CRES, Hex Head Bolts; AN105501 through AN106400,	
CRES, Drilled Shank, Hex Head Bolts; AN106401 through AN107300, CRES, Drilled	
Hex Head (One Hole) Bolts; and AN107301 through AN108200, CRES, Drilled Hex	
Head (Six Holes) Bolts	
AN148551 through AN149350, Six Hole, Drilled Socket Head Bolts	
AN21 through AN36, Celvis Bolts	T3-19
AN3 through AN20, Standard Aircraft Machine Bolt, and AN173 through AN186, Close-	
Tolerance Machine Bolts	T3-1
AN42 through AN49, Eyebolts	
AN73 through AN81, Drilled Head, Standard Aircraft Machine Bolts	T3-2
Assembling and Securing Clip Locking Turnbuckles	16.4
Assembly Tools	
Automotive and Aircraft Spark Plug Packs	9.12
_	
В	
Bending Procedures	
Blind Fastener Substitution Requirements for Conventional Rivets	
Bolted Joint with Oversize Hole	
Bolts	
Bushings	8.1
С	
Cable Damage	11.2
Cable Hardware	
Cable Tension	
Cables	
Care and Handling Practices	
Cherrylock and Olympic-Lok Rivets	
Clinch Nuts	
Common, Solid Shank Rivets	
Common, Sond Shank Rivets	1.2
D	
Drill and Extractor Sizes	T3-24
Driver Selection	
E	
EWB22, External Wrenching, 220,000 PSI Minimum, Bolt (Available by Manufacturer's	
Part Number) (SPS)	T3-21
_	
F	
Fastener Fatigue Failure	
Flareless Fitting Seal	
Flexible Hose and Fittings	
Flushing Back Side When Necessary	15.7

Subject	Paragraph, Figure Table Number
Full Threaded, Fully Identified Head Bolts (NAS563 Through NAS572)	3.1.18
MS9088 through MS9094, Drilled Twelve Point Head, Cadmium-Plated Steel, Machine Bolts	
CHILLE BOILS	13-10
G	
Gaging of Assembled Insert	9.7
Н	
Helical Coil Inserts	9.3
HI-LOK/HI-TIGUE Tools	
Hi-Torque Bolts Available by Manufacturer's Part Number	T3-22
Huckrimp Fasteners	1.7
1	
Identification Markings on Nuts	5 15
Insert Removal Instructions	
Inspection	
Inspection of Aeroquip Corp Series 3700 and 3750 Quick Thread Couplings	
Installation of Deutschlite Fittings	
Installation Procedures	13.14
L	
Liquid Nitrogen Safety	12 22 1
Liquid Ivitiogen Safety	13.22.1
M	
Maintenance	3.2
Military Material Identification Markings on Studs	
Military Standard Blind Bolts	
Military Standards (MS) Nuts	
MS20004 through MS20024, 160,000 PSI, Internal Wrenching Bolts	
MS9033 through MS9039, Twelve Point Head, Heat-Resistant Machine Bolts	13-13
Bolts	T3-16
Full Threaded, Fully Identified Head Bolts (NAS563 Through NAS572)	
Tail Timewada, Taily Taelianiea Tieaa Bons (1418505 Timoagn 1418572)	
N	
NAS1003 through NAS1020, Hex Head, Nonmagnetic, Heat-Resistant Machine Bolts	T3-4
NAS1103 through NAS1120, Hex Head, Close-Tolerance, 160,000 PSI, Short Thread	
Bolts; NAS1202 through NAS1207, 100-Degree, Close-Tolerance Head and Shank,	
160,000 PSI, Short Thread Bolts; and NAS1503 through NAS1510, 100-Degree, Close-Tolerance Head and Shank, 160,000 PSI, Short Thread Bolts	T2 10
NAS1303 through NAS1320, Hex Head, Close-Tolerance, 160,000 PSI Tensile Bolts	
NAS144 through NAS158, and NAS172 through NAS176, Steel, Internal Wrenching	
Bolts	T3-11
NAS333 through NAS340, 100-Degree Countersunk Head, Close-Tolerance, High	
Strength Bolts	
NAS464 Close-Tolerance Shear Bolt	
NAS563 through NAS572, Full Threaded, Fully Identified, Head Bolts	
NAS624 through NAS644, Twelve Point, External Wrenching, 180,000 PSI Bolts	T3-14
NAS653 through NAS658, Hex Head, Close-Tolerance, Short Thread, 4AL-4MN Titani-	
um Alloy Bolts; NAS663 through NAS668, 100-Degree Flathead, Close-Tolerance, 4AL-4MN Titanium Alloy Bolts; and NAS673 through NAS678, Hex Head, Close-Tolerance,	
4AL-4MN Titanium Alloy Bolts	T3_8
Nonstandard Rivets	
Nut Identification.	
Nuts	

Subject	Paragraph, Figure Table Number
Other Quick-Release Fasteners	10.9
Oversize Fastener Sleeves, Type I	
_	
P. I. I.O. I. D. I. E. A.	10.1
Panel and Quick-Release Fasteners	
Permaswage Repair Procedure	
Pins	
Presetting Procedures	
Procedure for Grinding Sleeve to Proper Length	
Pulley Definition	
Pulley Inspection	
Pulley Material	
Pulleys	11.5, 20.1
Q	
Quick-Release Fasteners	10.4
Quick-Release Pasiellers	10.4
R	
Reaming New Bushings	8.2
Removal and Replacement of Style I Quick-Release Fastener	
Repair and Replacement of Tubing Assemblies	
Repair Procedure	
Repairing Tubing Fittings	
Restricted Applications	
Rivet Sets	
Rivets	
KIVCIS	1.1
S	
Safety Cable	
Safety Cable Application Tools	
Safety Methods	
Safetying Hinge Pins	
Screw Head and Driver Size	
Screw Thread and Screw-Locking Inserts - Unified Coarse and Fine Thread Sizes	
Screws	
Seal Replacement	
Securing Oil Caps, Drain Cocks, and Valves	
Securing Turnbuckles	
Securing with Cotter Pins	
Self-Locking Nuts	
Self-Locking Nuts for Aircraft Engines and Accessories	
Sleeves, Fasteners, Design and Usage Limitations	
Spark Plug Thread Sizes	
Special Washers	
Structure Assembly Using Panel and Quick-Release Fasteners	
Structure Disassembly Using Panel and Quick-Release Fasteners	
Stud Tools	
Stude L Oviels Paleage Featurer	
Style I Quick-Release Fastener	
Style III Quick-Release Fastener Cross Pins	
Style III Quick-Release Fastener Receptacle	
Style III Quick-Release Fastener Stud	
Style III Quick-Release Fastener Stud Selection	
Swage Locked Pin and Collar Fasteners	

T.O. 1-1A-8

Subject	Paragraph, Figure Table Number
Swage Tool Operation	
т	
Tang Removal Instructions	9.6
Tapered Pipe Thread Sizes	
Technical Manual Coverage	
Thread Repair Packs	
Threaded Inserts	
Tie Rods.	
Tie Rods and Control Rods	
Tightening Nuts and Bolts	
Tooling	
Torq-Set Wrenching Recess	
Torque	
Torque Values For Studs	
Torque Wrenches	
Troubleshooting Guide	
Tube Assembly Repair With Rynglok Fittings	
Tubing	
Tubing Assemblies	
Tubing Assembly Template	
Tubing Fittings	
Tubing Joints	
Tubing Systems and Tubing Repairs	
Types of Oxygen System Flared Tubing Fittings	
Types of Quick Disconnect Couplings	
Types of Repair	
Typical Installation Torque Values	T3-23
V	
V-Band Couplings	18.1
w	
Washers	6.1
Wrenching Problems	5.8